
Understanding and Improving Convolutional Neural Networks via
Concatenated Rectified Linear Units

Wenling Shang1,4 WENDY.SHANG@OCULUS.COM
Kihyuk Sohn2 KSOHN@NEC-LABS.COM
Diogo Almeida3 DIOGO@ENLITIC.COM
Honglak Lee1 HONGLAK@EECS.UMICH.EDU
1University of Michigan, Ann Arbor; 2NEC Laboratories America; 3Enlitic; 4Oculus VR

Abstract
Recently, convolutional neural networks (CNNs)
have been used as a powerful tool to solve many
problems of machine learning and computer vi-
sion. In this paper, we aim to provide insight
on the property of convolutional neural networks,
as well as a generic method to improve the per-
formance of many CNN architectures. Specifi-
cally, we first examine existing CNN models and
observe an intriguing property that the filters in
the lower layers form pairs (i.e., filters with op-
posite phase). Inspired by our observation, we
propose a novel, simple yet effective activation
scheme called concatenated ReLU (CReLU) and
theoretically analyze its reconstruction property
in CNNs. We integrate CReLU into several
state-of-the-art CNN architectures and demon-
strate improvement in their recognition perfor-
mance on CIFAR-10/100 and ImageNet datasets
with fewer trainable parameters. Our results sug-
gest that better understanding of the properties
of CNNs can lead to significant performance im-
provement with a simple modification.

1. Introduction
In recent years, convolutional neural networks (CNNs)
have achieved great success in many problems of machine
learning and computer vision (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; Szegedy et al., 2015; Gir-
shick et al., 2014). In addition, a wide range of techniques
have been developed to enhance the performance or ease
the training of CNNs (Lin et al., 2013; Zeiler & Fergus,
2013; Maas et al., 2013; Ioffe & Szegedy, 2015). Despite

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Figure 1. Visualization of conv1 filters from AlexNet. Each fil-
ter and its pairing filter (wi and w̄i next to each other) appear
surprisingly opposite (in phase) to each other. See text for details.

the great empirical success, fundamental understanding of
CNNs is still lagging behind. Towards addressing this is-
sue, this paper aims to provide insight on the intrinsic prop-
erty of convolutional neural networks.

To better comprehend the internal operations of CNNs,
we investigate the well-known AlexNet (Krizhevsky et al.,
2012) and thereafter discover that the network learns highly
negatively-correlated pairs of filters for the first few con-
volution layers. Following our preliminary findings, we
hypothesize that the lower convolution layers of AlexNet
learn redundant filters to extract both positive and negative
phase information of an input signal (Section 2.1). Based
on the premise of our conjecture, we propose a novel, sim-
ple yet effective activation scheme called Concatenated
Rectified Linear Unit (CReLU). The proposed activation
scheme preserves both positive and negative phase infor-
mation while enforcing non-saturated non-linearity. The
unique nature of CReLU allows a mathematical charac-
terization of convolution layers in terms of reconstruction
property, which is an important indicator of how expres-
sive and generalizable the corresponding CNN features are
(Section 2.2).

In experiments, we evaluate the CNN models with CReLU
and make a comparison to models with ReLU and Abso-
lute Value Rectification Units (AVR) (Jarrett et al., 2009)
on benchmark object recognition datasets, such as CIFAR-

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

-1 -0.8 -0.6 -0.4 -0.2 0

(a) conv1
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

(b) conv2
-0.5 -0.4 -0.3 -0.2 -0.1 0

(c) conv3
-0.4 -0.3 -0.2 -0.1 0

(d) conv4
-0.5 -0.4 -0.3 -0.2 -0.1 0

(e) conv5

Figure 2. Histograms of µr(red) and µw(blue) for AlexNet. Recall that for a set of unit length filters {φi}, we define µφi = 〈φi, φ̄i〉
where φ̄i is the pairing filter of φi. For conv1 layer, the distribution of µw (from the AlexNet filters) is negatively centered, which
significantly differs from that of µr (from random filters), whose center is very close to zero. The center gradually shifts towards zero
when going deeper into the network.

10/100 and ImageNet (Section 3). We demonstrate that
simply replacing ReLU with CReLU for the lower con-
volution layers of an existing state-of-the-art CNN archi-
tecture yields a substantial improvement in classification
performance. In addition, CReLU allows to attain notable
parameter reduction without sacrificing classification per-
formance when applied appropriately.

We analyze our experimental results from several view-
points, such as regularization (Section 4.1) and invariant
representation learning (Section 4.2). Retrospectively, we
provide empirical evaluations on the reconstruction prop-
erty of CReLU models; we also confirm that by integrating
CReLU, the original “pair-grouping” phenomenon van-
ishes as expected (Section 4.3). Overall, our results sug-
gest that by better understanding the nature of CNNs, we
are able to realize their higher potential with a simple mod-
ification of the architecture.

2. CRelu and Reconstruction Property
2.1. Conjecture on Convolution Layers

In our initial exploration of classic CNNs trained on natural
images such as AlexNet (Krizhevsky et al., 2012), we noted
a curious property of the first convolution layer filters:
these filters tend to form “pairs”. More precisely, assum-
ing unit length vector for each filter φi, we define a pairing
filter of φi in the following way: φ̄i = argminφj 〈φi, φj〉.
We also define their cosine similarity µφi = 〈φi, φ̄i〉.

In Figure 1, we show each normalized filter of the first con-
volution layer from AlexNet with its pairing filter. Interest-
ingly, they appear surprisingly opposite to each other, i.e.,
for each filter, there does exist another filter that is almost
on the opposite phase. Indeed, AlexNet employs the popu-
lar non-saturated activation function, Rectified Linear Unit
(ReLU) (Nair & Hinton, 2010), which zeros out negative
values and produces sparse activation. As a consequence,
if both the positive phase and negative phase along a spe-
cific direction participate in representing the input space,
the network then needs to learn two linearly dependent fil-
ters of both phases.

To systematically study the pairing phenomenon in higher
layers, we graph the histograms of µ̄wi ’s for conv1-conv5
filters from AlexNet in Figure 2. For comparison, we gen-
erate random Gaussian filters ri’s of unit norm1 and plot
the histograms of µ̄ri ’s together. For conv1 layer, we ob-
serve that the distribution of µ̄wi is negatively centered; by
contrast, the mean of µ̄ri is only slightly negative with a
small standard deviation. Then the center of µ̄wi shifts to-
wards zero gradually when going deeper into the network.
This implies that convolution filters of the lower layers tend
to be paired up with one or a few others that represent their
opposite phase, while the phenomenon gradually lessens as
they go deeper.

Following these observations, we hypothesize that despite
ReLU erasing negative linear responses, the first few con-
volution layers of a deep CNN manage to capture both
negative and positive phase information through learning
pairs or groups of negatively correlated filters. This con-
jecture implies that there exists a redundancy among the
filters from the lower convolution layers.

In fact, for a very special class of deep architecture, the in-
variant scattering convolutional network (Bruna & Mallat,
2013), it is well-known that its set of convolution filters,
which are wavelets, is overcomplete in order to be able to
fully recover the original input signals. On the one hand,
similar to ReLU, each individual activation within the scat-
tering network preserves partial information of the input.
On the other hand, different from ReLU but more similar
to AVR, scattering network activation preserves the energy
information, i.e., keeping the modulus of the responses but
erasing the phase information; ReLU from a generic CNN,
as a matter of fact, retains the phase information but elim-
inates the modulus information when the phase of a re-
sponse is negative. In addition, while the wavelets for scat-
tering networks are manually engineered, convolution fil-
ters from CNNs must be learned, which makes the rigorous
theoretical analysis challenging.

1We sample each entry from standard normal distribution in-
dependently and normalize the vector to have unit l2 norm.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Now suppose we can leverage the pairing prior and design
a method to explicitly allow both positive and negative ac-
tivation, then we will be able to alleviate the redundancy
among convolution filters caused by ReLU non-linearity
and make more efficient use of the trainable parameters. To
this end, we propose a novel activation scheme, Concate-
nated Rectified Linear Units, or CReLU. It simply makes
an identical copy of the linear responses after convolution,
negate them, concatenate both parts of activation, and then
apply ReLU altogether. More precisely, we denote ReLU
as [·]+ , max(·, 0), and define CReLU as follows:

Definition 2.1. CReLU activation, denoted by ρc : R →
R2, is defined as follows: ∀x ∈ R, ρc(x) , ([x]+, [−x]+).

