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Abstract

Deep networks have been successfully applied
to unsupervised feature learning for single
modalities (e.g., text, images or audio). In
this work, we propose a novel application of
deep networks to learn features over multiple
modalities. We present a series of tasks for
multimodal learning and show how to train
deep networks that learn features to address
these tasks. In particular, we demonstrate
cross modality feature learning, where better
features for one modality (e.g., video) can be
learned if multiple modalities (e.g., audio and
video) are present at feature learning time.
Furthermore, we show how to learn a shared
representation between modalities and evalu-
ate it on a unique task, where the classifier is
trained with audio-only data but tested with
video-only data and vice-versa. Our mod-
els are validated on the CUAVE and AVLet-
ters datasets on audio-visual speech classifi-
cation, demonstrating best published visual
speech classification on AVLetters and effec-
tive shared representation learning.

1. Introduction

In speech recognition, humans are known to inte-
grate audio-visual information in order to understand
speech. This was first exemplified in the McGurk ef-
fect (McGurk & MacDonald, 1976) where a visual /ga/
with a voiced /ba/ is perceived as /da/ by most sub-
jects. In particular, the visual modality provides infor-
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mation on the place of articulation and muscle move-
ments (Summerfield, 1992) which can often help to dis-
ambiguate between speech with similar acoustics (e.g.,
the unvoiced consonants /p/ and /k/ ).

Multimodal learning involves relating information
from multiple sources. For example, images and 3-d
depth scans are correlated at first-order as depth dis-
continuities often manifest as strong edges in images.
Conversely, audio and visual data for speech recogni-
tion have correlations at a “mid-level”, as phonemes
and visemes (lip pose and motions); it can be difficult
to relate raw pixels to audio waveforms or spectro-
grams.

In this paper, we are interested in modeling “mid-
level” relationships, thus we choose to use audio-visual
speech classification to validate our methods. In par-
ticular, we focus on learning representations for speech
audio which are coupled with videos of the lips.

We will consider the learning settings shown in Figure
1. The overall task can be divided into three phases
– feature learning, supervised training, and testing.
A simple linear classifier is used for supervised train-
ing and testing to examine different feature learning
models with multimodal data. In particular, we con-
sider three learning settings – multimodal fusion, cross
modality learning, and shared representation learning.

In the multimodal fusion setting, data from all modal-
ities is available at all phases; this represents the typ-
ical setting considered in most prior work in audio-
visual speech recognition (Potamianos et al., 2004). In
cross modality learning, data from multiple modalities
is available only during feature learning; during the
supervised training and testing phase, only data from
a single modality is provided. For this setting, the aim
is to learn better single modality representations given
unlabeled data from multiple modalities. Last, we con-
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sider a shared representation learning setting, which is
unique in that different modalities are presented for su-
pervised training and testing. This setting allows us
to evaluate if the feature representations can capture
correlations across different modalities. Specifically,
studying this setting allows us to assess whether the
learned representations are modality-invariant.

In the following sections, we first describe the build-
ing blocks of our model. We then present different
multimodal learning models leading to a deep network
that is able to perform the various multimodal learn-
ing tasks. Finally, we report experimental results and
conclude.

2. Background

Recent work on deep learning (Hinton & Salakhut-
dinov, 2006; Salakhutdinov & Hinton, 2009) has ex-
amined how deep sigmoidal networks can be trained
to produce useful representations for handwritten dig-
its and text. The key idea is to use greedy layer-wise
training with Restricted Boltzmann Machines (RBMs)
followed by fine-tuning. We use an extension of RBMs
with sparsity (Lee et al., 2007), which have been shown
to learn meaningful features for digits and natural im-
ages. In the next section, we review the sparse RBM,
which is used as a layer-wise building block for our
models.

2.1. Sparse restricted Boltzmann machines

The RBM is an undirected graphical model with hid-
den variables (h) and visible variables (v) (Figure 2a).
There are symmetric connections between the hidden
and visible variables (Wi,j), but no connections within
hidden variables or visible variables. The model de-
fines a probability distribution over h, v (Equation 1).
This particular configuration makes it easy to compute
the conditional probability distributions, when v or h
is fixed (Equation 2).

