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Abstract—We consider the problem of detecting robotic grasps
in an RGB-D view of a scene containing objects. In this work,
we apply a deep learning approach to solve this problem, which
avoids time-consuming hand-design of features. This presents two
main challenges. First, we need to evaluate a huge number of
candidate grasps. In order to make detection fast, as well as
robust, we present a two-step cascaded structure with two deep
networks, where the top detections from the first are re-evaluated
by the second. The first network has fewer features, is faster to
run, and can effectively prune out unlikely candidate grasps.
The second, with more features, is slower but has to run only on
the top few detections. Second, we need to handle multimodal
inputs well, for which we present a method to apply structured
regularization on the weights based on multimodal group reg-
ularization. We demonstrate that our method outperforms the
previous state-of-the-art methods in robotic grasp detection, and
can be used to successfully execute grasps on a Baxter robot. 1

I. INTRODUCTION

Robotic grasping is a challenging problem involving percep-

tion, planning, and control. Some recent works [33, 35, 13, 41]

address the perception aspect of this problem by converting it

into a detection problem where, given a noisy, partial view of

the object from a camera, the goal is to infer the top locations

where a robotic gripper could be placed (see Figure 1).

Unlike generic vision problems based on static images, such

robotic perception problems are often used in closed loop with

controllers, so there are stringent requirements on performance

and computational speed. In the past, hand-designing features

has been the most popular method for several robotic tasks,

such as [23, 18]. However, this is cumbersome and time-

consuming, especially when we must incorporate new input

modalities such as RGB-D cameras.

Recent methods based on deep learning [1] have demon-

strated state-of-the-art performance in a wide variety of tasks,

including visual recognition [19, 37], audio recognition [22,

25], and natural language processing [6]. These techniques

are especially powerful because they are capable of learning

useful features directly from both unlabeled and labeled data,

avoiding the need for hand-engineering.

However, most work in deep learning has been applied in

the context of recognition. Grasping is inherently a detection

problem (see Figure 1), and previous applications of deep

learning to detection have typically focused on specific ap-

plications such as face detection [27]. Our goal is not only to

infer a viable grasp, but to infer the optimal grasp for a given

object that maximizes the chance of successfully grasping it.

Thus, the first major contribution of our work is to apply deep

1This work was first presented at ICLR 2013 as a workshop paper.

Fig. 1: Detecting robotic grasps. A cluttered lab scene with rectan-
gles corresponding to robotic grasps detected by our system. Green
lines correspond to robotic gripper plates. We use a two-stage system
based on deep learning to learn features and perform detection for
robotic grasping.

learning to the problem of robotic grasping, in a fashion which

could generalize to similar detection problems.

The second major contribution of our work is to propose

a new method for handling multimodal data in the context

of feature learning. The use of RGB-D data, as opposed

to simple 2D image data, has been shown to significantly

improve grasp detection results [13, 7, 35]. In this work, we

present a multimodal feature learning algorithm which adds a

structured regularization penalty to the objective function to

be optimized during learning. As opposed to previous works

in deep learning, which either ignore modality information at

the first layer, encouraging all features to use all modalities

[36], or train separate first-layer features for each modality

[26, 39], our approach allows for a middle-ground in which

each feature is encouraged to use only a subset of the input

modalities, but is not forced to use only particular ones.

We also propose a two-stage cascaded detection system

based on deep learning. Here, we use fewer features for the

first pass, providing faster, but only approximately accurate

detections. The second pass uses more features, giving more

accurate detections. In our experiments, we found that the

first deep network, with fewer features, was better at avoiding

overfitting but less accurate. We feed the top-ranked rectangles

from the first layer into the second layer, leading to robust

early rejection of false positives. Unlike manually designed

two-step features as in [13], our method uses deep learning,

which allows us to learn detectors that not only give higher

performance, but are also computationally efficient.

We test our approach on a challenging dataset, where

we show that our algorithm improves both recognition and

detection performance for grasping rectangle data. We also



show that our two-stage approach is not only able to match

the performance of a single-stage system, but, in fact, improves

results while significantly reducing the computational time

needed for detection.

In summary, the contributions of this paper are:

• We present a deep learning algorithm for detecting

robotic grasps. To the best of our knowledge, this is the

first work to do so.

• In order to handle multi-modal inputs, we present a new

way to apply structured regularization to the weights to

these inputs based on multimodal group regularization.

• We present a multi-step cascaded system for detection,

significantly reducing its computational cost.

• Our method outperforms the state-of-the-art of grasp

detection, as well as previous deep learning algorithms.

• We implement our algorithm on a Baxter robot, and

successfully execute several grasps.