The rationale of our activation scheme is to allow a filter to
be activated in both positive and negative direction while
maintaining the same degree of non-saturated non-linearity.

An alternative way to allow negative activation is to em-
ploy the broader class of non-saturated activation functions
including Leaky ReLU and its variants (Maas et al., 2013;
Xu et al., 2015). Leaky ReLU assigns a small slope to the
negative part instead of completely dropping it. These ac-
tivation functions share similar motivation with CReLU in
the sense that they both tackle the two potential problems
caused by the hard zero thresholding: (1) the weights of
a filter will not be adjusted if it is never activated, and (2)
truncating all negative information can potentially hamper
the learning. However, CReLU is based on an activation
scheme rather than a function, which fundamentally differ-
entiates itself from Leaky ReLU or other variants. In our
version, we apply ReLU after separating the negative and
positive part to compose CReLU, but it is not the only fea-
sible non-linearity. For example, CReLU can be combined
with other activation functions, such as Leaky ReLU, to
add more diversity to the architecture.

Another natural analogy to draw is between CReLU and
AVR, where the latter one only preserves the modulus in-
formation but discard the phase information, similar to the
scattering network. AVR has not been widely used recently
for the CNN models due to its suboptimal empirical per-
formance. We confirm this common belief in the matter of
large-scale image recognition task (Section 3) and conclude
that modulus information alone does not suffice to produce
state-of-the-art deep CNN features.

2.2. Reconstruction Property

A notable property of CReLU is its information preserva-
tion nature: CReLU conserves both negative and positive
linear responses after convolution. A direct consequence of
information preserving is the reconstruction power of the
convolution layers equipped with CReLU.

Reconstruction property of a CNN implies that its fea-

tures are representative of the input data. This aspect of
CNNs has gained interest recently: Mahendran & Vedaldi
(2015) invert CNN features back to the input under sim-
ple natural image priors; Zhao et al. (2015) stack autoen-
coders with reconstruction objective to build better classi-
fiers. Bruna et al. (2013) theoretically investigate general
conditions under which the max-pooling layer followed by
ReLU is injective and measure stability of the inverting
process by computing the Lipschitz lower bound. How-
ever, their bounds are non-trivial only when the number of
filters significantly outnumbers the input dimension, which
is not realistic.

In our case, it becomes more straightforward to analyze the
reconstruction property since CReLU preserves all the in-
formation after convolution. The rest of this section mathe-
matically characterizes the reconstruction property of a sin-
gle convolution layer followed by CReLU with or without
max-pooling layer.

We first analyze the reconstruction property of convolution
followed by CReLU without max-pooling. This case is
directly pertinent as deep networks replacing max-pooling
with stride has become more prominent in recent stud-
ies (Springenberg et al., 2014). The following proposition
states that the part of an input signal spanned by the shifts
of the filters is well preserved.

Proposition 2.1. Let x ∈ RD be an input vector2 andW be
the D-by-K matrix whose columns vectors are composed
of wi ∈ Rl, i = 1, . . . ,K convolution filters. Furthermore,
let x = x′ + (x− x′), where x′ ∈ range(W) and x− x′ ∈
ker(W). Then we can reconstruct x′ with fcnn(x), where
fcnn(x) , CReLU

(
WTx

)
.

See Section A.1 in the supplementary materials for proof.

Next, we add max-pooling into the picture. To reach a non-
trivial bound, we need additional constraints on the input
space. Due to space limit, we carefully explain the con-
straints and the theoretical consequence in Section A.2 of
the supplementary materials. We will revisit this subject
after the experiment section (Section 4.3).

3. Benchmark Results
We evaluate the effectiveness of the CReLU activation
scheme on three benchmark datasets: CIFAR-10, CIFAR-
100 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009).
To directly assess the impact of CReLU, we employ exist-
ing CNN architectures with ReLU that have already shown
a good recognition baseline and demonstrate improved per-
formance on top by replacing ReLU into CReLU. Note
that the models with CReLU activation don’t need sig-

2For clarity, we assume the input signals are vectors (1D)
rather than images (2D); however, similar analysis can be done
for 2D case.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Table 1. Test set recognition error rates on CIFAR-10/100. We compare the performance of ReLU models (baseline) and CReLU
models with different model capacities: “double” refers to the models that double the number of filters and “half” refers to the models
that halve the number of filters. The error rates are provided in multiple ways, such as “Single”, “Average” (with standard error), or
“Vote”, based on cross-validation methods. We also report the corresponding train error rates for the Single model. The number of
model parameters are given in million. Please see the main text for more details about model evaluation.

Model
CIFAR-10 CIFAR-100

params.Single Average Vote Single Average Votetrain test train test
Baseline 1.09 9.17 10.20±0.09 7.55 13.68 36.30 38.52±0.12 31.26 1.4M

+ (double) 0.47 8.65 9.87±0.09 7.28 6.03 34.77 36.73±0.15 28.34 5.6M
AVR 4.10 8.32 10.26±0.10 7.76 19.35 35.00 37.24±0.20 29.77 1.4M

CReLU 4.23 8.43 9.39±0.11 7.09 14.25 31.48 33.76±0.12 27.60 2.8M
+ (half) 4.73 8.37 9.44±0.09 7.09 21.01 33.68 36.20±0.18 29.93 0.7M

nificant hyperparameter tuning from the baseline ReLU
model, and in most of our experiments, we only tune
dropout rate while other hyperparameters (e.g., learning
rate, mini-batch size) remain the same. We also replace
ReLU with AVR for comparison with CReLU. The details
of network architecture are in Section F of the supplemen-
tary materials.

3.1. CIFAR-10 and CIFAR-100

The CIFAR-10 and 100 datasets (Krizhevsky, 2009) each
consist of 50, 000 training and 10, 000 testing examples of
32× 32 images evenly drawn from 10 and 100 classes, re-
spectively. We subtract the mean and divide by the standard
deviation for preprocessing and use random horizontal flip
for data augmentation.

We use the ConvPool-CNN-C model (Springenberg et al.,
2014) as our baseline model, which is composed of con-
volution and pooling followed by ReLU without fully-
connected layers. This baseline model serves our purpose
well since it has clearly outlined network architecture only
with convolution, pooling, and ReLU. It has also shown
competitive recognition performance using a fairly small
number of model parameters.

First, we integrate CReLU into the baseline model by sim-
ply replacing ReLU while keeping the number of convolu-
tion filters the same. This doubles the number of output
channels at each convolution layer and the total number
of model parameters is doubled. To see whether the per-
formance gain comes from the increased model capacity,
we conduct additional experiments with the baseline model
while doubling the number of filters and the CReLU model
while halving the number of filters. We also evaluate the
performance of the AVR model while keeping the number
of convolution filters the same as the baseline model.

Since the datasets don’t provide pre-defined validation set,
we conduct two different cross-validation schemes:

1. “Single”: we hold out a subset of training set for initial
training and retrain the network from scratch using the

whole training set until we reach at the same loss on a
hold out set (Goodfellow et al., 2013). For this case,
we also report the corresponding train error rates.

2. 10-folds: we divide training set into 10 folds and do
validation on each of 10 folds while training the net-
works on the rest of 9 folds. The mean error rate
of single network (“Average”) and the error rate with
model averaging of 10 networks (“Vote”) are reported.

The recognition results are summarized in Table 1. On
CIFAR-10, we observe significant improvement with the
CReLU activation over ReLU. Especially, CReLU mod-
els consistently improve over ReLU models with the same
number of neurons (or activations) while reducing the num-
ber of model parameters by half (e.g., CReLU + half model
and the baseline model have the same number of neurons
while the number of model parameters are 0.7M and 1.4M,
respectively). On CIFAR-100, the models with larger ca-
pacity generally improve the performance for both activa-
tion schemes. Nevertheless, we still find a clear benefit
of using CReLU activation that shows significant perfor-
mance gain when it is compared to the model with the
same number of neurons, i.e., half the number of model pa-
rameters. One possible explanation for the benefit of using
CReLU is its regularization effect, as can be confirmed in
Table 1 that the CReLU models showed significantly lower
gap between train and test set error rates than those of the
baseline ReLU models.