− logP (v,h) ∝ E(v,h) =

1

2σ2
vTv− 1

σ2

(
cTv + bTh + hTWv

)
(1)

p(hj |v) = sigmoid(
1

σ2
(bj + wT

j v)) (2)

This formulation models the visible variables as real-
valued units and the hidden variables as binary units.1

As it is intractable to compute the gradient of the
log-likelihood term, we learn the parameters of the

1We use Gaussian visible units for the RBM that is
connected to the input data. When training the deeper
layers, we use binary visible units.
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Figure 1: Multimodal Learning settings where A+V
refers to Audio and Video.

model (wi,j , bj , ci) using contrastive divergence (Hin-
ton, 2002).

To regularize the model for sparsity (Lee et al.,
2007), we encourage each hidden unit to have a pre-
determined expected activation using a regularization
penalty of the form λ

∑
j(ρ −

1
m (
∑m

k=1 E[hj |vk]))2,

where {v1, ...,vm} is the training set and ρ determines
the sparsity of the hidden unit activations.

3. Learning architectures

In this section, we describe our models for the task of
audio-visual bimodal feature learning, where the au-
dio and visual input to the model are contiguous audio
(spectrogram) and video frames. To motivate our deep
autoencoder (Hinton & Salakhutdinov, 2006) model,
we first describe several simple models and their draw-
backs.

One of the most straightforward approaches to feature
learning is to train a RBM model separately for au-
dio and video (Figure 2a,b). After learning the RBM,
the posteriors of the hidden variables given the visible
variables (Equation 2) can then be used as a new repre-
sentation for the data. We use this model as a baseline
to compare the results of our multimodal models, as
well as for pre-training the deep networks.

To train a multimodal model, a direct approach is to
train a RBM over the concatenated audio and video
data (Figure 2c). While this approach jointly mod-
els the distribution of the audio and video data, it is
limited as a shallow model. In particular, since the cor-
relations between the audio and video data are highly
non-linear, it is hard for a RBM to learn these corre-
lations and form multimodal representations. In prac-
tice, we found that learning a shallow bimodal RBM
results in hidden units that have strong connections to
variables from individual modality but few units that
connect across the modalities.
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Figure 2: RBM Pretraining Models. We train RBMs for (a) audio and (b) video separately as
a baseline. The shallow model (c) is limited and we find that this model is unable to capture
correlations across the modalities. The bimodal deep belief network (DBN) model (d) is trained
in a greedy layer-wise fashion by first training models (a) & (b). We later “unroll” the deep
model (d) to train the deep autoencoder models presented in Figure 3.
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Figure 3: Deep Autoencoder Models. A “video-only” model is shown in (a) where the model
learns to reconstruct both modalities given only video as the input. A similar model can be
drawn for the “audio-only” setting. We train the (b) bimodal deep autoencoder in a denoising
fashion, using an augmented dataset with examples that require the network to reconstruct both
modalities given only one. Both models are pre-trained using sparse RBMs (Figure 2d). Since
we use a sigmoid transfer function in the deep network, we can initialize the network using the
conditional probability distributions p(h|v) and p(v|h) of the learned RBM.

Therefore, we consider greedily training a RBM over
the pre-trained layers for each modality, as motivated
by deep learning methods (Figure 2d).2 In particular,
the posteriors (Equation 2) of the first layer hidden
variables are used as the training data for the new
layer. By representing the data through learned first
layer representations, it can be easier for the model to
learn higher-order correlations across modalities. In-
formally, the first layer representations correspond to
phonemes and visemes and the second layer models the
relationships between them. Figure 4 shows visualiza-
tions of learned features from our models including
examples of visual bases corresponding to visemes.

However, there are still two issues with the above mul-
timodal models. First, there is no explicit objective for
the models to discover correlations across the modali-

2It is possible to instead learn a large RBM as the first
layer that connects to both modalities. However, since a
single layer RBM tends to learn unimodal units, it is much
more efficient to learn separate models for each modality.

ties; it is possible for the model to find representations
such that some hidden units are tuned only for au-
dio while others are tuned only for video. Second, the
models are clumsy to use in a cross modality learn-
ing setting where only one modality is present during
supervised training and testing. With only a single
modality present, one would need to integrate out the
unobserved visible variables to perform inference.

Thus, we propose a deep autoencoder that resolves
both issues. We first consider the cross modality learn-
ing setting where both modalities are present during
feature learning but only a single modality is used for
supervised training and testing. The deep autoencoder
(Figure 3a) is trained to reconstruct both modalities
when given only video data and thus discovers corre-
lations across the modalities. Analogous to Hinton
& Salakhutdinov (2006), we initialize the deep au-
toencoder with the bimodal DBN weights (Figure 2d)
based on Equation 2, discarding any weights that are
no longer present. The middle layer can be used as the
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Figure 4: Visualization of learned representations.
These figures correspond to two deep hidden units,
where we visualize the most strongly connected
first layer features. The units are presented in
audio-visual pairs (we have found it generally diffi-
cult to interpret the connection between the pair).
The visual bases captured lip motions and articula-
tions, including different mouth articulations, open-
ing and closing of the mouth, exposing teeth.

new feature representation. This model can be viewed
as an instance of multitask learning (Caruana, 1997).

