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Abstract

When we look at a picture, our prior knowledge about
the world allows us to resolve some of the ambiguities that
are inherent to monocular vision, and thereby infer 3d in-
formation about the scene. We also recognize different ob-
jects, decide on their orientations, and identify how they are
connected to their environment. Focusing on the problem of
autonomous 3d reconstruction of indoor scenes, in this pa-
per we present a dynamic Bayesian network model capable
of resolving some of these ambiguities and recovering 3d
information for many images. Our model assumes a “floor-
wall” geometry on the scene and is trained to recognize the
floor-wall boundary in each column of the image. When
the image is produced under perspective geometry, we show
that this model can be used for 3d reconstruction from a sin-
gle image. To our knowledge, this was the first monocular
approach to automatically recover 3d reconstructions from
single indoor images.

1. Introduction

When we look at the image in Figure 1,1 our prior knowl-
edge about the world allows us to resolve approximate depth
in the image. Given only a single image, depth estima-
tion cannot be done by geometry-only approaches such as
a straightforward implementation of stereopsis. In this pa-
per, we focus exclusively on 3d reconstruction from a single
indoor image. Our motivation for studying this problem is
two-fold. First, we anticipate that monocular vision cues
could later be applied in conjunction with binocular ones;
however, restricting our attention to monocular 3d recon-
struction allows us to more clearly elucidate what sorts of
monocular vision cues are useful for depth estimation. Our
second motivation is that we consider monocular vision to

1The figures in this paper are best viewed in color.

be interesting and important in its own right. Specifically,
monocular cameras are cheaper, and their installation is less
complex than, stereo cameras. More importantly, the accu-
racy of stereo vision is fundamentally limited by the base-
line distance between the two cameras, and performs poorly
when used to estimate depths at ranges that are very large
relative to the baseline distance. Straightforward implemen-
tations of stereo vision also tend to fail in scenes that con-
tain little texture, such as many indoor scenes (that contain
featureless walls/floors). In these settings, monocular vi-
sion may be used to complement, or perhaps even replace
standard stereopsis.

Figure 1. Single camera image of a corridor

A number of researchers have attempted to recover 3d in-
formation from a single camera. “Shape from shading” [21]
is one well-known approach, but is not applicable to richly
structured/textured images, such as the image in Figure 1.
There is also a number of algorithms that use multiple im-
ages, such as “structure from motion” [19] and “shape from
defocus” [6]. These methods suffer from similar problems
to stereopsis when estimating depths at large ranges. In
a manner similar to our earlier discussion, we also view
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our work as potentially complementing some of these ap-
proaches. For indoor images such as in Figure 1, meth-
ods based on “3d metrology” hold some promise. Given
sufficient human labeling/human-specified constraints, ef-
ficient techniques can indeed be applied to generate a 3d
reconstruction of these scenes. [4, 5, 18] The drawback of
these methods is that they require a significant amount of
human input (for example, specifying the correspondences
between lines in the image and the edges of a reference
model).

Recent work strongly suggests that 3d information can
be efficiently recovered using Bayesian methods, in which
visual cues are combined with some prior knowledge on the
geometry of a scene. For example, Kosaka and Kak [11]
presented a navigation algorithm that allows a monocular
robot to track its position in a building by associating vi-
sual cues, such as lines and corners, with the configura-
tion of hallways on a plan. However, this approach would
fail in a new environment where the plan of the room is
not available beforehand. To succeed more generally, one
needs to rely on a more flexible geometric model. With a
Manhattan world assumption on a given scene (i.e. one that
contains many orthogonal shapes, like in many urban en-
vironments), Coughlan and Yuille [3], and Schindler and
Dellaert [16] have developed efficient techniques to recover
autonomously both extrinsic and intrinsic camera param-
eters from a single image. Another successful attempt in
the field of monocular 3d reconstruction was developed by
Han and Zhu [7, 8], which used models both of man-made
“block-shaped objects” and of some natural objects, such as
trees and grass. Unfortunately, this approach has so far been
applied only to fairly simple images, and seems unlikely
to scale in its present form to complex, textured images as
shown in Figure 1.

Figure 2. 3d reconstruction of a corridor from
single image presented in Figure 1 using our
autonomous algorithm.

Hoiem et al. [9] also developed independently an al-
gorithm that focuses on generating aesthetically pleasing
“pop-up book” versions of outdoor pictures. Although their
algorithm is related in spirit, it is different from ours in de-
tail. We will describe a comparison of our method with

theirs in Section 4.2. Using supervised learning, [15] give
an approach for estimating a depth map from a monocu-
lar image, that applies to outdoor/unstructured scenes. (See
also [13].)