To our slight surprise, AVR outperforms the baseline
ReLU model on CIFAR-100 with respect to all evalua-
tion metrics and on CIFAR-10 with respect to single-model
evaluation. It also reaches promising single-model recog-
nition accuracy compared to CReLU on CIFAR-10; how-
ever, when averaging or voting across 10-folds validation
models, AVR becomes clearly inferior to CReLU.

Experiments on Deeper Networks. We conduct experi-
ments with very deep CNN that has a similar network ar-
chitecture to the VGG network (Simonyan & Zisserman,
2014). Specifically, we follow the model architecture and

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Table 2. Test set recognition error rates on CIFAR-10/100 us-
ing deeper networks. We gradually apply CReLU to replace
ReLU after conv1, conv3, and conv5 layers of the baseline VGG
network while halving the number of convolution filters.

CIFAR-10
Model Single Average Vote
VGG 6.35 6.90±0.03 5.43

(conv1) 6.18 6.45±0.05 5.22
(conv1,3) 5.94 6.45±0.02 5.09

(conv1,3,5) 6.06 6.45±0.07 5.16
CIFAR-100

Model Single Average Vote
VGG 28.99 30.27±0.09 26.85

(conv1) 27.29 28.43±0.11 24.67
(conv1,3) 26.52 27.79±0.08 23.93

(conv1,3,5) 26.16 27.67±0.07 23.66

training procedure in Zagoruyko (2015). Besides the con-
volution and pooling layers, this network contains batch
normalization (Ioffe & Szegedy, 2015) and fully connected
layers. Due to the sophistication of the network compo-
sition which may introduce complicated interaction with
CReLU, we only integrate CReLU into the first few lay-
ers. Similarly, we subtract the mean and divide by the stan-
dard deviation for preprocessing and use horizontal flip and
random shifts for data augmentation.

In this experiment3, we gradually replace ReLU after the
first, third, and the fifth convolution layers4 with CReLU
while halving the number of filters, resulting in a reduced
number of model parameters. We report the test set error
rates using the same cross-validation schemes as in the pre-
vious experiments. As shown in Table 2, there is substan-
tial performance gain in both datasets by replacing ReLU
with CReLU. Overall, the proposed CReLU activation
improves the performance of the state-of-the-art VGG net-
work significantly, achieving highly competitive error rates
to other state-of-the-art methods, as summarized in Table 3.

3.2. ImageNet

To assess the impact of CReLU on large scale dataset,
we perform experiments on ImageNet dataset (Deng et al.,
2009)5, which contains about 1.3M images for training and
50, 000 for validation from 1, 000 object categories. For
preprocessing, we subtract the mean and divide by the stan-
dard deviation for each input channel, and follow the data
augmentation as described in (Krizhevsky et al., 2012).

We take the All-CNN-B model (Springenberg et al., 2014)

3We attempted to replace ReLU with AVR on various lay-
ers but we observed significant performance drop with AVR non-
linearity when used for deeper networks.

4Integrating CReLU into the second or fourth layer before
max-pooling layers did not improve the performance.

5We used a version of ImageNet dataset for ILSVRC 2012.

Table 3. Comparison to other methods on CIFAR-10/100.
Model CIFAR-10 CIFAR-100

(Rippel et al., 2015) 8.60 31.60
(Snoek et al., 2015) 6.37 27.40
(Liang & Hu, 2015) 7.09 31.75

(Lee et al., 2016) 6.05 32.37
(Srivastava et al., 2015) 7.60 32.24

VGG 5.43 26.85
VGG + CReLU 5.09 23.66

as our baseline model. The network architecture of All-
CNN-B is similar to that of AlexNet (Krizhevsky et al.,
2012), where the max-pooling layer is replaced by convo-
lution with the same kernel size and stride, the fully con-
nected layer is replaced by 1 × 1 convolution layers fol-
lowed by average pooling, and the local response normal-
ization layers are discarded. In sum, the layers other than
convolution layers are replaced or discarded and finally the
network consists of convolution layers only. We choose
this model since it reduces the potential complication in-
troduced by CReLU interacting with other types of layers,
such as batch normalization or fully connected layers.

We gradually integrate more convolution layers with
CReLU (e.g., conv1–4, conv1–7, conv1–9), while keep-
ing the same number of filters. These models contain
more parameters than the baseline model. We also eval-
uate two models where one replaces all ReLU layers into
CReLU and the other conv1,conv4 and conv7 only, where
both models reduce the number of convolution layers be-
fore CReLU by half. Hence, these models contain fewer
parameters than the baseline model. For comparison, AVR
models are also constructed by gradually replacing ReLU
in the same manner as the CReLU experiments (conv1–
4, conv1–7, conv1–9). The network architectures and the
training details are in Section F and Section E of the sup-
plementary materials.

The results are provided in Table 4. We report the top-1
and top-5 error rates with center crop only and by averag-
ing scores over 10 patches from the center crop and four
corners and with horizontal flip (Krizhevsky et al., 2012).
Interestingly, integrating CReLU to conv1-4 achieves the
best results, whereas going deeper with higher model ca-
pacity does not further benefit the classification perfor-
mance. In fact, this parallels with our initial observation on
AlexNet (Figure 2 in Section 2.1)—there exists less “pair-
ing” in the deeper convolution layers and thus there is not
much gain by decomposing the phase in the deeper layers.
AVR networks exhibit the same trend but do not notice-
ably improve upon the baseline performance, which im-
plies that AVR is not the most suitable candidate for large-
scale deep representation learning. Another interesting ob-
servation, which we will discuss further in Section 4.2, is
that the model integrating CReLU into conv1, conv4 and

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05

(a) conv1
-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05

(b) conv2
-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02

(c) conv3
-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02

(d) conv4
Figure 3. Histograms of µr(red) and µw(blue) for CReLU model on ImageNet. The two distributions align with each other for all
conv1-conv4 layers–as we expected, the pairing phenomenon is not present any more after applying the CReLU activation scheme.

Table 4. Validation error rates on ImageNet. We compare the
performance of baseline model with the proposed CReLU mod-
els at different levels of activation scheme replacement. Error
rates with † are obtained by averaging scores from 10 patches.

Model top-1 top-5 top-1† top-5†

Baseline 41.81 19.74 38.03 17.17
AVR (conv1–4) 41.12 19.25 37.32 16.49
AVR (conv1–7) 42.36 20.05 38.21 17.42
AVR (conv1–9) 43.33 21.05 39.70 18.39

CReLU (conv1,4,7) 40.45 18.58 35.70 15.32
CReLU (conv1–4) 39.82 18.28 36.20 15.72
CReLU (conv1–7) 39.97 18.33 36.53 16.01
CReLU (conv1–9) 40.15 18.58 36.50 16.14

CReLU (all) 40.93 19.39 37.28 16.72

conv7 layers also achieve highly competitive recognition
results with even fewer parameters than the baseline model.
In sum, we believe that such a significant improvement
over the baseline model by simply modifying the activation
scheme is a pleasantly surprising result.6

We also compare our best models with AlexNet and other
variants in Table 5. Even though reducing the number
of parameters is not our primary goal, it is worth not-
ing that our model with only 4.6M parameters (CReLU +
all) outperforms FastFood-32-AD (FriedNet) (Yang et al.,
2015) and Pruned AlexNet (PrunedNet) (Han et al., 2015),
whose designs directly aim at parameter reduction. There-
fore, besides the performance boost, another significance of
CReLU activation scheme is in designing more parameter-
efficient deep neural networks.

4. Discussion
In this section, we discuss qualitative properties of CReLU
activation scheme in several viewpoints, such as regulariza-
tion of the network and learning invariant representation.

4.1. A View from Regularization

In general, a model with more trainable parameters is
more prone to overfitting. However, somewhat counter-

6We note that Springenberg et al. (2014) reported slightly bet-
ter result (41.2% top-1 error rate with center crop only) than our
replication result, but still the improvement is significant.