We use the deep autoencoder (Figure 3a) models in
settings where only a single modality is present at su-
pervised training and testing. On the other hand,
when multiple modalities are available for the task
(e.g., multimodal fusion), it is less clear how to use the
model as one would need to train a deep autoencoder
for each modality. One straightforward solution is to
train the networks such that the decoding weights are
tied. However, such an approach does not scale well –
if we were to allow any combination of modalities to
be present or absent at test time, we will need to train
an exponential number of models.

Inspired by denoising autoencoders (Vincent et al.,
2008), we propose training the bimodal deep au-
toencoder (Figure 3b) using an augmented but noisy
dataset with additional examples that have only a
single-modality as input. In practice, we add exam-
ples that have zero values for one of the input modali-
ties (e.g., video) and original values for the other input
modality (e.g., audio), but still require the network to
reconstruct both modalities (audio and video). Thus,
one-third of the training data has only video for input,
while another one-third of the data has only audio, and
the last one-third of the data has both audio and video.

Due to initialization using sparse RBMs, we find that
the hidden units have low expected activation, even
after the deep autoencoder training. Therefore, when
one of the input modalities is set to zero, the first
layer representations are also close to zero. In this
case, we are essentially training a modality-specific
deep autoencoder network (Figure 3a). Effectively, the
method learns a model which is robust to inputs where
a modality is absent.

4. Experiments and Results

We evaluate our methods on audio-visual speech clas-
sification of isolated letters and digits. The sparseness
parameter ρ was chosen using cross-validation, while
all other parameters (including hidden layer size and
weight regularization) were kept fixed.3

4.1. Data Preprocessing

We represent the audio signal using its spectrogram4

with temporal derivatives, resulting in a 483 dimension
vector which was reduced to 100 dimensions with PCA
whitening. 10 contiguous audio frames were used as
the input to our models.

For the video, we preprocessed the frames so as to
extract only the region-of-interest (ROI) encompass-
ing the mouth.5 Each mouth ROI was rescaled to
60× 80 pixels and further reduced to 32 dimensions,6

using PCA whitening. Temporal derivatives over the
reduced vector were also used. We used 4 contiguous
video frames for input since this had approximately
the same duration as 10 audio frames.

For both modalities, we also performed feature mean
normalization over time (Potamianos et al., 2004),
akin to removing the DC component from each ex-
ample. We also note that adding temporal derivatives
to the representations has been widely used in the lit-
erature as it helps to model dynamic speech informa-
tion (Potamianos et al., 2004; Zhao & Barnard, 2009).
The temporal derivatives were computed using a nor-
malized linear slope so that the dynamic range of the
derivative features is comparable to the original signal.

4.2. Datasets and Task

Since only unlabeled data was required for unsuper-
vised feature learning, we combined diverse datasets
(as listed below) to learn features. AVLetters and
CUAVE were further used for supervised classification.
We ensured that no test data was used for unsuper-
vised feature learning. All deep autoencoder models
were trained with all available unlabeled audio and
video data.

3We cross-validated ρ over {0.01, 0.03, 0.05, 0.07}. The
first layer features were 4x overcomplete for video (1536
units) and 1.5x overcomplete for audio (1500 units). The
second layer was 1.5x the size of the combined first layers
(4554 units).

4Each spectrogram frame (161 frequency bins) had a
20ms window with 10ms overlaps.

5We used an off-the-shelf object detector (Dalal &
Triggs, 2005) with median filtering over time to extract
the mouth regions.

6Similar to (Duchnowski et al., 1994) we found that 32
dimensions were sufficient and performed well.
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CUAVE (Patterson et al., 2002). 36 speakers saying
the digits 0 to 9. We used the normal portion of the
dataset which contained frontal facing speakers saying
each digit 5 times. We evaluated digit classification on
the CUAVE dataset in a speaker independent setting.
As there has not been a fixed protocol for evaluation on
this dataset, we chose to use odd-numbered speakers
for the test set and even-numbered speakers for the
training set.

