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Abstract

The goal of sentence and document model-
ing is to accurately represent the meaning of
sentences and documents for various Natural
Language Processing tasks. In this work, we
present Dependency Sensitive Convolutional
Neural Networks (DSCNN) as a general-
purpose classification system for both sen-
tences and documents. DSCNN hierarchically
builds textual representations by processing
pretrained word embeddings via Long Short-
Term Memory networks and subsequently ex-
tracting features with convolution operators.
Compared with existing recursive neural mod-
els with tree structures, DSCNN does not
rely on parsers and expensive phrase label-
ing, and thus is not restricted to sentence-
level tasks. Moreover, unlike other CNN-
based models that analyze sentences locally
by sliding windows, our system captures both
the dependency information within each sen-
tence and relationships across sentences in the
same document. Experiment results demon-
strate that our approach is achieving state-of-
the-art performance on several tasks, includ-
ing sentiment analysis, question type classifi-
cation, and subjectivity classification.

1 Introduction

Sentence and document modeling systems are im-
portant for many Natural Language Processing
(NLP) applications. The challenge for textual mod-
eling is to capture features for different text units
and to perform compositions over variable-length
sequences (e.g., phrases, sentences, documents). As
a traditional method, the bag-of-words model treats

sentences and documents as unordered collections
of words. In this way, however, the bag-of-words
model fails to encode word orders and syntactic
structures.

By contrast, order-sensitive models based on neu-
ral networks are becoming increasingly popular
thanks to their ability to capture word order infor-
mation. Many prevalent order-sensitive neural mod-
els can be categorized into two classes: Recursive
models and Convolutional Neural Networks (CNN)
models. Recursive models can be considered as gen-
eralizations of traditional sequence-modeling neural
networks to tree structures. For example, (Socher et
al., 2013) uses Recursive Neural Networks to build
representations of phrases and sentences by combin-
ing neighboring constituents based on the parse tree.
In their model, the composition is performed in a
bottom-up way from leaf nodes of tokens until the
root node of the parsing tree is reached. CNN based
models, as the second category, utilize convolutional
filters to extract local features (Kalchbrenner et al.,
2014; Kim, 2014) over embedding matrices consist-
ing of pretrained word vectors. Therefore, the model
actually splits the sentence locally into n-grams by
sliding windows.

However, despite their ability to account for
word orders, order-sensitive models based on neu-
ral networks still suffer from several disadvantages.
First, recursive models depend on well-performing
parsers, which can be difficult for many languages or
noisy domains (Iyyer et al., 2015; Ma et al., 2015).
Besides, since tree-structured neural networks are
vulnerable to the vanishing gradient problem (Iyyer
et al., 2015), recursive models require heavy label-



ing on phrases to add supervisions on internal nodes.
Furthermore, parsing is restricted to sentences and
it is unclear how to model paragraphs and docu-
ments using recursive neural networks. In CNN
models, convolutional operators process word vec-
tors sequentially using small windows. Thus sen-
tences are essentially treated as a bag of n-grams,
and the long dependency information spanning slid-
ing windows is lost.

These observations motivate us to construct a tex-
tual modeling architecture that captures long-term
dependencies without relying on parsing for both
sentence and document inputs. Specifically, we
propose Dependency Sensitive Convolutional Neu-
ral Networks (DSCNN), an end-to-end classification
system that hierarchically builds textual representa-
tions with only root-level labels.

DSCNN consists of a convolutional layer built
on top of Long Short-Term Memory (LSTM) net-
works. DSCNN takes slightly different forms de-
pending on its input. For a single sentence (Fig-
ure 1), the LSTM network processes the sequence
of word embeddings to capture long-distance depen-
dencies within the sentence. The hidden states of the
LSTM are extracted to form the low-level represen-
tation, and a convolutional layer with variable-size
filters and max-pooling operators follows to extract
task-specific features for classification purposes. As
for document modeling (Figure 2), DSCNN first ap-
plies independent LSTM networks to each subsen-
tence. Then a second LSTM layer is added between
the first LSTM layer and the convolutional layer to
encode the dependency across different sentences.