Table 5. Comparison to other methods on ImageNet. We com-
pare with AlexNet and other variants, such as FastFood-32-AD
(FriedNet) (Yang et al., 2015) and pruned AlexNet (Pruned-
Net) (Han et al., 2015), which are modifications of AlexNet aim-
ing at reducing the number of parameters, as well as All-CNN-B,
the baseline model (Springenberg et al., 2014). Error rates with †

are obtained by averaging scores from 10 patches.

Model top-1 top-5 top-1† top-5† params.
AlexNet 42.6 19.6 40.7 18.2 61M
FriedNet 41.93 – – – 32.8M

PrunedNet 42.77 19.67 – – 6.7M
AllConvB 41.81 19.74 38.03 17.17 9.4M

CReLU (all) 40.93 19.39 37.28 16.72 4.7M
(conv1,4,7) 40.45 18.58 35.70 15.32 8.6 M
(conv1–4) 39.82 18.28 36.20 15.72 10.1M

intuitively, for the all-conv CIFAR experiments, the models
with CReLU display much less overfitting issue compared
to the baseline models with ReLU, even though it has twice
as many parameters (Table 1). We contemplate that keep-
ing both positive and negative phase information makes the
training more challenging, and such effect has been lever-
aged to better regularize deep networks, especially when
working on small datasets.

Besides the empirical evidence, we can also describe the
regularization effect by deriving a Rademacher complexity
bound for the CReLU layer followed by linear transforma-
tion as follows:

Theorem 4.1. Let G be the class of real functions Rdin →
R with input dimension F , that is, G = [F]din

j=1. Let
H be a linear transformation function from R2din to R,
parametrized by W , where ‖W‖2 ≤ B. Then, we have

R̂L(H ◦ ρc ◦ G) ≤
√
dinBR̂L(F).

The proof is in Section B of the supplementary materials.
Theorem 4.1 says that the complexity bound of CReLU +
linear transformation is the same as that of ReLU + linear
transformation, which is proved by Wan et al. (2013). In
other words, although the number of model parameters are
doubled by CReLU, the model complexity does not neces-
sarily increase.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Figure 4. Invariance Scores for ReLU Models vs CReLU Models. The invariance scores for CReLU models are consistently higher
than ReLU models. The invariance scores jump after max-pooling layers. Moreover, even though the invariance scores tend to increase
along with the depth of the networks, the progression is not monotonic.

Table 6. Correlation Comparison. The averaged correlation
between the normalized positive-negative-pair (pair) outgoing
weights and the normalized unmatched-pair (non-pair) outgoing
weights are both well below 1 for all layers, indicating that the
pair outgoing weights are capable of imposing diverse non-linear
manipulation separately on the positive and negative components.

ImageNet Conv1–7 CReLU Model
layer pair non-pair
conv1 0.372 ±0.372 0.165 ±0.154
conv2 0.180 ±0.149 0.157 ±0.137
conv3 0.462 ±0.249 0.120 ±0.120
conv4 0.175 ±0.146 0.119 ±0.100
conv5 0.206 ±0.136 0.105 ±0.093
conv6 0.256 ±0.124 0.086 ±0.080
conv7 0.131 ±0.122 0.080 ±0.070

4.2. Towards Learning Invariant Features

We measure the invariance scores using the evaluation met-
rics from (Goodfellow et al., 2009) and draw another com-
parison between the CReLU models and the ReLU mod-
els. For a fair evaluation, we compare all 7 conv layers from
all-conv ReLU model with those from all-conv CReLU
model trained on CIFAR-10/100. In the case of ImageNet
experiments, we choose the model where CReLU replaces
ReLU for the first 7 conv layers and compare the invariance
scores with the first 7 conv layers from the baseline ReLU
model. Section D in the supplementary materials details
how the invariance scores are measured.

Figure 4 plots the invariance scores for networks trained on
CIFAR-10, CIFAR-100, and ImageNet respectively. The
invariance scores of CReLU models are consistently higher
than those of ReLU models. For CIFAR-10 and CIFAR-
100, there is a big increase between conv2 and conv3
then again between conv4 and conv6, which are due to
max-pooling layer extracting shift invariance features. We
also observe that although as a general trend, the invari-
ance scores increase while going deeper into the networks–

consistent with the observations from (Goodfellow et al.,
2009), the progression is not monotonic. This interesting
observation suggests the potentially diverse functionality
of different layers in the CNN, which would be worthwhile
for future investigation.

In particular, the scores of ImageNet ReLU model attain lo-
cal maximum at conv1, conv4 and conv7 layers. It inspires
us to design the architecture where CReLU are placed after
conv1, 4, and 7 layers to encourage invariance represen-
tations while halving the number of filters to limit model
capacity. Interestingly, this architecture achieves the best
top1 and top5 recognition results when averaging scores
from 10 patches.

4.3. Revisiting the Reconstruction Property

In Section 2.1, we observe that lower layer convolution fil-
ters from ReLU models form negatively-correlated pairs.
Does the pairing phenomenon still exist for CReLU mod-
els? We take our best CReLU model trained on ImageNet
(where the first 4 conv layers are integrated with CReLU)
and repeat the histogram experiments to generate Figure 3.
In clear contrast to Figure 2, the distributions of µ̄wi from
CReLU model well align with the distributions of µ̄ri from
random Gaussian filters. In other words, each lower layer
convolution filter now uniquely spans its own direction
without a negatively correlated pairing filter, while CReLU
implicitly plays the role of “pair-grouping”.

The empirical gap between CReLU and AVR justifies
that both modulus and phase information are essential
in learning deep CNN features. In addition, to ensure
that the outgoing weights for the positive and negative
phase are not merely negations of each other, we measure
their correlations for the conv1-7 CReLU model trained
on ImageNet. Table 6 compares the averaged correla-
tion between the (normalized) positive-negative-pair (pair)
outgoing weights and the (normalized) unmatched-pair
(non-pair) outgoing weights. The pair correlations are

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

(a) Original image (b) conv1 (c) conv2 (d) conv3 (e) conv4

Figure 5. CReLU Model Reconstructions. We use a simple linear reconstruction algorithm (see Algorithm 1 in the supplementary
materials) to reconstruct the original image from conv1-conv4 features (left to right). The image is best viewed in color/screen.

marginally higher than the non-pair ones but both are on
average far below 1 for all layers. This suggests that, in
contrast to AVR, the CReLU network does not simply fo-
cus on the modulus information but imposes different ma-
nipulation over the opposite phases.

In Section 2.2, we mathematically characterize the re-
construction property of convolution layers with CReLU.
Proposition 2.1 claims that the part of an input spanned
by the shifts of the filters can be fully recovered. Ima-
geNet contains a large number of training images from a
wide variety of categories; the convolution filters learned
from ImageNet are thus expected to be diverse enough to
describe the domain of natural images. Hence, to qualita-
tively verify the result from Proposition 2.1, we can directly
invert features from our best CReLU model trained on Im-
ageNet via the simple reconstruction algorithm described
in the proof of Proposition 2.1 (Algorithm 1 in the sup-
plementary materials). Figure 5 shows an image from the
validation set along with its reconstructions using conv1-
conv4 features (see Section G in the supplementary mate-
rials for more reconstruction examples). Unlike other re-
construction methods (Dosovitskiy & Brox, 2015; Mahen-
dran & Vedaldi, 2015), our algorithm does not involve any
additional learning. Nevertheless, it still produces reason-
able reconstructions, which supports our theoretical claim
in Proposition 2.1.

For the convolution layers involving max-pooling opera-
tion, it is less straightforward to perform direct reconstruc-
tion. Yet we evaluate the conv+CReLU+max-pooling re-
construction power via measuring properties of the convo-
lution filters and the details are elaborated in Section C of
the supplementary materials.

5. Conclusion
We propose a new activation scheme, CReLU, which
conserves both positive and negative linear responses af-
ter convolution so that each filter can efficiently repre-
sent its unique direction. Our work demonstrates that
CReLU improves deep networks with classification ob-

jective. Since CReLU preserves the available informa-
tion from input while maintaining the non-saturated non-
linearity, it can potentially benefit more complicated ma-
chine learning tasks such as structured output prediction
and image generation. Another direction for future re-
search involves engaging CReLU to the abundant set of
existing deep neural network techniques and frameworks.
We hope to investigate along these directions in the near
future.

