Supplementary material for the paper
structured recurrent temporal
restricted Boltzmann machines

Roni Mittelman, Benjamin Kuipers, Silvio Savarese, Honglak Lee

June, 2014

1 PROBLEM TITLE

The RTRBM describes the joint probability distribution of the visible units vector vy €
RNv, and hidden units vector h; € RM» at time step ¢, using a conditional RBM which
depends on the hidden input r;_;. The RTRBM network is illustrated in Figure ??7. The
joint probability distribution of v¢, hy for any ¢ > 1 (given ry_1) takes the following form:

1
P(Vt,ht;rt_l) = 7 exp{—E(vt,ht;rt_l)} (11)

Tt—1

E(vi,hyre 1) = _(h:WVt +c'vi+b'h + h;rUI‘t—l)a

where W € RV#XNo U € RVwXNn ¢ € RVe, b € RV are model parameters, and Zy,_,
denotes a normalization factor which depends on r;_; and the other model parameters
(we used the subscript r;—; since the dependency on the input r;—; is the major difference
compared to the RBM). For ¢t = 1, the joint distribution of vi,h; takes the form of a
standard RBM with the hidden units biases bj,i; € RVr.

The inputs ry (where t € {1,...,T — 1}) are obtained from a RNN given vy, ..., v

. {U(th +b+Ury), ift>1 12)

o(Wvy + binit), ift=1

where the logistic function o(x) = (1 4 exp(—x))~! is applied to each element of its
argument vector. The motivation for the choice of r; is that using the RBM associated
with time instant ¢, we have that E[h;|v;] = ry; i.e., it is the expected value of the hidden

units vector.



The joint probability distribution of the visible and hidden units of the RTRBM with
length 7" takes the form:

T

P({ve,he}{y; {r:}/5") = P(vi,he) [ [ P(ve, s eer) =
=2

exp{E({v, b} 1; {r,}/ ")}
Z. ZI‘1 ”‘ZrT—l

(1.3)
where Z denotes the normalization factor for the first RBM at t = 1, and where

T
E({ve,he} i {ri}5") = — (b Wvi+e vi+b] i+ (htTth +c¢'vi+b'h + htTUrt_l) )
t=2
(1.4)

Since Z, Zy, ... Zpp_, are independent of {v¢, hy}L_;; {r;}1', we can rewrite (1.3) using

exp{E({vy, ht]ithl; {I‘t}tT:_11)}
VA

P({ve,he}{_ 5 {r 15" = (1.5)

where Z = Z{v;7ht}g‘:1 E({v},h}E ;s {ri 3151, Note that {r;}7 ' are not a function of

{st}le-

1.1 INFERENCE IN THE RTRBM

Given the hidden inputs r;—; (¢ > 1), the conditional distributions are factorized and
take the form:

P(hij =1ve,re1) = o) wjivei +bj+ Y tjmri-1m),
: 1

P(v; =1y, 19) = U(Z wjihej + ¢), (1.6)
J

For t = 1, the posterior of h; given v; has the same for as in RBM, where b;,;; replaces
b. The above conditional probabilities can also be used to generate samples v, ..., vp
(i.e., by repeatedly running Gibbs sampling for t = 1,...,T).

Further, note that, given the hidden inputs ry,...,rp_1, all the RBMs (corresponding
to different time frames) are decoupled; thus, sampling can be performed using block
Gibbs sampling for each RBM independently. This fact is useful in deriving the CD
approximation for the RTRBM.