We evaluate DSCNN on several sentence-level
and document-level tasks including sentiment anal-
ysis, question type classification, and subjectivity
classification. Experimental results demonstrate the
effectiveness of our approach comparable with the
state-of-the-art. In particular, our method achieves
highest accuracies on MR sentiment analysis (Pang
and Lee, 2005), TREC question classification (Li
and Roth, 2002), and subjectivity classification task
SUBJ (Pang and Lee, 2004) compared with several
competitive baselines.

The remaining part of this paper is the following.
Section 2 discusses related work. Section 3 presents
the background including LSTM networks and con-
volution operators. We then describe our architec-

tures for sentence modeling and document model-
ing in Section 4, and report experimental results in
Section 5.

2 Related Work

The success of deep learning architectures for NLP
is first based on the progress in learning distributed
word representations in semantic vector space (Ben-
gio et al., 2003; Mikolov et al., 2013; Pennington et
al., 2014), where each word is modeled with a real-
valued vector called a word embedding. In this for-
mulation, instead of using one-hot vectors by index-
ing words into a vocabulary, word embeddings are
learned by projecting words onto a low dimensional
and dense vector space that encodes both semantic
and syntactic features of words.

Given word embeddings, different models have
been proposed to learn the composition of words to
build up phrase and sentence representations. Most
methods fall into three types: unordered models, se-
quence models, and Convolutional Neural Networks
models.

In unordered models, textual representations are
independent of the word order. Specifically, ignor-
ing the token order in the phrase and sentence, the
bag-of-words model produces the representation by
averaging the constituting word embeddings (Lan-
dauer and Dumais, 1997). Besides, a neural-bag-
of-words model described in (Kalchbrenner et al.,
2014) adds an additional hidden layer on top of the
averaged word embeddings before the softmax layer
for classification purposes.

In contrast, sequence models, such as standard
Recurrent Neural Networks (RNN) and Long Short-
Term Memory networks, construct phrase and sen-
tence representations in an order-sensitive way. For
example, thanks to its ability to capture long-
distance dependencies, LSTM has re-emerged as a
popular choice for many sequence-modeling tasks,
including machine translation (Bahdanau et al.,
2014), image caption generation (Vinyals et al.,
2014), and natural language generation (Wen et al.,
2015). Besides, RNN and LSTM can be both con-
verted to tree-structured networks by using parsing
information. For example, (Socher et al., 2013) ap-
plied Recursive Neural Networks as a variant of the
standard RNN structured by syntactic trees to the



sentiment analysis task. (Tai et al., 2015) also gener-
alizes LSTM to Tree-LSTM where each LSTM unit
combines information from its children units.

Recently, CNN-based models have demonstrated
remarkable performances on sentence modeling and
classification tasks. Leveraging convolution opera-
tors, these models can extract features from variable-
length phrases corresponding to different filters. For
example, DCNN in (Kalchbrenner et al., 2014) con-
structs hierarchical features of sentences by one-
dimensional convolution and dynamic k-max pool-
ing. (Yin and Schütze, 2015) further utilizes mul-
tichannel embeddings and unsupervised pretraining
to improve classification results.

3 Preliminaries

In this section, we describe two building blocks for
our system. We first discuss Long Short-Term Mem-
ory as a powerful network for modeling sequence
data, and then formulate convolution and max-over-
time pooling operators for the feature extraction over
sequence inputs.

3.1 Long Short-Term Memory
Recurrent Neural Network (RNN) is a class of mod-
els to process arbitrary-length input sequences by re-
cursively constructing hidden state vectors ht. At
each time step t, the hidden state ht is an affine func-
tion of the input vector xt at time t and its previous
hidden state ht−1, followed by a non-linearity such
as the hyperbolic tangent function:

ht = tanh(Wxt +Uht−1 + b) (1)

where W, U and b are parameters of the model.
However, traditional RNN suffers from the ex-

ploding or vanishing gradient problems, where the
gradient vectors can grow or decay exponentially
as they propagate to earlier time steps. This prob-
lem makes it difficult to train RNN to capture long-
distance dependencies in a sequence (Bengio et al.,
1994; Hochreiter, 1998).