The rest of the paper is organized as follows: We discuss

related work in Section II. We present our two-step cascaded

detection system in Section III. We then describe our feature

learning algorithm and structured regularization method in

Section IV. We present our experiments in Section V, and

show and discuss results in Section VI. We conclude in

Section VII.

II. RELATED WORK

Deep Learning. A handful of previous works have applied

deep learning to detection problems [27, 21, 5]. For example,

Osadchy et al. [27] applied a deep energy-based model to

the problem of face detection, and Coates et al. [5] used a

deep learning approach to detect text in images. Both of these

problems differ significantly from robotic grasp detection. In

each, an image contains some set of true detections, and the

goal is to find all of them, while in robotic grasp detection, an

image might contain a large number of possible grasps, and

the goal is to find the best one, requiring a different approach.

Jalali et al. [12] used a structured regularization function

similar to that which we propose here. However, their work

applies it only to multitask learning problems (multiple linear

regression tasks), while we apply it to more complex non-

linear deep networks in a very different context of multimodal

learning. The Topographic ICA algorithm [11] is a feature-

learning approach that applies a structured penalty term to

feature activations, but not to the weights themselves.

Coates and Ng [4] investigate the problem of selecting

receptive fields, i.e., subsets of the input features to be used to-

gether in a higher-level feature. In this paper, we apply similar

concepts to multi-modal features via structured regularization.

Previous works on multimodal deep learning have focused

on learning separate features for modalities with significantly

different representations. Ngiam et al. [26] worked with audio

and video data, while Srivastava and Salakhutdinov [39]

worked with images and text. Our work proposes an algorithm

which would apply both to these cases and to cases such

as RGB-D data, where the underlying representation of the

modalities is similar. Previous work on RGB-D recognition

(e.g., [36]) typically ignores correlated modality information

and simply concatenates features from each modality.

Robotic Grasping. Many works focus on determining feasible

grasps given full knowledge of 2D or 3D object shape using

physics-based techniques such as force- and form-closure [29].

Some recent works [7, 9] use full physical simulation given

3D models to determine feasible grasps. Gallegos et al. [8]

performed optimization of grasps given both a 3D model of

the object to be grasped and the desired contact points for the

robotic gripper. Our approach requires only a single RGB-D

view and thus can be applied to cases where the full 3D model

of an object is not known.

Other methods focus on specific cases of robotic grasping.

For example, [24, 3, 28] assume that objects to be grasped

belong to a particular set of shape primitives or compositions

thereof. Our approach is able to learn features and detect

feasible grasps regardless of object shape.

Learning based methods have enabled grasp detection to

generalize to novel objects [33]. However, all previous image-

based approaches to grasping novel objects have used hand-

designed features. Some works rely exclusively on 2D image

features such as edge and texture features [34]. However, most

recent works combine 2D and 3D features, either using similar

features for both [13, 14], or extracting geometric information

from 3D data [20, 30, 35].

These works typically consider only one type of gripper, ei-

ther two-fingered/parallel-plate [13, 38], three-finger [20, 30],

or jamming [14]. Some works consider multiple types [34, 35],

but use the same features for all. Here, we will consider

parallel plate grippers, but in the future, our approach could be

used to learn gripper-specific features for any of these types.

RGB-D Data. Due to the availability of inexpensive depth

sensors, RGB-D data has been a significant research focus

in recent years for various applications. For example, Jiang

et al. [15] consider robotic placement of objects, Koppula

et al. [17] consider human activity detection, and Koppula

et al. [16] consider object detection in 3D scenes. Most works

with RGB-D data use hand-engineered features such as [32].

The few works that perform feature learning for RGB-D data

[36, 2] largely ignore the multimodal nature of the data, not

distinguishing the color and depth channels. Here, we present

a structured regularization approach which allows us to learn

more robust features for RGB-D and other multimodal data.

III. DEEP LEARNING FOR GRASP DETECTION:

SYSTEM AND MODEL

In our system for robotic grasping, the robot first obtains an

RGB-D image of the scene containing objects to be grasped.

A small deep network is used to score potential grasps in

this image, and a small candidate set of the top-ranked grasps

is provided to a larger deep network, which yields a single

best-ranked grasp. The robot then uses the parameters of

this detected grasp to plan a path and grasp the object. We

will represent potential grasps using oriented rectangles in the

image plane, with one pair of parallel edges corresponding to

the robotic gripper [13].



Fig. 2: Illustration of our two-stage detection process. Given an image of an object to grasp, a small deep network is used to exhaustively
search potential rectangles, producing a small set of top-ranked rectangles. A larger deep network is then used to find the top-ranked rectangle
from these candidates, producing a single optimal grasp for the given object.