1.2 LEARNING IN THE RTRBM

In order to learn the parameters, we need to obtain the partial derivatives of the log-
likelihood, log P(v1,...,vr), with respect to the model parameters. Using the CD ap-
proximation to compute these derivatives requires the gradients of energy function (1.4)
with respect to all the model parameters. We separate the energy function into the
following two terms: E = —H — Qo, where



T
H=h/Wvi+c'vi+bph+> h/Wv,+cvi+b'hy, (1.7)
t=2

T
=> hiUr ;. (1.8)
t=2

Taking the gradients of ‘H with respect to the model parameters is straightforward, and
therefore we focus on Qs. To compute the partial derivative of Qs with respect to a model
parameter 6, we first compute the gradient of Qo with respect tory, fort =1,..., T —1,
which can be computed recursively using the backpropagation-through-time (BPTT)
algorithm. These gradients are then used with the chain rule to compute the derivatives
with respect to all the model parameters. In the next subsection, we use the BPTT to
derive the gradient with respect to U. The other gradients can be computed similarly.

1.2.1 CALCULATING V;, Q2 USING BPTT

We observe that Qs can be computed recursively using:

T
=> h/Ur, 1 =0Qi1+h/Ur (1.9)

T=t

where Q711 = 0. Using the chain rule and (1.12), we have

+ UI‘t
87at—i—l,m’ 8rt,m 8Tt,m< G )

Z 0Qtt2 Oreyimy 0

0Q412
e Z %Tt—&-l,m’(l —_ Tt—i—l,m’)um’,m + Z ht+17m/um/7m (110)
7 Ol 1,m/

m/

where 7441 /(1 — 7441 ) is obtained from the partial derivative of the sigmoid function.
Equation (1.13) can also be expressed in vector form using:

Vi, Qty1 = UT(VrtH Q4201141 O (1 —rip1) +hypq), (1.11)

where ® denotes element-wise product. Since Q41 is not a function of ry,...,r;_q,
we have that V., Qs = V;,Qy41, and therefore the necessary partial derivatives can be
computed recursively using (1.14).

1.2.2 CALCULATING V;, Q2 USING BPTT

We observe that Qy can be computed recursively using:

T
=> h/Ur, 1 =Q1+h/Ur, (1.12)

T=t



where Q711 = 0. Using the chain rule and (1.12), we have

0Q¢y2 OTi1m 0
Z =+ (), Ury)
87ﬂ15—i—1,m’ art,m 87ﬂt,m
0Q42
= Z 87+Tt+1,m’(1 - 7nt—i—l,m’)um’,m
7 OTt+1,m/
+ 3 Pt gt (1.13)

m/

where 7441 /(1 — 7441 1) is obtained from the partial derivative of the sigmoid function.
Equation (1.13) can also be expressed in vector form using:

Vi Qi1 = U (Vi Qiyo O 1p41 © (1 —1441) + hep), (1.14)

where ® denotes element-wise product. Since Qi1 is not a function of ry,...,r;_1,
we have that V,, Qs = V, 941, and therefore the necessary partial derivatives can be
computed recursively using (1.14).

1.2.3 CALCULATING THE PARTIAL DERIVATIVES WITH RESPECT TO THE MODEL
PARAMETERS

In order to compute the derivatives with respect to U, we use the chain rule and (1.12):

092 _Z<3Qt+1 Orem n 0 (htTUrt—l))

Oy, Ortm Oumm! Oy
T
09
= Z ( t+1'rt,m(1 — Tem) + ht,m) Ti—1,m/! (1.15)
—o Ttm

where when taking the derivative of htT Ur;_1 with respect to uy, s we regard r;_; as a
constant, since the contribution of its derivative is factored in through V., | Q.

Next, we use the CD approximation with (1.13), to show that the update rule for U,
that is related to Qs (not including H), takes the form:

T

AIQJ2 - Z (Dt+1 Ore®(1—ry) + Ehfvere [hy] — E"fsahﬂrt—l [ht])r;r—l (1.16)
t=2

where

Dt = Eht,...,hT‘Vt,...VT,I'l...,I'T_l [Vrt71 Qt] - Eht,...,hT,Vg,...V/Th‘l...,I‘T,1 [Vrtfl Qt] : (117)

Proof. The partial derivative of Qg with respect to u,, ,,,» takes the form:

