
Supplementary Material:
Learning Structured Output Representation
using Deep Conditional Generative Models

Kihyuk Sohn∗† Xinchen Yan† Honglak Lee†
∗ NEC Laboratories America, Inc.
† University of Michigan, Ann Arbor

ksohn@nec-labs.com, {xcyan,honglak}@umich.edu

S1 Variational Lower Bound of Conditional Log-Likelihood

We provide a derivation for variational lower bound of the conditional log-likelihood (Equation (4)
in the main paper):

log pθ(y|x) = KL (qφ(z|x,y)‖pθ(z|x,y)) + Eqφ(z|x,y)
[
− log qφ(z|x,y) + log pθ(y, z|x)

]
(S1)

≥ Eqφ(z|x,y)
[
− log qφ(z|x,y) + log pθ(y, z|x)

]
(S2)

= Eqφ(z|x,y)
[
− log qφ(z|x,y) + log pθ(z|x)

]
+ Eqφ(z|x,y)

[
log pθ(y|x, z)

]
(S3)

= −KL (qφ(z|x,y)‖pθ(z|x)) + Eqφ(z|x,y)
[
log pθ(y|x, z)

]
(S4)

S2 Details of Network Architecture

We provide more detailed information of our network architecture used for experiments on LFW
(4-way segmentation task) database in Tables S1, S2, and S3. The model architecture used for
experiments on CUB database is almost the same except that the task is 2-way segmentation.

Connecting CNN and prior network. We provide both input data x and the output of the CNN
as an input for prior network. Specifically, we concatenate the data x of size 128× 128× 3 and the
CNN output (i.e., CNN followed by softmax classifier) of size 128 × 128 × 4 along the channels,
and feed concatenated data of size 128× 128× 7 as an input of the prior network (Figure S1).

Final output prediction. As shown in Figure S1, the final output prediction is made by element-
wise summing the output of two convolutional networks, which are the CNN and the generation
network, followed by softmax classifier. We note that the convolution filters in two yellow boxes are
shared, so that the initial guess made by CNN can still be reasonable.

Analysis on computation time. We perform an analysis on computation time of our proposed
method and compare with the baseline CNN model. We measure the mean processing times for the
forward pass and the backward pass. Note that the forward pass in testing time is the same across all
the proposed deep CGMs since recognition network is only used during the training. We summarize
the mean processing times per single image from LFW database in Table S4. In all our experiments,
we used mini-batch size of 32 and the time is averaged over 100 iterations. All deep CGMs are
trained with multi-scale prediction method, but the output prediction is made only for the highest
resolution at test time.

1

layer op. size-in size-out kernel

1
conv 128×128×3 64×64×64 9×9×3
pool 64×64×64 32×32×64 2×2×1
relu 32×32×64 32×32×64 –

2
conv 32×32×64 32×32×96 5×5×64
pool 32×32×96 16×16×96 2×2×1
relu 16×16×96 16×16×96 –

3 conv 16×16×96 16×16×128 3×3×96
relu 16×16×128 16×16×128 –

4 conv 16×16×128 16×16×128 3×3×128
relu 16×16×128 16×16×128 –

5
conv 16×16×128 16×16×96 3×3×96

unpool 16×16×96 32×32×96 2×2×1
relu 32×32×96 32×32×96 –

6
conv 32×32×96 32×32×64 5×5×64

unpool 32×32×64 64×64×64 2×2×1
relu 64×64×64 64×64×64 –

7
conv 64×64×64 64×64×48 5×5×48

unpool 64×64×48 128×128×48 2×2×1
relu 128×128×48 128×128×48 –

8 conv 128×128×48 128×128×4 9×9×48
softmax 128×128×4 128×128×4 –

Table S1: CNN definition. “conv” refers the layer including convolution followed by ReLU.

layer op. size-in size-out kernel

1
conv 128×128×7 64×64×64 9×9×7
pool 64×64×64 32×32×64 2×2×1
relu 32×32×64 32×32×64 –

2
conv 32×32×64 32×32×96 5×5×64
pool 32×32×96 16×16×96 2×2×1
relu 16×16×96 16×16×96 –

3
conv 16×16×96 16×16×128 3×3×96
pool 16×16×128 8×8×128 2×2×1
relu 8×8×128 8×8×128 –

4 convg 8×8×128 8×8×32 3×3×128
sampling 8×8×32 8×8×32 –

Table S2: Prior and recognition networks definition. “convg” refers the layer that outputs Gaus-
sian latent variables, and it includes convolution for mean and standard deviation units followed by
gaussian sampling (“sampling”).