To address this problem of capturing long-term
relations, Long Short-Term Memory (LSTM) net-
works, proposed by (Hochreiter and Schmidhuber,
1997) introduce a vector of memory cells and a set of
gates to control how the information flows through
the network. We thus have the input gate it, the for-
get gate ft, the output gate ot, the memory cell ct,

the input at the current step t as xt, and the hidden
state ht, which are all in Rd. Denote the sigmoid
function as σ, and the element-wise multiplication
as �. At each time step t, the LSTM unit manipu-
lates a collection of vectors described by the follow-
ing equations:

it = σ
(
W(i)xt +U(i)ht−1 + b(i)

)
ft = σ

(
W(f)xt +U(f)ht−1 + b(f)

)
ot = σ

(
W(o)xt +U(o)ht−1 + b(o)

)
ut = tanh

(
W(u)xt +U(u)ht−1 + b(u)

)
ct = it � ut + ft � ct−1

ht = ot � tanh(ct)

(2)

Note that the gates it, ft, ot ∈ [0, 1]d and they con-
trol at time step t how the input is updated, how
much the previous memory cell is forgotten, and the
exposure of the memory to form the hidden state
vector respectively.

3.2 Convolution and Max-over-time Pooling
Convolution operators have been extensively used in
object recognition (LeCun et al., 1998), phoneme
recognition (Waibel et al., 1989), sentence model-
ing and classification (Kalchbrenner et al., 2014;
Kim, 2014), and other traditional NLP tasks (Col-
lobert and Weston, 2008). Given an input sentence
of length s: [w1, w2, ..., ws], convolution operators
apply a number of filters to extract local features of
the sentence.

In this work, we employ one-dimensional wide
convolution described in (Kalchbrenner et al., 2014).
Let ht ∈ Rd denote the representation of wt, and
F ∈ Rd×l be a filter where l is the window size.
One-dimensional wide convolution computes the
feature map c of length (s+ l − 1)

c = [c1, c2, ..., cs+l−1] (3)

for the input sentence.
Specifically, in wide convolution, we stack ht col-

umn by column, and add (l−1) zero vectors to both
ends of the sentence respectively. This formulates
an input feature map X ∈ Rd×(s+2l−2). Thereafter,
one-dimensional convolution applies the filter F to
each set of consecutive l columns in X to produce



(s − l − 1) activations. The k-th activation is pro-
duced by

ck = f

b+∑
i,j

(F�Xk:k+l−1)i,j

 (4)

where Xk:k+l−1 ∈ Rd×l is the k-th sliding window
in X, and b is the bias term. � performs element-
wise multiplications and f is an nonlinear function
such as Rectified Linear Units (ReLU) or the hyper-
bolic tangent.

Then, the max-over-time pooling selects the max-
imum value in the feature map

cF = max(c) (5)

as the feature corresponding to the filter F.
In practice, we apply many filters with different

window sizes l to capture features encoded in l-
length windows of the input.

4 Model Architectures

Convolutional Neural Networks have demonstrated
state-of-the-art performances in sentence modeling
and classification. Despite the fact that CNN is an
order-sensitive model, traditional convolution oper-
ators extract local features from each possible win-
dow of words through filters with predefined sizes.
Therefore, sentences are effectively processed like a
bag of n-grams, and long-distance dependencies can
be only captured if we have long enough filters.

To capture long-distance dependencies, much re-
cent effort has been dedicated to building tree-
structured models from the syntactic parsing infor-
mation. However, we observe that these methods
suffer from three problems. First, they require an
external parser and are vulnerable to parsing errors
(Iyyer et al., 2015). Besides, tree-structured mod-
els need heavy supervisions to overcome vanish-
ing gradient problems. For example, in (Socher et
al., 2013), input sentences are labeled for each sub-
phrase, and softmax layers are applied at each in-
ternal node. Finally, tree-structured models are re-
stricted to sentence level, and cannot be generalized
to model documents.

In this work, we propose a novel architecture to
address these three problems. Our model hierarchi-
cally builds text representations from input words

without parsing information. Only labels at the root
level are required at the top softmax layer, so there is
no need for labeling subphrases in the text. The sys-
tem is not restricted to sentence-level inputs: the ar-
chitecture can be restructured based on the sentence
tokenization for modeling documents.