09 _thmrt 1m+z Q2 M thmrt 1m’+z 0% Ttm 1 Ttm)rt 1,m/

Oy Grt,m Oy Ore.m
(1.18)



The derivative of the log-likelihood with respect to v takes the form

H+Q2 _ 0
Aum,m, = ]Ehl,._.,hT|v1,...,vT,rl,...,rT,l Olyry (H + QZ) — IEhl,..,,hT,vll,...,V’T;r1,...,rT_1 Oy (H + QQ)
_ AH Q2
= Aum,m/ + Aum,m/’ (1.19)
where we defined
u _ 0 0
Aum’m, = Eh1,...,hT‘Vl7---,VT7r17~~~7rT—1 [ﬁ%] - Ehl,.‘.,hT,Vll,~..,V{T§I'1,..‘,I'T71 [3um o H]
m7m 9
Q2 _ 0 B 0
Binr = Enicirvievrnsrr o [ Qo) = Bhy vy [, — Q2
(1.20)

Using (1.18) in A%l _, we have that

T
A’l?jhm/ = Z (]Ehl7'-~7hT‘vla..-7VT7r17~-'arT_1 [ht,m] - ]Ehl,--thaV/l7~-~1V,T;1'1,...,1‘T71 [ht,m]) rt—l,m’
t=2
T
0 0
! ; <Eh17m’hT|V1’M’VT’r1’m’rT1 [mQQ] B Ehl7...,hT7V/17--.7V’/1“§I'1,..-7I'T71 [aum,m’QQO
X rtvm(l - /rt,m)/r't_Lm/
T
- Z (Eht‘vt’rtfl [htvm} - EhuVé%l‘t—l [ht,m]) Tt—1,m’
t=2
T
0 0
E a —E ’. -
+ ; < hi|ve,re—1 [8U«m,m/ Qo] hy,vire_1 [8Um,m' QQ])
T
’ rt?m(l B Ttvm)rt—l,m’ - Z <Eht|vt’rt—1 [ht’m] o Ehtzv1l£§l‘t—1 [ht,m] + Dt—i—l,m?"t,m(l — Tt,m>> Tt—1,m/
t=2
(1.21)
which in vector for is identical to (1.16). -

In the following we show that similarly to (1.14), D; can be computed recursively using:

Dt+1 = UT (Dt+2 ®© eyl ®© (1 - rt+1) + Eht+1|vt+1;rt [ht+1] - ]EV£+1,ht+1|l‘t [ht+1])7 (122)

and DT+1 = 0.



Proof. Plugging (1.14) into (1.17), we have that:

Dir1 =Enporr bpvesrverrr U (Vg Qe © Tt © (1 —rig1) 4+ hegq)]

L YTRTO AR R (U (Vi Qe2 © 141 © (1 —rpp1) + hyg)]
T
=U [(Eht-H,.-‘,hT|Vt+1,...,VT,r1,...,rT [vl‘t+1Qt+2] - Eht+1,...,hT,vngl,...,v’T;rl,.A.,rT [vrt+1Qt+2])
@ rt+1 @ (1 - rt+1) + EhH_l‘VH_l,I‘t [ht+1] - Eht+1,v£+1;rz [ht+1]]
= UT <Dt+2 Ori © (]‘ - I't+1) + Eht+1\vt+1,rt [ht+1] - Eht+17v§+1;rt [ht+1]) (123)
O

The model parameters § € {W,U, b, bj,;,c} are updated via gradient ascent (e.g.,
0:=0-+ nA;HQQ) where

ANt — | (b} lverny T, [VoH] (1.24)
Q
— E{htyvi}?:1|{rt}$:1 [Vg?-[] + A0 2

For the other model parameters, we have ACQQ =0, and

T—1

AR =D (D1 01,0 (1 —10)v] (1.25)
t=1
T—1

A2 =) (D1 1,0 (1 —1y)) (1.26)
t=2

AR =Dyor O(1-1y) (1.27)