ACKNOWLEDGMENTS

We are grateful to Erik Brinkman, Harry Altman and Mark
Rudelson for their helpful comments and support. We ac-
knowledge Yuting Zhang and Anna Gilbert for discussions
during the preliminary stage of this work. This work was
supported in part by ONR N00014-13-1-0762 and NSF
CAREER IIS-1453651. We thank Technicolor Research
for providing resources and NVIDIA for the donation of
GPUs.

References
Bruna, J. and Mallat, S. Invariant scattering convolution

networks. PAMI, 2013.

Bruna, J., Szlam, A., and LeCun, Y. Signal recovery from
pooling representations. In ICML, 2013.

Christensen, O. An introduction to frames and Riesz bases.
Birkhuser Basel, 2003.

Deng, J., Dong, W., Socher, R., Li, L.-j., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

Dosovitskiy, A. and Brox, T. Inverting convolutional net-
works with convolutional networks. In CVPR, 2015.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A.
Measuring invariances in deep networks. In NIPS, 2009.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A.,
and Bengio, Y. Maxout networks. In ICML, 2013.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural network. In
NIPS, 2015.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In ICML, 2015.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object
recognition? In CVPR, 2009.

Krizhevsky, A. Learning multiple layers of features from
tiny images, 2009.

Krizhevsky, A., Sutskever, l., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

Lee, C.-y., Gallagher, P. W., and Tu, Z. Generalizing pool-
ing functions in convolutional neural networks: Mixed,
gated, and tree. In AISTATS, 2016.

Liang, M. and Hu, X. Recurrent convolutional neural net-
work for object recognition. In CVPR, 2015.

Lin, M., Chen, Q., and Yan, S. Network in network. In
ICLR, 2013.

Maas, A., Hannun, A. Y., and Ng, A. Rectifier nonlineari-
ties improve neural network acoustic models. In ICML,
2013.

Mahendran, A. and Vedaldi, A. Understanding deep image
representations by inverting them. In CVPR, 2015.

Nair, V. and Hinton, G. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

Rippel, O., Snoek, J., and Adams, R. Spectral representa-
tions for convolutional neural networks. In NIPS, 2015.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2014.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M. M. A., and Adams, R. Scal-
able bayesian optimization using deep neural networks.
In ICML, 2015.

Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller,
M. Striving for simplicity: The all convolutional net. In
ICLR Workshop, 2014.

Srivastava, R., Greff, K., and Schmidhuber, J. Training
very deep networks. In NIPS, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. Going deeper with convolutions. In CVPR,
2015.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
ICML, 2013.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evalua-
tion of rectified activations in convolutional network. In
ICML Workshop, 2015.

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola,
A., Song, L., and Wang, Z. Deep fried convnets. In
ICCV, 2015.

Zagoruyko, S. Torch blog. http://torch.ch/blog/
2015/07/30/cifar.html, 2015.

Zeiler, M. D. and Fergus, R. Stochastic pooling for regular-
ization of deep convolutional neural networks. In ICLR,
2013.

Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. Stacked
what-where auto-encoders. In ICLR, 2015.

http://torch.ch/blog/2015/07/30/cifar.html
http://torch.ch/blog/2015/07/30/cifar.html

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Algorithm 1 Reconstruction over a single convolution re-
gion without max-pooling

1: fcnn(x)← conv features.
2: W ← weight matrix.
3: Obtain the linear responses after convolution by revert-

ing CReLU: z = ρ−1c (fcnn(x)).
4: Compute the Moore Penrose pseudoinverse of WT ,

(WT)+.
5: Obtain the final reconstruction: x′ = (WT)+z.

Algorithm 2 Reconstruction over a single max-pooling re-
gion

1: fcnn(x)← conv features after max-pooling.
2: Ŵx ← weight matrix consisting of shifted conv filters

that are activated by x.
3: Obtain the linear responses after convolution by revert-

ing CReLU: z = ρ−1c (fcnn(x)).
4: Compute the Moore Penrose pseudoinverse of ŴT

x ,
(ŴT

x)+.
5: Obtain the final reconstruction: x′ = (ŴT

x)+z.

Appendix
A. Reconstruction Property Proofs
A.1. Non-Max-Pooling Case

Proposition A.1. Let x ∈ RD be an input vector andW be
the D-by-K matrix whose columns vectors are composed
of wi ∈ Rl, i = 1, . . . ,K convolution filters. Furthermore,
let x = x′ + (x− x′), where x′ ∈ range(W) and x− x′ ∈
ker(W). Then we can reconstruct x′ with fcnn(x), where
fcnn(x) , CReLU

(
WTx

)
.

Proof. We show x′ can be reconstructed from fcnn(x) by
providing a simple reconstruction algorithm described by
Algorithm 1. First, apply the inverse function of CReLU
on fcnn(x): z = ρ−1c (fcnn(x)). Then, compute the Moore
Penrose pseudoinverse of WT , denote by (WT)+. By def-
inition Q = (WT)+WT is the orthogonal projector onto
range(W), therefore we can obtain x′ = (WT)+z.

A.2. Max-Pooling Case

Problem Setup. Again, let x ∈ RD be an input vec-
tor and wi ∈ R`, i = 1, . . . ,K be convolution fil-
ters. We denote wji ∈ RD the jth coordinate shift of the
convolution filter wi with a fixed stride length of s, i.e.,
wji [(j − 1)s + k] = wi[k] for k = 1, . . . , `, and 0’s for
the rest of entries in the vector. Here, we assume D − `
is divisible by s and thus there are n = D−`

s + 1 shifts

stride size: s

0.9

0.5

0.0

0.0

0.1

-0.7

0.9

0.8

-0.1

0.5

-0.7

-0.2

0.9

0.8

-0.1

0.5

-0.7

-0.2

Figure S1. An illustration of convolution, CReLU, and max-
pooling operation. For simplicity, we describe with 3 convolu-
tion filters (W1,W2,W3) with stride of s, and with 2×2 pooling.
In Figure (a), g denotes CReLU followed by the max-pooling
operation.

for each wi. We define W to be the D × nK matrix
whose columns are the shifts wji , j = 1, . . . , n, for wi;
the columns of W are divided into K blocks, with each
block consisting of n shifts of a single filter. The conv +
CReLU + max-pooling layer can be defined by first multi-
plying an input signal x by the matrix WT (conv), separat-
ing positive and negative phases then applying the ReLU
non-linearity (CReLU), and selecting the maximum value
in each of the K block (max-pooling). The operation is de-
noted as fcnn : RD → R2K such that fcnn(x) , g

(
WTx

)
,

where g , pool◦CReLU. Figure S1 illustrates an example
of the problem setting.

Assumption. To reach a non-trivial bound when max-
pooling is present, we put a constraint on the input space
V: ∀x ∈ V , there exists {cji}

j=1,··· ,n
i=1,··· ,K such that

x =

K∑
i=1

n∑
j=1

cjiw
j
i , where

n∑
j=1

1{cji > 0} ≤ 1, ∀i. (S1)

In other words, we assume that an input x is a linear combi-
nation of the shifted convolution filters {wji }

j=1,··· ,n
i=1,··· ,K such

that over a single max-pooling region, only one of the shifts
participates:

∑n
j=1 1{c

j
i > 0} ≤ 1: a slight translation of

an object or viewpoint change does not alter the nature of
a natural image, which is how max-pooling generates shift
invariant features by taking away some fine-scaled locality
information.

Next, we denote the matrix consisting of the shifts whose
corresponding cji ’s are non-zero by Wx , and the vector
consisting of the non-zero cji ’s by cx, i.e. Wxcx = x. Also,
we denote the matrix consisting of the shifts whose activa-
tion is positive and selected after max-pooling operation
by Ŵ+

x , negative by Ŵ−x . Let Ŵx ,
[
Ŵ+
x , Ŵ

−
x

]
. Finally,

we give notation, W̃x, to the matrix consisting of a subset
of Ŵx, such that the ith column comes from Ŵ+

x if cji ≥ 0

or from Ŵ−x if otherwise.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Frame Theory. Before proceeding to the main theorem
and its proof, we would like to introduce more tools from
Frame Theory.