4.1 Sentence Modeling

Figure 1: An example for sentence modeling. The
bottom LSTM layer processes the input sentence
and feed-forwards hidden state vectors at each time
step. The one-dimensional wide convolution layer
and the max-over-time pooling operation extract
features from the LSTM output. For brevity, only
one version of word embedding is illustrated in this
figure.

Let the input of our model be a sentence of length
s: [w1, w2, ..., ws], and c be the total number of word
embedding versions. Different versions come from
pre-trained word vectors such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014).

The first layer of our model consists of LSTM
networks processing multiple versions of word em-
bedding. For each version of word embedding,
we construct an LSTM network where the input
xt ∈ Rd is the d-dimensional word embedding vec-
tor for wt. As described in the previous section, the
LSTM layer will produce a hidden state representa-
tion ht ∈ Rd at each time step. We collect hidden
state representations as the output of LSTM layers:

h(i) = [h
(i)
1 ,h

(i)
2 , ...,h

(i)
t , ...,h(i)

s ] (6)

for i = 1, 2, ..., c.



A convolution neural network follows as the sec-
ond layer. To deal with multiple word embeddings,
we use filter F ∈ Rc×d×l, where l is the win-
dow size. Each hidden state sequence h(i) pro-
duced by the i-th version of word embeddings forms
one channel of the feature map. These feature
maps are stacked as c-channel feature maps X ∈
Rc×d×(s+2(l−1)).

Similar to the single channel case, activations are
computed as a slight modification of equation 4:

ck = f

b+∑
i,j,r

(F�Xk:k+l−1)i,j,r

 (7)

A max-over-time pooling layer is then added on
top of the convolution neural network. Finally, the
pooled features are used in a softmax layer for clas-
sification. A sentence modeling example is illus-
trated in Figure 1.

4.2 Document Modeling

Figure 2: A schematic for document modeling hi-
erarchy, which can be viewed as a variant of the
one for sentence modeling. Independent LSTM net-
works process subsentences separated by punctua-
tion. Hidden states of LSTM networks are aver-
aged as the sentence representations, from which the
high-level LSTM layer creates the joint meaning of
sentences.

Our model is not restricted to sentences; it can
be restructured to model documents. The intuition
comes from the fact that as the composition of words

builds up the semantic meaning for sentences, the
composition of sentences establishes the semantic
meaning for documents (Li et al., 2015).

Now suppose that the input of our model is a doc-
ument consisting of n subsentences: [s1, s2, ..., sn].
Subsentences can be obtained by splitting the doc-
ument using punctuation (comma, period, question
mark, and exclamation point) as delimiters.

We employ independent LSTM networks for each
subsentence in the same way as the first layer of the
sentence modeling architecture. For each subsen-
tence we feed-forward the hidden states of the cor-
responding LSTM network to the average pooling
layer. Take the first sentence of the document as an
example,

h
(i)
s1 =

1

len(s1)

len(s1)∑
j=1

h
(i)
s1,j (8)

where h
(i)
s1,j is the hidden state of the first sentence

at time step j, and len(s1) denotes the length of the
first sentence. In this way, after the averaging pool-
ing layers, we have a representation sequence con-
sisting of averaged hidden states for subsentences,

h(i) = [h
(i)
s1 ,h

(i)
s2 , ...,h

(i)
sn ] (9)

for i = 1, 2, ..., c.
Thereafter, a high-level LSTM network comes

into play to capture the joint meaning created by the
sentences.

Similar as sentence modeling, a convolutional
layer is placed on top of the high-level LSTM for
feature extraction. Finally, a max-over-time pool-
ing layer and a softmax layer follow to pool features
and perform the classification task. Figure 2 gives
the schematic for the hierarchy.

5 Experiments

5.1 Datasets
Movie Review Data (MR) proposed by (Pang and
Lee, 2005) is a dataset for sentiment analysis of
movie reviews. The dataset consists of 5,331 pos-
itive and 5,331 negative reviews, mostly in one sen-
tence. We follow the practice of using 10-fold cross
validation to report results.