Using a standard feature learning approach such as sparse

auto-encoder [10], a deep network can be trained for the

problem of grasping rectangle recognition (i.e., does a given

rectangle in image space correspond to a valid robotic grasp?).

However, in a real-world robotic setting, our system needs to

perform detection (i.e., given an image containing an object,

how should the robot grasp it?). This task is significantly more

challenging than simple recognition.

Two-stage Cascaded Detection. In order to perform detection,

one naive approach could be to consider each possible oriented

rectangle in the image (perhaps discretized to some level),

and evaluate each rectangle with a deep network trained for

recognition. However, such near-exhaustive search of possible

rectangles (based on positions, sizes, and orientations) can be

quite expensive in practice for real-time robotic grasping.

Motivated by multi-step cascaded approaches in previous

work [13, 40], we instead take a two-stage approach to

detection: First, we use a reduced feature set to determine

a set of top candidates. Then, we use a larger, more robust

feature set to rank these candidates.

However, these approaches require the design of two sepa-

rate sets of features. In particular, it can be difficult to manually

design a small set of first-stage features which is both quick to

compute and robust enough to produce a good set of candidate

detections for the second stage. Using deep learning allows us

to circumvent the costly manual design of features by simply

training networks of two different sizes, using the smaller for

the exhaustive first pass, and the larger to re-rank the candidate

detection results.

Model. To detect robotic grasps from the rectangle represen-

tation, we model the probability of a rectangle G(t), with

features x(t) ∈ R
N being graspable, using a random variable

ŷ(t) ∈ {0, 1} which indicates whether or not we predict G(t)

to be graspable. We use a deep network with two layers of

sigmoidal hidden units h[1] and h[2], with K1 and K2 units

per layer, respectively. A logistic classifier over the second-

layer hidden units’ outputs then predicts P (ŷ(t)|x(t); Θ). Each

layer ℓ will have a set of weights W [ℓ] mapping from its

inputs to its hidden units, so the parameters of our model are

Θ = (W [1],W [2],W [3]). Each hidden unit forms output by a

sigmoid σ(a) = 1/(1 + exp(−a)) over its weighted input:

h
[1](t)
j = σ

(

N
∑

i=1

x
(t)
i W

[1]
i,j

)

h
[2](t)
j = σ

(

K1
∑

i=1

h
[1](t)
i W

[2]
i,j

)

P (ŷ(t) = 1|x(t); Θ) = σ

(

K2
∑

i=1

h
[2](t)
i W

[3]
i

)

A. Inference and Learning

During inference, our goal is to find the single grasping

rectangle with the maximum probability of being graspable for

some new object. With G representing a particular grasping

rectangle position, orientation, and size, we find this best

rectangle as:

G∗ = arg max
G

P (ŷ(t) = 1|φ(G); Θ)

Here, the function φ extracts the appropriate input representa-

tion for rectangle G.

During learning, our goal is to learn the parameters Θ that

optimize the recognition accuracy of our system. Here, input

data is given as a set of pairs of features x(t) ∈ R
N and

ground-truth labels y(t) ∈ {0, 1} for t = 1, . . . ,M . As in most

deep learning works, we use a two-phase learning approach.

In the first phase, we will use unsupervised feature learning

to initialize the hidden-layer weights W [1] and W [2]. Pre-

training weights this way is critical to avoid overfitting. We

will use a variant of the sparse auto-encoder (SAE) algorithm

[10]. We define g(h) as a sparsity penalty function over

hidden unit activations, with λ controlling its weight. If f(W )
is a regularization function, weighted by β, and x̂(t) is a

reconstruction of x(t), SAE solves the following to initialize

hidden-layer weights:

W ∗ = arg min
W

M
∑

t=1

||x̂(t) − x(t)||22 + λ

K
∑

j=1

g(h
(t)
j ) + βf(W )

x̂
(t)
i =

K
∑

j=1

h
(t)
j Wi,j (1)

We first use this algorithm to intialize W [1] to reconstruct x.

We then fix W [1] and learn W [2] to reconstruct h[1].