AVLetters (Matthews et al., 2002). 10 speakers say-
ing the letters A to Z, three times each. The dataset
provided pre-extracted lip regions of 60 × 80 pixels.
As the raw audio was not available for this dataset,
we used it for evaluation on a visual-only lipreading
task (Section 4.3). We report results on the third-test
settings used by Zhao & Barnard (2009) and Matthews
et al. (2002) for comparisons.

AVLetters2 (Cox et al., 2008). 5 speakers saying the
letters A to Z, seven times each. This is a new high-
definition version of the AVLetters dataset. We used
this dataset for unsupervised training only.

Stanford Dataset. 23 volunteers spoke the digits 0
to 9, letters A to Z and selected sentences from the
TIMIT dataset. We collected this data in a similar
fashion to the CUAVE dataset and used it for unsu-
pervised training only.

TIMIT (Fisher et al., 1986). We used this dataset for
unsupervised audio feature pre-training.

We note that in all datasets there is variability in the
lips in terms of appearance, orientation and size. For
each audio-video clip, features were extracted from
overlapping sequences of frames. Since examples had
varying durations, we divided each example into S
equal slices and performed average-pooling over each
slice. The features from all slices were subsequently
concatenated together. Specifically, we combined fea-
tures using S = 1 and S = 3 to form our final feature
representation for classification with a linear SVM.

4.3. Cross Modality Learning

In the cross modality learning experiments, we eval-
uate if we can learn better representations for one
modality (e.g., video) when given multiple modalities
(e.g., audio and video) during feature learning.

On the AVLetters dataset (Table 1a), our deep au-
toencoder models show a significant improvement over
hand-engineered features from prior work. The video-
only deep autoencoder performed the best on the
dataset, obtaining a classification accuracy of 64.4%,
outperforming the best previous published results.

On the CUAVE dataset (Table 1b), there is an im-
provement by learning video features with both video

and audio compared to learning features with only
video data (although not performing as well as state-
of-the-art). In our models, we chose to use a very
simple front-end that only extracts bounding boxes,
without any correction for orientation or perspective
changes. In contrast, recent AAM models (Papan-
dreou et al., 2009) are trained to accurately track the
speaker’s face and further register the face with a mean
face template, canceling shape deformations. Combin-
ing these sophisticated visual front-ends with our fea-
tures has the potential to do even better.

Table 1: Classification performance for visual speech
classification on (a) AVLetters and (b) CUAVE. Deep
autoencoders perform the best and show effective
cross modality learning. Where indicated, the error
bars show the variation (± 2 s.d.) due to random ini-
tialization. §Results are on continuous speech recog-
nition performance, though we note that the normal
portion of CUAVE has speakers saying isolated dig-
its. †These models use a visual front-end system that
is significantly more complicated than ours and a dif-
ferent train/test split.

Feature Representation Accuracy
Baseline Preprocessed Video 46.2%
RBM Video (Figure 2b) 54.2%±3.3%
Video-Only Deep Autoencoder

64.4%±2.4%
(Figure 3a)
Bimodal Deep Autoencoder

59.2%
(Figure 3b)

Multiscale Spatial Analysis
44.6%

(Matthews et al., 2002)
Local Binary Pattern

58.85%
(Zhao & Barnard, 2009)

(a) AVLetters

Feature Representation Accuracy
Baseline Preprocessed Video 58.5%
RBM Video (Figure 2b) 65.4%±0.6%
Video-Only Deep Autoencoder

68.7%±1.8%
(Figure 3a)
Bimodal Deep Autoencoder

66.7%
(Figure 3b)

Discrete Cosine Transform
64% †§

(Gurban & Thiran, 2009)
Active Appearence Model

75.7% †
(Papandreou et al., 2007)
Active Appearence Model

68.7% †
(Pitsikalis et al., 2006)
Fused Holistic+Patch

77.08% †
(Lucey & Sridharan, 2006)
Visemic AAM

83% †§
(Papandreou et al., 2009)

(b) CUAVE Video
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Table 2: Digit classification performance for bimodal speech classification on CUAVE, under clean and
noisy conditions. We added white Gaussian noise to the original audio signal at 0 dB SNR. The error bars
reflect the variation (± 2 s.d.) of the results due to the random noise added to the audio data. We compare
performance of the Bimodal Deep Autoencoder model with the best audio features (Audio RBM) and the
best video features (Video-only Deep Autoencoder).