layer op. size-in size-out kernel

1
conv 8×8×32 8×8×96 3×3×32

unpool 8×8×96 16×16×96 2×2×1
relu 16×16×96 16×16×96 –

2
conv 16×16×96 16×16×64 5×5×96

unpool 16×16×64 32×32×64 2×2×1
relu 32×32×64 32×32×64 –

3
conv 32×32×64 32×32×48 5×5×64

unpool 32×32×48 64×64×48 2×2×1
relu 64×64×48 64×64×48 –

4
conv 64×64×48 64×64×48 5×5×48

unpool 64×64×48 128×128×48 2×2×1
relu 128×128×48 128×128×48 –

5 conv 128×128×48 128×128×4 9×9×48
softmax 128×128×4 128×128×4 –

Table S3: Generation network definition.

2

Image (X)
128x128x3

Conv (9x9)
Pool (2x2)
32x32x64

Recognition network

Prior network

CNN

Conv (5x5)
Pool (2x2)
16x16x96

Conv (3x3)
16x16x128

Conv (3x3)
16x16x128

Conv (3x3)
Unpool (2x2)
32x32x96

Conv (5x5)
Unpool (2x2)
64x64x64

Conv (5x5)
Unpool (2x2)
128x128x48

Image (X) +
CNN out (Y)
128x128x7

Conv (9x9)
Pool (2x2)
32x32x64

Conv (5x5)
Pool (2x2)
16x16x96

Conv (3x3)
Pool (2x2)
8x8x128

Convg (3x3)
Sampling (Z)
8x8x128

Conv (3x3)
Unpool (2x2)
16x16x96

Conv (5x5)
Unpool (2x2)
32x32x64

Conv (5x5)
Unpool (2x2)
64x64x48

Conv (5x5)
Unpool (2x2)
128x128x48

Image (X) +
Label (Y)
128x128x7

Conv (9x9)
Pool (2x2)
32x32x64

Conv (5x5)
Pool (2x2)
16x16x96

Conv (3x3)
Pool (2x2)
8x8x128

Convg (3x3)
Sampling (Z)
8x8x128 Generation network

Conv1 (9x9)
Softmax (Y)
128x128x4

Conv2 (9x9)
Softmax (Y)
128x128x4

＾

＾

Figure S1: Model architecture of our deep CGM for 4-way semantic segmentation problem. ReLU
is followed by convolution layers except convg layers. For baseline CNN model, only the output of
CNN is used for prediction. The convolutional filter weights for classifiers (yellow box) are shared.

Phase CNN GDNN GSNN CVAE hybrid
Forward (test) 2.32 3.69 3.69 3.69 3.69
Forward (train) 2.32 4.22 4.80 5.48 6.55

Backward (train) 10.12 16.58 16.87 27.32 31.49

Table S4: Comparison of average processing time per single image among different network ar-
chitectures and learning algorithms. All deep CGMs are trained with multi-scale prediction. We
measure the computation time using GeForce GTX TITAN X card using mini-batch size of 32 and
the time is averaged over 100 iterations. Times are in millisecond (ms).

S3 Performance Analysis

In this section, we perform ablation study and analyze the impact of prior and generation network
on the prediction performance. Specifically, we evaluate the prediction performance of CNN and
the generation network (Figure S1) separately to see which part of the network pathway is more
important in getting high accuracy. We summarize the results in Table S5.

Model
CUB (val) LFW (val)

pixel IoU pixel
CNN GEN BOTH CNN GEN BOTH CNN GEN BOTH

CNN (baseline) 91.17 – – 79.64 – – 92.09 – –
GDNN 89.28 90.95 92.92 76.07 79.01 83.20 91.94 87.14 93.59
GSNN 86.19 90.95 93.09 68.61 79.38 83.62 92.08 87.95 93.71
CVAE 77.06 92.66 92.72 46.45 82.80 82.90 70.14 92.43 93.29
hybrid 89.42 91.65 93.05 75.04 80.93 83.49 91.74 92.80 93.69

Table S5: Prediction performance results on CUB and LFW validation sets. The columns with
“CNN” refer the performance using the CNN output only, those with “GEN” refer the performance
using the generation network output only, and those with “BOTH” refer the performance using the
sum of outputs from both networks (which is the final model output evaluated in the main text).

Interestingly, the performance of the generation network output is higher than that of CNN in many
cases. This behavior becomes more significant for CVAE, and the performance of the generation
network output is already as good as the performance using both networks.

3