Definition A.1. A frame is a set of elements of a vector
space V , {φk}k=1,··· ,K , which satisfies the frame condi-
tion: there exist two real numbers C1 and C2, the frame
bounds, such that 0 < C1 ≤ C2 <∞, and ∀v ∈ V

C1‖v‖22 ≤
K∑
k=1

|〈v, φi〉|2 ≤ C2‖v‖22.

(Christensen, 2003)

Proposition A.2. Let {φk}k=1,...,K be a sequence in V ,
then {φk} is a frame for span{φk}. Hence, {φk} is a frame
for V if and only if V = span{φk}7. (Christensen, 2003)

Definition A.2. Consider now V equipped with a frame
{φk}k=1,...,K . The Analysis Operator, T : V → RK , is
defined by T v = {〈v, φk〉}k=1,...,K . The Synthesis Op-
erator, T ∗ : RK → V , is defined by T ∗{ck}k=1,...,K =∑K
k=1 ckφk, which is the adjoint of the Analysis Operator.

The Frame Operator, S : V → V , is defined to be the com-
position of T with its adjoint:

Sv = T ∗T v.

The Frame Operator is always invertible. (Christensen,
2003)

Theorem A.3. The optimal lower frame bound C1 is the
smallest eigenvalue of S; the optimal upper frame bound
C2 is the largest eigenvalue of S. (Christensen, 2003)

We would also like to investigate the matrix representa-
tion of the operators T , T ∗ and S. Consider V , a sub-
space of RD, equipped with a frame {φk}k=1,··· ,K . Let
U ∈ RD×d be a matrix whose column vectors form an
orthonormal basis for V (here d is the dimension of V).
Choosing U as the basis for V and choosing the standard
basis {ek}k=1,··· ,K as the basis for RK , the matrix repre-
sentation of T is T̃ = WTU , whereW is the matrix whose
column vectors are {φTk }k=1,··· ,K . Its transpose, T̃ ∗, is the
matrix representation for T ∗; the matrix representation for
S is S̃ = T̃ ∗T̃ .

Lemma A.4. Let x ∈ RD and W an D-by-K matrix. If
x ∈ range(W), then σmin‖x‖2 ≤ ‖WTx‖2 ≤ σmax‖x‖2,
where σmin and σmax are the least and largest singular
value of V respectively.

Proof. By Proposition A.2, the columns in W form a
frame for range(W). Let U be an orthonormal basis for
range(W). Then the matrix representation under U for

7There exist infinite spanning sets that are not frames, but we
will not be concerned with those here since we only deal with
finite dimensional vector spaces.

the Analysis Operator, T , is T̃ = WTU , and the corre-
sponding representation for x under U is UTx. Now, by
Theorem A.3, we have:

λmin‖x‖22 ≤ ‖T̃ x‖22 = ‖WTUUTx‖22 = ‖WTx‖22,

where λ1 is the least eigenvalue of S̃. Therefore, we
have σmin‖x‖2 ≤ ‖WTx‖2, where σmin is the least sin-
gular value of W . Lastly, by the definition of operator-
induced matrix norm, we have the upper bound ‖WTx‖2 ≤
σmax‖x‖2

Reconstruction Property. Now we are ready to present
the theorem that characterizes the reconstruction property
of the conv+CReLU+max-pooling operation.

Theorem A.5. Let x ∈ V and satisfy the assumption from
Equation (S1). Then we can obtain x′, the reconstruction
of x using fcnn(x) such that

‖x− x′‖2
‖x‖2

≤

√
λ̃max − λmin

λmin
,

where λmin and λ̃max are square of the minimum and max-
imum singular values of Wx and W̃x respectively.

Proof. We use similar method to reconstruct as described
by Algorithm 2: first reverse the CReLU activation and ob-
tain z = ρ−1c (fcnn(x)); then compute the Moore Penrose
pseudoinverse of ŴT

x , denote by (ŴT
x)+; finally, obtain

x′ = (ŴT
x)+z, since by definition, Q = (ŴT

x)+ŴT
x is

the orthogonal projector onto range(Ŵx). To proceed the
proof, we denote the subset of z which matches the cor-
responding activation of the filters from W̃x by z̃, com-
pute the Morre Penrose pseudoinverse of W̃x and obtain
x̃ = (W̃T

x)+z̃. Note that since range(W̃x) is a subspace of
range(Ŵx), therefore, the reconstruction x′ will always be
equal or better than x̃, i.e. ‖x − x′‖2 ≤ ‖x − x̃‖2. From
Lemma A.4, the nature of max-pooling and the assumption
on x (Equation S1), we derive the following inequality

λmin‖x‖22 ≤ ‖WT
x x‖2 ≤ ‖W̃T

x x‖22
= ‖W̃T

x x̃‖22 ≤ λ̃max‖x̃‖22,

where λmin and λ̃max are square of the minimum and max-
imum singular values of Wx and W̃x respectively.

Because x̃ is the orthogonal projection of x on to
range(W̃x), thus ‖x‖22 = ‖x̃‖22 +‖x− x̃‖22. Now substitute

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

‖x‖22 with ‖x̃‖22 + ‖x− x̃‖22, we have:

λmin(‖x̃‖22 + ‖x− x̃‖22) ≤ λ̃max‖x̃‖22

‖x− x̃‖22 ≤
λ̃max − λmin

λ̃min

‖x̃‖22

‖x− x′‖22 ≤
λ̃max − λmin

λmin
‖x‖22

‖x− x′‖2 ≤

√
λ̃max − λmin

λmin
‖x‖2

‖x− x′‖2
‖x‖2

≤

√
λ̃max − λmin

λmin
.

We refer to the term ‖x−x′‖2
‖x‖2 as the reconstruction ratio in

later discussions.

B. Proof of Model Complexity Bound
Definition B.1. (Rademacher Complexity) For a sample
S = {x1, · · · , xL} generated by a distribution D on set X
and a real-valued function classF in domainX , the empir-
ical Rademacher complexity of F is the random variable:

R̂L(F) = Eσ

∑
f∈F

| 2
L
σif(xi)|

∣∣∣∣x1, · · · , xL
 ,

where σi’s are independent uniform {±1}-valued
(Rademacher) random variables. The Rademacher
complexity of F is RL(F) = ES

[
R̂L(F)

]
Lemma B.1. (Composition Lemma) Assume ρ : R→ R is
a Lρ-Lipschitz continuous function, i.e. , |ρ(x) − ρ(y)| ≤
Lρ|x− y|. Then R̂L(ρ ◦ F) = LρR̂L(F).

Proposition B.2. (Network Layer Bound) Let G be the
class of real functions Rdin → R with input dimension F ,
that is, G = [F]din

j=1 and H is a linear transform function
parametrized by W with ‖W‖2 ≤ B, then R̂L(H ◦ G) ≤√
dinBR̂L(F). (Wan et al., 2013)

Corollary B.3. By Lemma B.1, Proposition B.2, and the
fact that ReLU is 1-Lipschitz, we know that R̂L(ReLU ◦
G) = R̂L(G) and that R̂L(H◦ReLU◦G) ≤

√
dinBR̂L(F).

Theorem B.4. 4.1 Let G be the class of real functions
Rdin → R with input dimension F , that is, G = [F]din

j=1.
Let H be a linear transform function from R2din to R,
parametrized by W , where ‖W‖2 ≤ B. Then R̂L(H ◦
ρc ◦ G) ≤

√
dinBR̂L(F).

Recall from Definition 2.1, ρc is the CReLU formulation.

Table S1. Empirical mean of the reconstruction ratios. Recon-
struct the sampled images from test set using the features after
CReLU and max-pooling; then calculate the reconstruction ratio,
‖x− x′‖2/‖x‖2.

CIFAR-10
layer learned random
conv2 0.92 ±0.0002 0.99 ±0.00005
conv5 0.96 ±0.0003 0.99 ±0.00005

CIFAR-100
layer learned random
conv2 0.93 ±0.0002 0.99 ±0.00005
conv5 0.96 ±0.0001 0.99 ±0.00005

Proof.