Accuracy Accuracy
Feature Representation (Clean Audio) (Noisy Audio)
(a) Audio RBM (Figure 2a) 95.8% 75.8% ± 2.0%
(b) Video-only Deep Autoencoder (Figure 3a) 68.7% 68.7%
(c) Bimodal Deep Autoencoder (Figure 3b) 90.0% 77.3% ± 1.4%
(d) Bimodal + Audio RBM 94.4% 82.2% ± 1.2%
(e) Video-only Deep AE + Audio-RBM 87.0% 76.6% ± 0.8%

These video classification results show that the deep
autoencoders achieve cross modality learning by dis-
covering better video representations when given ad-
ditional audio data. In particular, even though the
AVLetters dataset did not have any audio data, we
were able to improve performance by learning better
video features using other additional unlabeled audio
and video data.

However, the bimodal deep autoencoder did not per-
form as well as the video-only deep autoencoder: while
the video-only autoencoder learns only video features
(which are also good for audio reconstruction), the bi-
modal autoencoder learns audio-only, video-only and
invariant features. As such, the feature set learned by
the bimodal autoencoder might not be optimal when
the task at hand has only visual input.

We also note that cross modality learning for audio
did not improve classification results compared to us-
ing audio RBM features; audio features are highly dis-
criminative for speech classification, adding video in-
formation can sometimes hurt performance.

4.4. Multimodal Fusion Results

While using audio information alone performs reason-
ably well for speech recognition, fusing audio and video
information can substantially improve performance,
especially when the audio is degraded with noise (Gur-
ban & Thiran, 2009; Papandreou et al., 2007; Pitsikalis
et al., 2006; Papandreou et al., 2009). In particular, it
is common to find that audio features perform well on
their own and concatenating video features can some-
times hurt performance. Hence, we evaluate our mod-
els in both clean and noisy audio settings.

The video modality complements the audio modality
by providing information such as place of articulation,
which can help distinguish between similar sounding
speech. However, when one simply concatenates audio
and visual features (Table 2e), it is often the case that
performance is worse as compared to using only audio
features (Table 2a). Since our models are able to learn

multimodal features that go beyond simply concate-
nating the audio and visual features, we propose com-
bining the audio features with our multimodal features
(Table 2d). When the best audio features are con-
catenated with the bimodal features, it outperforms
the other feature combinations. This shows that the
learned multimodal features are better able to comple-
ment the audio features.

4.5. McGurk effect

Table 3: McGurk Effect

Audio / Visual Model prediction
Setting /ga/ /ba/ /da/
Visual /ga/, Audio /ga/ 82.6% 2.2% 15.2%
Visual /ba/, Audio /ba/ 4.4% 89.1% 6.5%
Visual /ga/, Audio /ba/ 28.3% 13.0% 58.7%

The McGurk effect (McGurk & MacDonald, 1976)
refers to an audio-visual perception phenomenon
where a visual /ga/ with a audio /ba/ is perceived
as /da/ by most subjects. Since our model learns a
multimodal representation, it would be interesting to
observe if the model is able to replicate a similar effect.

We obtained data from 23 volunteers speaking 5 rep-
etitions of /ga/, /ba/ and /da/. The bimodal deep
autoencoder features7 were used to train a linear SVM
on this 3-way classification task. The model was tested
on three conditions that simulate the McGurk effect.
When the visual and audio data matched at test time,
the model was able to predict the correct class /ba/
and /ga/ with an accuracy of 82.6% and 89.1% re-
spectively. On the other hand, when a visual /ga/
with a voiced /ba/ was mixed at test time, the model
was most likely to predict /da/, even though /da/ nei-
ther appears in the visual nor audio inputs, consistent
with the McGurk effect on people. The same effect
was not observed with the bimodal DBN (Figure 2d)
or with concatenating audio and video RBM features.

7The /ga/, /ba/ and /da/ data was not used for train-
ing the bimodal deep autoencoder.
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4.6. Shared Representation Learning

Table 4: Shared representation learning on CUAVE.
Chance performance is at 10%.

Train/Test Method Accuracy

Audio/Video
Raw-CCA 41.9%

RBM-CCA Features 57.3%
Bimodal Deep AE 30.7%

Video/Audio
Raw-CCA 42.9%

RBM-CCA Features 91.7%
Bimodal Deep AE 24.3%

Video

Supervised
Testing

Audio

Shared
Representation

Video

Linear Classifier

Training Testing

Audio

Shared 
Representation

Figure 5: “Hearing to see” setting (train on audio, test
on video) for evaluating shared representations.