During the supervised phase of the learning algorithm, we

then jointly learn classifier weights W [3] and fine-tune hidden

layer weights W [1] and W [2] for recognition. We maximize the

log-likelihood of the data along with regularization penalties



Fig. 3: Three possible models for multimodal deep learning. Left: fully dense model - all visible features are concatenated and modality
information is ignored. Middle: modality-specific sparse model - separate first layer features are trained for each modality. Right: group-sparse
model - a structured regularization term encourages features to use only a subset of the input modes.

on hidden layer weights:

Θ∗ = arg max
Θ

M
∑

t=1

logP (ŷ(t) = y(t)|x(t); Θ)

− β1f(W
[1])− β2f(W

[2]) (2)

Two-stage Detection Model. During inference for two-stage

detection, we will first use a smaller network to produce a set

of the top T rectangles with the highest probability of being

graspable according to network parameters Θ1. We will then

use a larger network with a separate set of parameters Θ2 to

re-rank these T rectangles and obtain a single best one. The

only change to learning for the two-stage model is that these

two sets of parameters are learned separately, using the same

approach.

IV. STRUCTURED REGULARIZATION FOR

FEATURE LEARNING

In the multimodal setting, we assume that the input data x is

known to come from R distinct modalities, for example audio

and video data, or depth and RGB data. We define the modality

matrix S as an RxN binary matrix, where each element Sr,i

indicates membership of visible unit xi in a particular modality

r, such as depth or image intensity.

A naive way of applying feature learning to this data is

to simply take x (as a concatenated vector) as input to the

model described above, ignoring information about specific

modalities, as seen on the lefthand side of Figure 3. This

approach may either 1) prematurely learn features which

include all modalities, which can lead to overfitting, or 2) fail

to learn associations between modalities with very different

underlying statistics.

Instead of concatenating multimodal input as a vector,

Ngiam et al. [26] proposed training a first layer representation

for each modality separately, as shown in Figure 3-middle.

This approach makes the assumption that the ideal low-level

features for each modality are purely unimodal, while higher-

layer features are purely multimodal. This approach may work

better for some problems where the modalities have very

different basic representations, such as the video and audio

data (as used in [26]), so that separate first layer features

may give better performance. However, for modalities such

as RGB-D data, where the input modes represent different

channels of an image, learning low-level correlations can lead

to more robust features – our experiments in Section V show

that simply concatenating the input modalities significantly

outperforms training separate first-layer features for robotic

grasp detection from RGB-D data.

For many problems, it may be difficult to tell which of these

approaches will perform better, and time-consuming to tune

and comparatively evaluate multiple algorithms. In addition,

the ideal feature set for some problems may contain features

which use some, but not all, of the input modalities, a case

which neither of these approaches are designed to handle.

To solve these problems, we propose a new algorithm for

feature learning for multimodal data. Our approach incorpo-

rates a structured penalty term into the optimization problem

to be solved during learning. This technique allows the model

to learn correlated features between multiple input modalities,

but regularizes the number of modalities used per feature

(hidden unit), discouraging the model from learning weak

correlations between modalities. With this regularization term,

the algorithm can specify how mode-sparse or mode-dense the

features should be, representing a continuum between the two

extremes outlined above.

Regularization in Deep Learning. In a typical deep learning

model, L1 regularization (i.e., f(W ) = ||W ||1) or L2 regular-

ization (i.e., f(W ) = ||W ||22) are commonly used in training

(e.g., as specified in Equations (1) and (2)). These are often

called a “weight cost” (or “weight decay”), and are left implicit

in many works.

Applying regularization is well known to improve the gen-

eralization performance of feature learning algorithms. One

might expect that a simple L1 penalty would eliminate weak

correlations in multimodal features, leading to features which

use only a subset of the modes each. However, we found that in

practice, a value of β large enough to cause this also degraded

the quality of features for the remaining modes and lead to

decreased task performance.

Multimodal Regularization. For structured multimodal regu-

larization, each modality will be used as a regularization group

separately for each hidden unit, applied in a manner similar



(a) Features corresponding to positive grasps. (b) Features corresponding to negative grasps.

Fig. 4: Features learned from grasping data. Each feature contains seven channels - from left to right, depth, Y, U, and V image channels,
and X, Y, and Z surface normal components. Vertical edges correspond to gripper plates. Left: eight features with the strong positive
correlations to rectangle graspability. Right: similar, but negative correlations. Group regularization eliminates many modalities from many
of these features, making them more robust.

to the group regularization in [12]:

f(W ) =

K
∑

j=1

R
∑

r=1

(

N
∑

i=1

Sr,i|W
p
i,j |

)1/p

(3)

Using a high value of p allows us to penalize higher-valued

weights from each mode to each feature more strongly than

lower-valued ones. At the limit (p → ∞), this group regular-

ization becomes equivalent to the infinity- (or max-) norm:

f(W ) =

K
∑

j=1

R
∑

r=1

max
i

Sr,i|Wi,j | (4)

which penalizes only the maximum weight from each mode to

each feature. In practice, the infinity-norm is not differentiable

and therefore is difficult to apply gradient-based optimization

methods; in this paper, we use the log-sum-exponential as a

differentiable approximation to the max-norm.