R̂L(H ◦ ρc ◦ G) = Eσ

[
sup

h∈H,g∈G
| 2
L

L∑
i=1

σih ◦ ρc ◦ g(xi)|

]
(S2)

= Eσ

[
sup

‖W‖≤B,g∈G
|〈W, 2

L

L∑
i=1

σiρc ◦ g(xi)〉|

]
(S3)

≤ BEσ

sup
f∈F
‖

[
2

L

L∑
i=1

σji ρc ◦ f
j(xi)

]din

j=1

‖2

 (S4)

= BEσ

sup
f∈F
‖

[
2

L

L∑
i=1

σji f
j(xi)

]din

j=1

‖2

 (S5)

= B
√
dinEσ

[
sup
f∈F
| 2
L

L∑
i=1

σif(xi)|

]
(S6)

=
√
dinBR̂L(F). (S7)

From (S1) to (S2), use the definition of linear transforma-
tion and inner product. From (S2) to (S3), use Cauchy-
Schwarz inequality and the assumption that ‖W‖2 ≤ B.
From (S3) to (S4), use the definition of CReLU and l2

norm. From (S4) to (S5), use the definition of l2 norm
and sup operator. From (S5) to (S6), use the definition of
R̂L

We see that CReLU followed by linear transformation
reaches the same Rademacher complexity bound as ReLU
followed by linear transformation with the same input di-
mension.

C. Reconstruction Ratio
Recall that Theorem A.5 characterizes the reconstruction
property when max-pooling is added after CReLU. As an
example, we study the all-conv CReLU (half) models used
for CIFAR-10/100 experiments. In this model, conv2 and
conv5 layers are followed by max-pooling. CIFAR images
are much less diverse than those from ImageNet. Instead

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

of directly inverting features all the way back to the origi-
nal images, we empirically calculate the reconstruction ra-
tio, ‖x − x′‖2/‖x‖2. We sample testing examples, extract
pooled features after conv2(conv5) layer and reconstruct
features from the previous layer via Algorithm 2. To com-
pare, we perform the same procedures on random convo-
lution filters8. Essentially, convolution imposes structured
zeros to the random W̃x; there has not been published re-
sults on random subspace projection with such structured
zeros. In a simplified setting without structured zeros,
i.e. no convolution, it is straightforward to show that the

expected reconstruction ratio is
√

D−K
D (Theorem C.1),

where, in our case, D = 48(96) × 5 × 5 and K = 48(96)
for conv2(conv5) layer. Table S1 compares between the
empirical mean of reconstruction ratios using learned fil-
ters and random filters: random filters only recover 1% of
the original input, whereas the learned filters span more of
the input domain.

Theorem C.1. Let x ∈ RD, and let xs ∈ RD be its pro-
jection onto a random subspace of dimension D2, then

E

[
‖xs‖2
‖x‖2

]
=

√
Ds

D

Proof. Without loss of generality, let ‖x‖2 = 1. Pro-
jecting a fixed x onto a random subspace of dimension
Ds is equivalent of projecting a random unit-norm vector
z = (z1, z2, · · · , zD)T onto a fixed subspace of dimen-
sion Ds thanks to the rotational invariance of inner prod-
uct. Without loss of generality, assume the fixed subspace
here is spanned by the first Ds standard basis covering the
first D2 coordinates of z. Then the resulting projection is
zs = (z1, z2, · · · , zDs

, 0, · · · , 0).

Because z is unit norm, we have

E
[
‖z‖22

]
= E

[
D∑
i=1

z2i

]
= 1.

Because each entry of z, zi, is identically distributed, we
have

E
[
‖zs‖22

]
= E

[
Ds∑
i=1

z2i

]
=
Ds

D
.

Together we have

E

[
‖xs‖2
‖x‖2

]
= E

[
‖zs‖2
‖z‖2

]
=

√
Ds

D
.

8Each entry is sampled from standard normal distribution.

D. Invariance Score
We use consistent terminology employed by Goodfellow
et al. (2009) to illustrate the calculation of the invariance
scores.

For CIFAR-10/100, we utilize all 50k testing images to cal-
culate the invariance scores; for ImageNet, we take the cen-
ter crop from 5k randomly sampled validation images

For each individual filter, we calculate its own firing thresh-
old, such that it is fired one percent of the time, i.e. the
global firing rate is 0.01. For ReLU models, we zero out
all the negative negative responses when calculating the
threshold; for CReLU models, we take the absolute value.

To build the set of semantically similar stimuli for each
testing image x, we apply horizontal flip, 15 degree ro-
tation and translation. For CIFAR-10/100, translation is
composed of horizontal/vertical shifts by 3 pixels; for Ima-
geNet, translation is composed of cropping from the 4 cor-
ners.

Because our setup is convolutional, we consider a filter to
be fired only if both the transformed stimulus and the orig-
inal testing example fire the same convolution filter at the
same spatial location.

At the end, for each convolution layer, we average the in-
variance scores of all the filters at this layer to form the final
score.

E. Implementation Details on ImageNet
Models

The networks from Table S8, S9, S10,and S11, where the
number of convolution filters after CReLU are kept the
same, are optimized using SGD with mini-batch size of
64 examples and fixed momentum 0.9. The learning rate
and weight decay is adapted using the following sched-
ule: epoch 1-10, 1e−2 and 5e−4; epoch 11-20, 1e−3 and
5e−4; epoch 21-25, 1e−4 and 5e−4; epoch 26-30, 5e−5
and 0; epoch 31-35, 1e−5 and 0; epoch 36-40, 5e−6 and
0; epoch 41-45, 1e−6 and 0.

The networks from Table S12 and S13, where the number
of convolution filters after CReLU are reduced by half, are
optimized using Adam with an initial learning rate 0.0002
and mini-batch size of 64 examples for 100 epochs.

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

F. Details of Network Architecture

Table S2. (Left) Baseline or AVR and (right) baseline (double) models used for CIFAR-10/100 experiment. “avg” refers average pooling.

Baseline/AVR Baseline (double)
Layer kernel, stride, padding activation kernel, stride, padding activation
conv1 3×3×3×96, 1, 1 ReLU/AVR 3×3×3×192, 1, 1 ReLU
conv2 3×3×96×96, 1, 1 ReLU/AVR 3×3×192×192, 1, 1 ReLU
pool1 3×3, 2, 0 max 3×3, 2, 0 max
conv3 3×3×96×192, 1, 1 ReLU/AVR 3×3×192×384, 1, 1 ReLU
conv4 3×3×192×192, 1, 1 ReLU/AVR 3×3×384×384, 1, 1 ReLU
conv5 3×3×192×192, 1, 1 ReLU/AVR 3×3×384×384, 1, 1 ReLU
pool2 3×3, 2, 0 max 3×3, 2, 0 max
conv6 3×3×192×192, 1, 1 ReLU/AVR 3×3×384×384, 1, 1 ReLU
conv7 1×1×192×192, 1, 1 ReLU/AVR 1×1×384×384, 1, 1 ReLU
conv8 1×1×192×10/100, 1, 0 ReLU/AVR 1×1×384×10/100, 1, 0 ReLU
pool3 10×10 (100 for CIFAR-100) avg 10×10 (100 for CIFAR-100) avg

Table S3. (Left) CReLU and (right) CReLU (half) models used for CIFAR-10/100 experiment.