Stanford Sentiment Treebank (SST) is another
popular sentiment classification dataset introduced



Method MR SST-2 SST-5 TREC SUBJ IMDB
SVM (Socher et al., 2013) — 79.4 40.7 — — —
NB (Socher et al., 2013) — 81.8 41.0 — — —
NBSVM-bi (Wang and Manning, 2012) 79.4 — — — 93.2 91.2
SVMS (Silva et al., 2011) — — — 95.0 — —
Standard-RNN (Socher et al., 2013) — 82.4 43.2 — — —
MV-RNN (Socher et al., 2012) 79.0 82.9 44.4 — — —
RNTN (Socher et al., 2013) — 85.4 45.7 — — —
DRNN (Irsoy and Cardie, 2014) — 86.6 49.8 — — —
Standard-LSTM (Tai et al., 2015) — 86.7 45.8 — — —
bi-LSTM (Tai et al., 2015) — 86.8 49.1 — — —
Tree-LSTM (Tai et al., 2015) — 88.0 51.0 — — —
SA-LSTM (Dai and Le, 2015) 80.7 — — — — 92.8
DCNN (Kalchbrenner et al., 2014) — 86.8 48.5 93.0 — —
CNN-MC (Kim, 2014) 81.1 88.1 47.4 92.2 93.2 —
MVCNN (Yin and Schütze, 2015) — 89.4 49.6 — 93.9 —
Dep-CNN (Ma et al., 2015) 81.9 — 49.5 95.4 — —
Neural-BoW (Kalchbrenner et al., 2014) — 80.5 42.4 88.2 — —
DAN (Iyyer et al., 2015) 80.3 86.3 47.7 — — 89.4
Paragraph-Vector (Le and Mikolov, 2014) — 87.8 48.7 — — 92.6
WRRBM+BoW(bnc) (Dahl et al., 2012) — — — — — 89.2
Full+Unlabeled+BoW(bnc) (Maas et al., 2011) — — — — 88.2 88.9
DSCNN 81.5 89.1 49.7 95.4 93.2 90.2
DSCNN-Pretrain 82.2 88.7 50.6 95.6 93.9 90.7

Table 1: Experiment results of DSCNN compared with other models. Performance is measured in accuracy
(%). Models are categorized into five classes. The first block is baseline methods including SVM and Naive
Bayes and their variations. The second is the class of Recursive Neural Networks models. Constituent
parsers and phrase-level supervision are needed. The third category is LSTMs. CNN models are fourth
block, and the last category is a collection of other models achieving state-of-the-art results. SVM: Support
Vector Machines with unigram features (Socher et al., 2013) NB: Naive Bayes with unigram features(Socher
et al., 2013) NBSVM-bi: Naive Bayes SVM and Multinomial Naive Bayes with bigrams (Wang and Man-
ning, 2012) SVMS : SVM with features including uni-bi-trigrams, POS, parser, and 60 hand-coded rules
(Silva et al., 2011) Standard-RNN: Standard Recursive Neural Network (Socher et al., 2013) MV-RNN:
Matrix-Vector Recursive Neural Network (Socher et al., 2012) RNTN:Recursive Neural Tensor Network
(Socher et al., 2013) DRNN: Deep Recursive Neural Network (Irsoy and Cardie, 2014) Standard-LSTM:
Standard Long Short-Term Memory Network (Tai et al., 2015) bi-LSTM: Bidirectional LSTM (Tai et al.,
2015) Tree-LSTM: Tree-Structured LSTM (Tai et al., 2015) SA-LSTM: Sequence Autoencoder LSTM
(Dai and Le, 2015). For fair comparison, we report the result on MR trained without unlabeled data
from IMDB or Amazon reviews. DCNN: Dynamic Convolutional Neural Network with k-max pooling
(Kalchbrenner et al., 2014) CNN-MC: Convolutional Neural Network with static pretrained and fine-tuned
pretrained word-embeddings (Kim, 2014) MVCNN: Multichannel Variable-Size Convolution Neural Net-
work (Yin and Schütze, 2015) Dep-CNN: Dependency-based Convolutional Neural Network (Ma et al.,
2015). Dependency parser is required. The result is for the combined model ancestor+sibling+sequential.
Neural-BoW : Neural Bag-of-Words Models (Kalchbrenner et al., 2014) DAN: Deep Averaging Network
(Iyyer et al., 2015) Paragraph-Vector: Logistic Regression on Paragraph-Vector (Le and Mikolov, 2014)
WRRBM+BoW(bnc): word representation Restricted Boltzmann Machine combined with bag-of-words
features (Dahl et al., 2012) Full+Unlabeled+BoW(bnc):word vector based model capturing both semantic
and sentiment, trained on unlabeled examples, and with bag-of-words features concatenated (Maas et al.,
2011)