In experiments, this regularization function produces first-

layer weights concentrated in fewer modes per feature. How-

ever, we found that at values of β sufficient to induce the

desired mode-wise sparsity patterns, penalizing the maximum

also had the undesirable side-effect of causing many of the

weights for other modes to saturate at their mode’s maximum,

suggesting that the features were overly constrained. In some

cases, constraining the weights in this manner also caused

the algorithm to learn duplicate (or redundant) features, in

effect scaling up the feature’s contribution to reconstruction to

compensate for its constrained maximum. This is obviously an

undesirable effect, as it reduces the effective size (or diversity)

of the learned feature set.

This suggests that the max-norm may be overly constrain-

ing. A more desirable regularization function would penalize

nonzero weight maxima for each mode for each feature

without additional penalty for larger values of these maxima.

We can achieve this effect by applying the L0 norm, which

takes a value of 0 for an input of 0, and 1 otherwise, on top

of the max-norm from above:

f(W ) =

K
∑

j=1

R
∑

r=1

I{(max
i

Sr,i|Wi,j |) > 0} (5)

where I is the indicator function, which takes a value of 1

if its argument is true, 0 otherwise. Again, for a gradient-

based method, we used an approximation to the L0 norm,

such as log(1+x2). This regularization function now encodes

a direct penalty on the number of modes used for each

Fig. 5: Example objects from the Cornell grasping dataset. [13].
This dataset contains objects from a large variety of categories.

weight, without further constraining the weights of modes with

nonzero maxima.

Figure 4 shows features learned from the unsupervised stage

of our group-regularized deep learning algorithm. We discuss

these features, and their implications for robotic grasping, in

Section VI.

V. EXPERIMENTS

Dataset. We used the extended version of the Cornell

grasping dataset [13] for our experiments (http://pr.

cs.cornell.edu/deepgrasping). This dataset con-

tains 1035 images of 280 graspable objects, each annotated

with several ground-truth positive and negative grasping rect-

angles. While the vast majority of possible rectangles for most

objects will be non-graspable, the dataset contains roughly

equal numbers of graspable and non-graspable rectangles. We

will show that this is useful for an unsupervised learning

algorithm, as it allows learning a good representation for

graspable rectangles even from unlabeled data.

We performed five-fold cross-validation, and present results

for splits on a per image (i.e., the training set and the validation

set do not share the same image) and per object (i.e., the

training set and the validation set do not share any images

from the same object) basis.

We take seven channels as input: YUV channels in the color

space, depths, and the XYZ components of computed surface

normals. With an image patch size of 24x24 pixels, we have

4032 (=24*24*7) input features. We trained a deep network

with 200 hidden units each at the first and second layers using

our learning algorithm as described in Sections III and IV,

Preserving Aspect Ratio. It is important to preserve as-

pect ratio when feeding features into the network. However,

http://pr.cs.cornell.edu/deepgrasping
http://pr.cs.cornell.edu/deepgrasping
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Fig. 6: Learned 3D depth features. 3D meshes for depth channels of the four features with strongest positive (top) and negative(bottom)
correlations to rectangle graspability. Here X and Y coordinates corresponds to positions in the deep network’s receptive field, and Z
coordinates corresponds to weight values to the depth channel for each location. Feature shapes clearly correspond to graspable and non-
graspable structures, respectively.

padding with zeros can bias the network towards square

rectangles which fill its receptive field and thus give more

nonzero inputs. To address this problem, we define a mul-

tiplicative scaling factor for the inputs from each modality,

based on the fraction of each mode which is masked out:

Ψ
(t)
l =

∑N
i=1 Sl,i/

(

∑N
i=1 Sl,iµ

(t)
i

)

, where µ
(t)
i is 1 if x

(t)
i is

masked in, 0 otherwise.2 In practice, we found it necessary

to limit the scaling factor to a maximum of some value c, as

Ψ′(t)
l = min(Ψ

(t)
l , c).

Baselines. We compare our recognition results in the Cornell

grasping dataset with the features from [13], as well as

the combination of these features and Fast Point Feature

Histogram (FPFH) features [31]. We used a linear SVM for

classification, which gave the best results among all kernels.

We also compare our algorithm to other deep learning

approaches. We compare to a network trained only with

standard L1 regularization, and a network trained in a manner

similar to [26], where three separate sets of first layer features

are learned for the depth channel, the combination of the Y,

U, and V channels, and the combination of the X, Y, and Z

surface normal components.