In this experiment, we propose a novel setting which
examines if a shared representation can be learned over
audio and video speech data, During supervised train-
ing, the algorithm is provided data solely from one
modality (e.g., audio) and later tested only on the
other modality (e.g., video), as shown in Figure 5. In
essence, we are telling the supervised learner how the
digits “1”, “2”, etc. sound, while asking it to distin-
guish them based on how they are visually spoken –
“hearing to see”. If we are able to capture the corre-
lations across the modalities in our shared representa-
tion, the model will perform this task well.

One approach to learning a shared representation is to
find transformations for the modalities that maximize
correlations. In particular, we suggest using canoni-
cal correlation analysis (CCA) (Hardoon et al., 2004),
which finds linear transformations of audio and video
data, to form a shared representation. 8 Learning
a CCA shared representation on raw data results in
surprisingly good performance (Table 4: Raw-CCA).
However, learning the CCA representation on the first
layer features (i.e., Audio RBM and Video RBM fea-
tures) results in significantly better performance, com-
parable to using the original modalities for supervised
classification (Table 4: RBM-CCA Features). This is
particularly surprising since testing on audio performs

8Given audio data a and video data v, CCA finds ma-
trices P and Q such that Pa and Qv have maximum cor-
relations.

better than testing on video, even when the model was
trained on video data. These results show that cap-
turing relationships across the modalities require at
least a single non-linear stage to be successful. When
good features have been learned from both modalities,
a linear model can be well suited to capture the rela-
tionships. However, it is important to note that CCA,
a linear transformation, does not help in other tasks
such as cross-modality learning.

We further used this task to examine whether the fea-
tures from the bimodal deep autoencoder captures cor-
relations across the modalities. 9 While the bimodal
deep autoencoder model does not perform as well as
CCA, the results show that our learned representations
are partially invariant to the input modality.

4.7. Additional Control Experiments

The video-only deep autoencoder has audio as a train-
ing cue and multiple hidden layers (Figure 3a). We
first considered removing audio as a cue by training
a similar deep autoencoder that did not reconstruct
audio data; the performance decreased by 7.7% on
CUAVE and 14.3% on AVLetters. Next, we trained
a video-only shallow autoencoder with a single hidden
layer to reconstruct both audio and video10; the per-
formance decreased by 2.1% on CUAVE and 5.0% on
AVLetters. Hence, both audio as a cue and depth were
important ingredients for the video-only deep autoen-
coder to perform well.

We also compared the performance of using the bi-
modal DBN without training it as an autoencoder. In
cases where only one modality was present, we used the
same approach as the bimodal deep autoencoder, set-
ting the absent modality to zero.11 The bimodal DBN
performed worse in the cross-modality and shared rep-
resentation tasks and did not show the McGurk ef-
fect. It performed comparably on the multimodal fu-
sion task. 12

9For the bimodal deep autoencoder, we set the value of
the absent modality to zero when computing the shared
representation, which is consistent with the feature learn-
ing phase.

10The single hidden layer takes video as input and re-
constructs both audio and video.

11We also tried alternating Gibbs sampling to obtain the
posterior, but the results were worse.

12For the video-only setting, the bimodal DBN per-
formed 4.9% worse on the CUAVE dataset and 5.0% worse
on the AVLetters dataset. It was at chance on the “hearing
to see” task and obtained 28.1% on “seeing to hear”.
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5. Related Work
While we present special cases of neural networks for
multimodal learning, we note that prior work on audio-
visual speech recognition (Duchnowski et al., 1994;
Yuhas et al., 1989; Meier et al., 1996; Bregler & Konig,
1994) has also explored the use of neural networks.
Yuhas et al. (1989) trained a neural network to pre-
dict the auditory signal given the visual input. They
showed improved performance in a noisy setting when
they combined the predicted auditory signal (from the
network using visual input) with a noisy auditory sig-
nal. Duchnowski et al. (1994) and Meier et al. (1996)
trained separate networks to model phonemes and
visemes and combined the predictions at a phonetic
layer to predict the spoken phoneme.

In contrast to these approaches, we use the hidden
units to build a new representation of the data. Fur-
thermore, we do not model phonemes or visemes,
which require expensive labeling efforts. Finally, we
build deep bimodal representations by modeling the
correlations across the learned shallow representations.

6. Discussion
Hand-engineering task-specific features is often diffi-
cult and time consuming. For example, it is not im-
mediately clear what the appropriate features should
be for lipreading (visual-only data). This difficulty is
more pronounced with multimodal data as the features
have to relate multiple data sources. In this work, we
showed how deep learning can be applied to this chal-
lenging task for discovering multimodal features.
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