by (Socher et al., 2013). The sentences are labeled
in a fine-grained way (SST-5): {very negative, neg-
ative, neutral, positive, very positive}. The dataset
has been split into 8,544 training, 1,101 validation,
and 2,210 testing sentences. Without neutral sen-
tences, SST can also be used in binary mode (SST-
2), where the split is 6,920 training, 872 validation,
and 1,821 testing.

Furthermore, we apply DSCNN on question type
classification task on TREC dataset (Li and Roth,
2002), where sentences are questions in the follow-
ing 6 classes: {abbreviation, entity, description, lo-
cation, numeric}. The entire dataset consists of
5,452 training examples and 500 testing examples.

We also benchmark our system on the subjectivity
classification dataset (SUBJ) released by (Pang and
Lee, 2004). The dataset contains 5,000 subjective
sentences and 5,000 objective sentences. We report
10-fold cross validation results as the baseline does.

For document-level dataset, we use Large Movie
Review (IMDB) created by (Maas et al., 2011).
There are 25,000 training and 25,000 testing ex-
amples with binary sentiment polarity labels, and
50,000 unlabeled examples. Different from Stanford
Sentiment Treebank and Movie Review dataset, ev-
ery example in this dataset has several sentences.

5.2 Training Details and Implementation

We use two sets of 300-dimensional pre-trained
embeddings, word2vec1 and GloVe2, forming two
channels for our network. For all datasets, we use
100 convolution filters each for window sizes of 3,
4, 5. Rectified Linear Units (ReLU) is chosen as the
nonlinear function in the convolutional layer.

For regularization, before the softmax layers, we
employ Dropout operation (Hinton et al., 2012) with
dropout rate 0.5, and we do not perform any l2 con-
straints over the parameters. We use the gradient-
based optimizer Adadelta (Zeiler, 2012) to minimize
cross-entropy loss between the predicted and true
distributions, and the training is early stopped when
the accuracy on validation set starts to drop.

As for training cost, our system processes around
4000 tokens per second on a single GTX 670 GPU.
As an example, this amounts to 1 minute per epoch

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/

on the TREC dataset, converging within 50 epochs.

5.3 Pretraining of LSTM
We experiment with two variants of parameter ini-
tialization of sentence level LSTMs. The first vari-
ant (DSCNN in Table 1) initializes the weight ma-
trices in LSTMs as random orthogonal matrices. In
the second variant (DSCNN-Pretrain in Table 1), we
first train sequence autoencoders (Dai and Le, 2015)
which read input sentences at the encoder and re-
construct the input at the decoder. We pretrain sepa-
rately on each task based on the same train/valid/test
splits. The pretrained encoders are used to be the
start points of LSTM layers for later supervised clas-
sification tasks.

Figure 3: Number of sentences in TREC, and clas-
sification performances of DSCNN-Pretrain/Dep-
CNN/CNN-MC as functions of dependency lengths.
DSCNN and Dep-CNN clearly outperforms CNN-
MC when the dependency length in the sentence
grows.

5.4 Results and Discussions
Table 1 reports the results of DSCNN on different
datasets, demonstrating its effectiveness in compar-
ison with other state-of-the-art methods.

5.4.1 Sentence Modeling
For sentence modeling tasks, DSCNN beats all

baselines on MR and TREC, and achieves the
same best result on SUBJ as MVCNN. In SST-2,
DSCNN only reports a slightly lower accuracy than
MVCNN. In MVCNN, however, the author uses
more resources including five versions of word em-
beddings. For SST-5, DSCNN is second only to



(a) description→ entity (b) numeric→ location

(c) entity→ location

(d) entity→ human

Figure 4: TREC examples that are misclassified by CNN-MC but correctly classified by DSCNN. For
example, CNN-MC labels (a) as entity while the ground truth is description. Dependency Parsing is done
by ClearNLP (Choi and Palmer, 2012).