Metrics for Detection. For detection, we compare the top-

ranked rectangle for each method with the set of ground-

truth rectangles for each image. We present results using two

metrics, the “point” and “rectangle” metric.

For the point metric, similar to [34], we compute the center

point of the predicted rectangle, and consider the grasp a

success if it is within some distance from at least one ground-

truth rectangle center. We note that this metric ignores grasp

orientation, and therefore might overestimate the performance

of an algorithm for robotic applications.

For the rectangle metric, similar to [13], let G be the

top-ranked grasping rectangle predicted by the algorithm,

and G∗ be a ground-truth rectangle. Any rectangles with

an orientation error of more than 30o from G are rejected.

From the remaining set, we use the common bounding box

2Implementation detail: Since we use the squared reconstruction error, we
found that simply scaling the input caused the learning algorithm to put too
much significance to cases where more data is masked out. As a heuristic
to address this issue, when pretraining with SAE, we scaled the input to the
network and the reconstruction penalty for each input coordinate, but not the
target value for reconstruction.

evaluation metric of intersection divided by union - i.e.

Area(G∩G∗)/Area(G∪G∗). Since a ground-truth rectangle

can define a large space of graspable rectangles (e.g., covering

the entire length of a pen), we consider a prediction to be

correct if it scores at least 25% by this metric.

VI. RESULTS AND DISCUSSION

A. Deep Learning for Robotic Grasp Detection

Figure 4 shows the features learned by the unsupervised

phase of our algorithm which have a high correlation to

positive and negative grasping cases. Many of these features

show non-zero weights to the depth channel, due to the cor-

relation of depths to graspability. Figure 6 shows 3D meshes

for the depth channels of the four features with the strongest

positive and negative correlations to valid grasps. Even without

any supervised information, our algorithm was able to learn

several features which correlate strongly to graspable cases and

non-graspable cases. The first two positive-correlated features

represent handles, or other cases with a raised region in the

center, while the second two represent circular rims or handles.

The negatively-correlated features represent obviously non-

graspable cases, such as ridges perpendicular to the gripper

plane and “valleys” between the gripper plates. From these

features, we can see that even during unsupervised feature

learning, our approach is able to learn a task-specific repre-

sentation.

From Table I, we see that the recognition performance is

significantly improved with deep learning methods, improving

9% over the features from [13] and 4.1% over those features

combined with FPFH features. Both L1 and group regulariza-

tion performed similarly for recognition, but training separate

first layer features decreased performance slightly.

Table II shows that, once mask-based scaling has been ap-

plied, all deep learning approaches except for training separate

first-layer features outperform the hand-engineered features

from [13] by up to 13% for the point metric and 17% for

the rectangle metric, while also avoiding the need to design

task-specific features.

Adaptability. One important advantage of our detection sys-

tem is that we can flexibly specify the constraints of the

gripper in our detection system. Different robots have different

grippers—PR2 has a wide gripper, while the Adept Viper



TABLE I: Recognition results for Cornell grasping dataset.

Algorithm Accuracy (%)

Jiang et al. [13] 84.7
Jiang et al. [13] + FPFH 89.6
Sparse AE, separate layer-1 feat. 92.8
Sparse AE 93.7
Sparse AE, group reg. 93.7

TABLE II: Detection results for point and rectangle metrics, for
various learning algorithms, including our deep learning approach.

Algorithm
Image-wise split Object-wise split
Point Rect Point Rect

Jiang et al. [13] 75.3 60.5 74.9 58.3
SAE, no mask-based scaling 62.1 39.9 56.2 35.4
SAE, separate layer-1 feat. 70.3 43.3 70.7 40.0
SAE, L1 reg. 87.2 72.9 88.7 71.4

SAE, struct. reg., 1st pass only 86.4 70.6 85.2 64.9

SAE, struct. reg., 2nd pass only 87.5 73.8 87.6 73.2
SAE, struct. reg. two-stage 88.4 73.9 88.1 75.6

arm has a smaller one. We can constrain the detectors to

handle this. Figure 7 shows detection scores for systems

constrained based on the PR2 and Adept grippers. For grippers

with different properties, such as multi-fingered or jamming

grippers, our algorithm would be able to learn new features

for detection given only data labeled for the desired gripper.

B. Multimodal Group Regularization.

Our group regularization term improves detection accuracy

over simple L1 regularization. The improvement is more

significant for the object-wise split than for the image-wise

split because the group regularization helps the network to

avoid overfitting, which will tend to occur more when the

learning algorithm is evaluated on unseen objects.