CReLU CReLU (half)
Layer kernel, stride, padding activation kernel, stride, padding activation
conv1 3×3×3×96, 1, 1 CReLU 3×3×3×48, 1, 1 CReLU
conv2 3×3×192×96, 1, 1 CReLU 3×3×96×48, 1, 1 CReLU
pool1 3×3, 2, 0 max 3×3, 2, 0 max
conv3 3×3×192×192, 1, 1 CReLU 3×3×96×48, 1, 1 CReLU
conv4 3×3×384×192, 1, 1 CReLU 3×3×96×96, 1, 1 CReLU
conv5 3×3×384×192, 1, 1 CReLU 3×3×192×96, 1, 1 CReLU
pool2 3×3, 2, 0 max 3×3, 2, 0 max
conv6 3×3×384×192, 1, 1 CReLU 3×3×192×96, 1, 1 CReLU
conv7 1×1×384×192, 1, 1 CReLU 1×1×192×96, 1, 1 CReLU
conv8 1×1×384×10/100, 1, 0 ReLU 1×1×192×10/100, 1, 0 ReLU
pool3 10×10 (100 for CIFAR-100) avg 10×10 (100 for CIFAR-100) avg

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Table S4. VGG for CIFAR-10/100
Layer kernel, stride, padding activation
conv1 3×3×3×64, 1, 1 BN+ReLU

dropout with ratio 0.3
conv2 3×3×64×64, 1, 1 BN+ReLU
pool1 2×2, 2, 0
conv3 3×3×64×128, 1, 1 BN+ReLU

dropout with ratio 0.4
conv4 3×3×128×128, 1, 1 BN+ReLU
pool2 2×2, 2, 0
conv5 3×3×128×256, 1, 1 BN+ReLU

dropout with ratio 0.4
conv6 3×3×256×256, 1, 1 BN+ReLU

dropout with ratio 0.4
conv7 3×3×256×256, 1, 1 BN+ReLU
pool3 2×2, 2, 0
conv8 3×3×256×512, 1, 1 BN+ReLU

dropout with ratio 0.4
conv9 3×3×512×512, 1, 1 BN+ReLU

dropout with ratio 0.4
conv10 3×3×512×512, 1, 1 BN+ReLU
pool4 2×2, 2, 0

conv11 3×3×512×512, 1, 1 BN+ReLU
dropout with ratio 0.4

conv12 3×3×512×512, 1, 1 BN+ReLU
dropout with ratio 0.4

conv13 3×3×512×512, 1, 1 BN+ReLU
pool5 2×2, 2, 0

dropout with ratio 0.5
fc14 512×512 BN+ReLU

dropout with ratio 0.5
fc15 512×10/100

Table S5. VGG + (conv1) for CIFAR-10/100

Layer kernel, stride, padding activation
conv1 3×3×3×32, 1, 1 CReLU

dropout with ratio 0.1
conv2 · · ·

Table S6. VGG + (conv1, 3) for CIFAR-10/100

Layer kernel, stride, padding activation
conv1 3×3×3×32, 1, 1 CReLU

dropout with ratio 0.1
conv2 3×3×64×64, 1, 1 BN+ReLU
pool1 2×2, 2, 0
conv3 3×3×64×64, 1, 1 CReLU

dropout with ratio 0.2
conv4 · · ·

Table S7. VGG + (conv1, 3, 5) for CIFAR-10/100

Layer kernel, stride, padding activation
conv1 3×3×3×32, 1, 1 CReLU

dropout with ratio 0.1
conv2 3×3×64×64, 1, 1 BN+ReLU
pool1 2×2, 2, 0
conv3 3×3×64×64, 1, 1 CReLU

dropout with ratio 0.2
conv4 3×3×128×128, 1, 1 BN+ReLU
pool2 2×2, 2, 0
conv5 3×3×128×128, 1, 1 CReLU

dropout with ratio 0.2
conv6 3×3×256×256, 1, 1 BN+ReLU

dropout with ratio 0.2
conv7 · · ·

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

Table S8. Baseline for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×96, 4,0 ReLU
conv2 1×1×96×96, 1,0 ReLU
conv3 3×3×96×96, 2,0 ReLU
conv4 5×5×96×256, 1, 2 ReLU
conv5 1×1×256×256, 1,0 ReLU
conv6 3×3×256×256, 2,0 ReLU
conv7 3×3×256×384, 1 ,1 ReLU
conv8 1×1×384×384, 1,0 ReLU
conv9 3×3×384×384, 2,1 ReLU

no dropout
conv10 3×3×384×1024, 1,1 ReLU
conv11 1×1×1024×1024, 1,0 ReLU
conv12 1×1×1024×1000, 1 ReLU

pool 6×6 average-pooling

Table S9. CReLU/AVR (conv1-4) for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×96, 4,0 CReLU/AVR
conv2 1×1×192/96×96, 1,0 CReLU/AVR
conv3 3×3×192/96×96, 2,0 CReLU/AVR
conv4 5×5×192/96×256, 1, 2 CReLU/AVR
conv5 1×1×512/256×256, 1,0 ReLU
conv6 3×3×256×256, 2,0 ReLU
conv7 3×3×256×384, 1 ,1 ReLU
conv8 1×1×384×384, 1,0 ReLU
conv9 3×3×384×384, 2,1 ReLU

no dropout
conv10 3×3×384×1024, 1,1 ReLU
conv11 1×1×1024×1024, 1,0 ReLU
conv12 1×1×1024×1000, 1 ReLU

pool 6×6 average-pooling

Table S10. CReLU/AVR (conv1-7) for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×96, 4,0 CReLU/AVR
conv2 1×1×192/96×96, 1,0 CReLU/AVR
conv3 3×3×192/96×96, 2,0 CReLU/AVR
conv4 5×5×192/96×256, 1, 2 CReLU/AVR
conv5 1×1×512/256×256, 1,0 CReLU/AVR
conv6 3×3×512/256×256, 2,0 CReLU/AVR
conv7 3×3×512/256×384, 1 ,1 CReLU/AVR
conv8 1×1×768/384×384, 1,0 ReLU
conv9 3×3×384×384, 2,1 ReLU

dropout with ratio 0.25
conv10 3×3×384×1024, 1,1 ReLU
conv11 1×1×1024×1024, 1,0 ReLU
conv12 1×1×1024×1000, 1 ReLU

pool 6×6 average-pooling

Table S11. CReLU/AVR (conv1-9) for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×96, 4,0 CReLU/AVR
conv2 1×1×192/96×96, 1,0 CReLU/AVR
conv3 3×3×192/96×96, 2,0 CReLU/AVR
conv4 5×5×192/96×256, 1, 2 CReLU/AVR
conv5 1×1×512/256×256, 1,0 CReLU/AVR
conv6 3×3×512/256×256, 2,0 CReLU/AVR
conv7 3×3×512/256×384, 1 ,1 CReLU/AVR
conv8 1×1×768/384×384, 1,0 CReLU/AVR
conv9 3×3×768/384×384, 2,1 CReLU/AVR

dropout with ratio 0.25
conv10 3×3×768/384×1024, 1,1 ReLU
conv11 1×1×1024×1024, 1,0 ReLU
conv12 1×1×1024×1000, 1 ReLU

pool 6×6 average-pooling

Table S12. CReLU (all) for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×48, 4,0 CReLU
conv2 1×1×96×48, 1,0 CReLU
conv3 3×3×96×48, 2,0 CReLU
conv4 5×5×96×128, 1, 2 CReLU
conv5 1×1×256×128, 1,0 CReLU
conv6 3×3×256×128, 2,0 CReLU
conv7 3×3×256×192, 1 ,1 CReLU
conv8 1×1×384×192, 1,0 CReLU
conv9 3×3×384×192, 2,1 CReLU

dropout with ratio 0.25
conv10 3×3×384×512, 1,1 CReLU
conv11 1×1×512×512, 1,0 CReLU
conv12 1×1×512×1000, 1 CReLU

pool 6×6 average-pooling

Table S13. CReLU (conv1,4,7) for ImageNet

Layer kernel, stride, padding activation
conv1 11×11×3×48, 4,0 CReLU
conv2 1×1×96×96, 1,0 ReLU
conv3 3×3×96×96, 2,0 ReLU
conv4 5×5×96×128, 1, 2 CReLU
conv5 1×1×256×256, 1,0 ReLU
conv6 3×3×256×256, 2,0 ReLU
conv7 3×3×256×192, 1 ,1 CReLU
conv8 1×1×384×384, 1,0 ReLU
conv9 3×3×384×384, 2,1 ReLU

dropout with ratio 0.25
conv10 3×3×384×1024, 1,1 ReLU
conv11 1×1×1024×1024, 1,0 ReLU
conv12 1×1×1024×1000, 1 ReLU

pool 6×6 average-pooling

Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units

G. Image Reconstruction
In this section, we provide more image reconstruction examples.

(a) Original image (b) conv1 (c) conv2 (d) conv3 (e) conv4

(f) Original image (g) conv1 (h) conv2 (i) conv3 (j) conv4

(k) Original image (l) conv1 (m) conv2 (n) conv3 (o) conv4

(p) Original image (q) conv1 (r) conv2 (s) conv3 (t) conv4