(a) numeric→ description
(b) abbreviation→ description

(c) location→ entity

Figure 5: TREC examples that are misclassified by DSCNN. For example, DSCNN labels (a) as description
while the ground truth is numeric. Dependency Parsing is done by ClearNLP (Choi and Palmer, 2012).

Tree-LSTM, which nonetheless relies on parsers to
build tree-structured neural models.

The benefit of DSCNN is illustrated by its consis-
tently better results over the sequential CNN mod-
els including DCNN and CNN-MC. The superior-
ity of DSCNN is mainly attributed to its ability to
maintain long-term dependencies. Figure 3 depicts
the correlation between the dependency length and
the classification accuracy. While CNN-MC and
DSCNN are similar when the sum of dependency
arc lengths is below 15, DSCNN gains obvious ad-

vantages when dependency lengths grow for long
and complex sentences. Dep-CNN is also more ro-
bust than CNN-MC, but it relies on the dependency
parser and predefined patterns to model longer lin-
guistic structures.

Figure 4 gives some examples where DSCNN
makes correct predictions while CNN-MC fails. In
the first example, CNN-MC classifies the question
as entity due to its focus on the noun phrase “worn
or outdated flags”, while DSCNN captures the long
dependency between “done with” and “flags”, and



assigns the correct label description. Similarly in
the second case, due to “Nile”, CNN-MC labels the
question as location, while the dependency between
“depth of” and “river” is ignored. As for the third ex-
ample, the question involves a complicated and long
attributive clause for the subject “artery”. CNN-MC
gets easily confused and predicts the type as loca-
tion due to words “from” and “to”, while DSCNN
keeps correct. Finally, “Lindbergh” in the last ex-
ample make CNN-MC bias to human.

We also sample some misclassified examples of
DSCNN in Figure 5. Example (a) fails because the
numeric meaning of “point” is not captured by the
word embedding. Similarly, in the second exam-
ple, the error is due to the out-of-vocabulary word
“TMJ” and it is thus apparently difficult for DSCNN
to figure out that it is an abbreviation. Example (c)
is likely to be an ambiguous or mistaken annotation.
The finding here agrees with the discussion in Dep-
CNN work (Ma et al., 2015).

5.4.2 Document Modeling
For document modeling, the result of DSCNN on

IMDB against other baselines is listed on the last
column of Table 1. Documents in IMDB consist
of several sentences and thus very long: the average
length is 241 tokens per document and the maximum
length is 2526 words (Dai and Le, 2015). As a result,
there is no result reported using CNN-based models
due to prohibited computation time, and most pre-
vious works are unordered models including varia-
tions of bag-of-words.

DSCNN outperforms bag-of-words model (Maas
et al., 2011), Deep Averaging Network (Iyyer et
al., 2015), and word representation Restricted Boltz-
mann Machine model combined with bag-of-words
features (Dahl et al., 2012). The key weakness of
bag-of-words prevents those models from capturing
long-term dependencies.

Besides, Paragraph Vector (Le and Mikolov,
2014) and SA-LSTM (Dai and Le, 2015) achieve
better results than DSCNN. It is worth mentioning
that both methods, as unsupervised learning algo-
rithms, can gain much positive effects from unla-
beled data (they are using 50,000 unlabeled exam-
ples in IMDB). For example in (Dai and Le, 2015),
with additional data from Amazon reviews, the error
rate of SA-LSTM on MR dataset drops by 3.6%.

6 Conclusion

In this work, we present DSCNN, Dependency Sen-
sitive Convolutional Neural Networks for purpose
of text modeling at both sentence and document
levels. DSCNN captures long-term inter-sentence
and intra-sentence dependencies by processing word
vectors through layers of LSTM networks, and ex-
tracts features by convolutional operators for clas-
sification. Experiments show that DSCNN consis-
tently outperforms traditional CNNs, and achieves
state-of-the-art results on several sentiment analysis,
question type classification and subjectivity classifi-
cation datasets.

Acknowledgments

We thank anonymous reviewers for their construc-
tive comments. This work was supported by a Uni-
versity of Michigan EECS department fellowship
and NSF CAREER grant IIS-1453651.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166.
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