Figure 8 shows typical cases where a network trained using

our group regularization finds a valid grasp, but a network

trained with L1 regularization does not. In these cases, the

grasp chosen by the L1-regularized network appears valid for

some modalities – the depth channel for the sunglasses and nail

polish bottle, and the RGB channels for the scissors. However,

when all modalities are considered, the grasp is clearly invalid.

The group-regularized network does a better job of combining

information from all modalities and is more robust to noise and

missing data in the depth channel, as seen in these cases.

C. Two-stage Detection System.

We tested our two-stage system by training a network

with 50 hidden units at the first and second layers. Learning

and detection were performed in the same manner as with

the full-size network, except that the top 100 rectangles for

each image were recorded, then re-ranked using the full-size

network to yield a single best-scoring rectangle. The number

of rectangles the full-size network needed to evaluate was

reduced by roughly a factor of 1000.

Using our two-stage approach increased detection perfor-

mance up to 2% as compared to a single pass with the large-

size network, even though using the small network alone

significantly underperforms the larger network. In most cases,

the top 100 rectangles from the first pass contained the top-

ranked rectangle from an exhaustive search using the second-

stage network, and thus results were unaffected.
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Fig. 7: Visualization of grasping scores for different grippers. Red
indicates maximum score for a grasp with left gripper plate centered
at each point, blue is similar for the right plate. Best-scoring rectangle
shown in green/yellow.

Fig. 8: Improvements from group regularization. Cases where
our group regularization approach produces a viable grasp (shown
in green and yellow), while a network trained only with simple L1

regularization does not (shown in blue and red). Top: RGB image,
bottom: depth channel. Green and blue edges correspond to gripper.

Figure 9 shows some cases where the first-stage network

pruned away rectangles corresponding to weak grasps which

might otherwise be chosen by the second-stage network. In

these cases, the grasp chosen by the single-stage system might

be feasible for a robotic gripper, but the rectangle chosen by

the two-stage system represents a grasp which would clearly

be successful.

The two-stage system also significantly increases the com-

putational efficiency of our detection system. Average infer-

ence time for a MATLAB implementation of the deep network

was reduced from 24.6s/image for an exhaustive search using

the larger network to 13.5s/image using the two-stage system.

Robotic Experiments on Baxter. We mounted a Kinect sensor

on our Baxter robot (“Yogi”). Using our algorithm, Yogi was

able to grasp a wide variety of objects (see Fig. 10), including

Fig. 9: Improvements from two-stage system. Example cases where
the two-stage system produces a viable grasp (shown in green and
yellow), while the single-stage system does not (shown in blue and
red). Top: RGB image, bottom: depth channel. Green and blue edges
correspond to gripper.



Fig. 10: Baxter grasping objects. Our Baxter robot grasping objects
using our algorithm.

an RC car controller, knife, Xbox controller, umbrella, and

a fluffy toy. Several of these objects were not seen in the

training set. Video of these experiments is available at: http:

//pr.cs.cornell.edu/deepgrasping.

VII. CONCLUSIONS

We presented a system for detecting robot grasps from

RGBD data using a deep learning approach. Our method

has several advantages over current state-of-the-art methods.

First, using deep learning allows us to avoid hand-engineering

features, learning them instead. Second, our results show that

deep learning methods significantly outperform even well-

designed hand-engineered features from previous work.

We also presented a novel feature learning algorithm for

multimodal data based on group regularization. In extensive

experiments, we demonstrated that this algorithm produces

better features for robotic grasp detection than existing deep

learning approaches to multimodal data. Our experiments and

results show that our two-stage deep learning system with

group regularization is capable of robustly detecting grasps

for a wide range of objects, even those previously unseen by

the system.

Many robotics problems require the use of perceptual infor-

mation, but can be difficult and time-consuming to engineer

good features for. In future work, our approach could be

extended to a wide range of such problems.

ACKNOWLEDGEMENTS

We would like to thank Yun Jiang and Marcus Lim for

useful discussions and help with baseline experiments. This

research was funded in part by ARO award W911NF-12-1-

0267, Microsoft Faculty Fellowship and NSF CAREER Award

(Saxena), and Google Faculty Research Award (Lee).

REFERENCES

[1] Y. Bengio. Learning deep architectures for AI. FTML, 2(1):1–127, 2009.
[2] L. Bo, X. Ren, and D. Fox. Unsupervised Feature Learning for RGB-D

Based Object Recognition. In ISER, 2012.
[3] D. Bowers and R. Lumia. Manipulation of unmodeled objects using

intelligent grasping schemes. IEEE Trans Fuzzy Sys, 11(3), 2003.
[4] A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In

NIPS, 2011.
[5] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J.

Wu, and A. Y. Ng. Text detection and character recognition in scene
images with unsupervised feature learning. In ICDAR, 2011.

[6] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. JMLR,
12:2493–2537, 2011.

[7] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa. Physics-based grasp
planning through clutter. In RSS, 2012.

[8] C. R. Gallegos, J. Porta, and L. Ros. Global optimization of robotic
grasps. In RSS, 2011.

[9] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen. The Columbia
grasp database. In ICRA, 2009.

[10] I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Y. Ng. Measuring
invariances in deep networks. In NIPS, 2009.

[11] A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent
component analysis. Neural computation, 13(7):1527–1558, 2001.

[12] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for
multi-task learning. In NIPS, 2010.

[13] Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from RGBD
images: Learning using a new rectangle representation. In ICRA, 2011.

[14] Y. Jiang, J. R. Amend, H. Lipson, and A. Saxena. Learning hardware
agnostic grasps for a universal jamming gripper. In ICRA, 2012.

[15] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new
objects in a scene. IJRR, 31(9), 2012.

[16] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling
of 3d point clouds for indoor scenes. In NIPS, 2011.

[17] H. Koppula, R. Gupta, and A. Saxena. Learning human activities and
object affordances from rgb-d videos. IJRR, 2013.

[18] D. Kragic and H. I. Christensen. Robust visual servoing. IJRR, 2003.
[19] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean,

and A. Ng. Building high-level features using large scale unsupervised
learning. In ICML, 2012.

[20] Q. V. Le, D. Kamm, A. F. Kara, and A. Y. Ng. Learning to grasp objects
with multiple contact points. In ICRA, 2010.

[21] Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object
recognition with invariance to pose and lighting. In CVPR, 2004.

[22] H. Lee, Y. Largman, P. Pham, and A. Y. Ng. Unsupervised feature learn-
ing for audio classification using convolutional deep belief networks. In
NIPS, 2009.

[23] J. Maitin-shepard, M. Cusumano-towner, J. Lei, and P. Abbeel. Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding. In ICRA, 2010.

[24] A. T. Miller, S. Knoop, P. K. Allen, and H. I. Christensen. Automatic
grasp planning using shape primitives. In ICRA, 2003.

[25] A.-R. Mohamed, G. Dahl, and G. E. Hinton. Acoustic modeling
using deep belief networks. IEEE Trans Audio, Speech, and Language

Processing, 20(1):14–22, 2012.
[26] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal

deep learning. In ICML, 2011.
[27] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and

pose estimation with energy-based models. JMLR, 8:1197–1215, 2007.
[28] J. H. Piater. Learning visual features to predict hand orientations. In

ICML, 2002.
[29] J. Ponce, D. Stam, and B. Faverjon. On computing two-finger force-

closure grasps of curved 2D objects. IJRR, 12(3):263, 1993.
[30] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng.

Grasping novel objects with depth segmentation. In IROS, 2010.
[31] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms

(FPFH) for 3D registration. In ICRA, 2009.
[32] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D recognition

and pose using the viewpoint feature histogram. In IROS, 2010.
[33] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng. Robotic grasping of

novel objects. In NIPS, 2006.
[34] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel

objects using vision. IJRR, 27(2):157–173, 2008.
[35] A. Saxena, L. L. S. Wong, and A. Y. Ng. Learning grasp strategies with

partial shape information. In AAAI, 2008.
[36] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3D object classification. In
NIPS, 2012.

[37] K. Sohn, D. Y. Jung, H. Lee, and A. Hero III. Efficient learning of sparse,
distributed, convolutional feature representations for object recognition.
In ICCV, 2011.

[38] H. O. Song, M. Fritz, C. Gu, and T. Darrell. Visual grasp affordances
from appearance-based cues. In Robot Perception workshop ICCV, 2011.

[39] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep
Boltzmann machines. In NIPS, 2012.

[40] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In CVPR, 2001.

[41] L. Zhang, M. Ciocarlie, and K. Hsiao. Grasp evaluation with graspable
feature matching. In RSS Workshop on Mobile Manipulation, 2011.

http://pr.cs.cornell.edu/deepgrasping
http://pr.cs.cornell.edu/deepgrasping

	Introduction
	Related Work
	Deep Learning for Grasp Detection:  System and Model
	Inference and Learning

	Structured Regularization for  Feature Learning
	Experiments
	Results and Discussion 
	Deep Learning for Robotic Grasp Detection
	Multimodal Group Regularization.
	Two-stage Detection System.

	Conclusions