Our approach uses a dynamic Bayesian network (DBN)
to approximate a distribution over the possible structures of
a scene. Assuming a “floor-wall” geometry in the scene,
the model uses a range of visual cues to find the most likely
floor-wall boundary in each column of the image. When
the image is produced under perspective geometry and con-
tains only a floor and vertical walls, we show that this can
be used to obtain a 3d reconstruction. As an example, Fig-
ure 2 shows the 3d reconstruction generated by our algo-
rithm using the image in Figure 1. In Section 2, we de-
fine the “floor-wall” geometry and outline our method for
recovering 3d information. Section 3 develops the DBN,
its training process, and the methods for inferring the most
likely floor-wall boundary in an image. Finally, in Section 4
we present a quantitative analysis of the accuracy of recon-
struction on test images, and demonstrate the robustness of
the algorithm by applying it to a diverse set of indoor im-
ages.

2. Background Material

In this paper, we focus on 3d reconstruction from indoor
scenes of the sort that are typically seen by an indoor mo-
bile robot. We make the following assumptions about the
camera:

1. The image is obtained by perspective projection, us-
ing a calibrated camera2 with a calibration matrix K.
Thus, as presented in Figure 3, a point Q in the 3d
world is projected to pixel coordinate q (represented
in homogeneous coordinates) in the image if and only
if:3

Q ∝ K−1q. (1)

2. The image contains a set of N vanishing points corre-
sponding to N directions, with one of them normal to
the floor plane. (For example, in a Manhattan world in
which all surfaces are orthogonal, N = 3.)4

2A calibrated camera means that the orientation of each pixel relative
to the optical axis is known.

3 Here, K, q and Q are as follows:
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Thus, Q is projected onto a point q in the image plane if and only if there
is some constant α so that Q = αK−1q.

4Vanishing points in the image plane are the points where all lines that
are parallel in 3d space meet in the image. This is a consequence of using
perspective geometry. Because of the frequency of parallel lines in artifi-
cial scenes, they form important cues for depth reconstruction. In a scene
that has mainly orthogonal planes—such as in many indoor scenes—the



Figure 3. Coordinate systems involved in 3d
reconstruction.

3. The scene consists only of a flat floor and straight ver-
tical walls (the “floor-wall” model).

4. The camera’s vertical axis is orthogonal to the floor
plane, and the floor is on the lower part of the image.

5. The camera center (origin) is at a known height above
the ground.5

For many indoor scenes, one can make the “Manhattan
world” assumption (i.e., that the environment contains only
orthogonal planes), and estimate the camera calibration pa-
rameters K from the position of three vanishing points. [1]
Also, an accurate estimate of the floor plane’s normal vec-
tor in 3d can be obtained in a similar manner, and thus any
small misalignment of the camera’s vertical axis can eas-
ily be compensated for. Therefore, in Manhattan worlds, it
it still possible to generate good reconstructions even if as-
sumptions 1 and 4 are violated. Assumption 2 is often at
least approximately satisfied when the scene contains many
man-made objects. Finally, the work of [20, 9] suggests that
assumption 3 would often be reasonable for indoor and even
outdoor scene reconstruction.

In an indoor image, the assumptions above are sufficient
to ensure that the full 3d geometry of a scene is exactly
specified, given the location of the floor boundary in every
column of the image6. This result is a direct consequence
of perspective geometry. We now describe how to unam-
biguously reconstruct the 3d location of every pixel in the
image.

edges (including the floor-wall boundary) will lie in one of N possible
directions, and thus there will be N vanishing points in the image.

5If the height of the camera is unknown, then it is still possible to re-
cover the 3d scene up to an unknown scaling factor.

6In a column of the image in which the floor is not present, we take this
to be the bottom pixel.

First, by perspective projection, the 3d location Qk of a
pixel at position qk in the image plane must satisfy:

Qk = αkK−1qk, (2)

for some αk. Thus, Qk is restricted to a specific line that
passes through the origin of the camera. Further, if this
point lies on the floor plane with normal vector nfloor, then
we have

dfloor = −nfloor · Qk = −αk nfloor · (K−1qk) , (3)

where dfloor is the known distance of the camera from the
floor. Thus, the 3d positions of the floor pixels (points in
the image located below the floor boundary) can be exactly
determined.

As for a point qk in the wall portion of column j of the
image, its 3d location can easily be determined using the
knowledge that it is restricted to a vertical segment starting
from the known 3d position Qb(j) of the floor boundary
point in column j.7 This reduces to solving the following
set of linear equations:

Qb(j) + λknfloor = Qk = αkK−1qk, (4)

where λk and αk are variables that we need to solve for.8

In this manner we can reconstruct the 3d position of all the
remaining points in the image.

The process described above required knowledge of the
floor boundary in each column of the image. In the next sec-
tion, we will present a data-driven approach to recognizing
the floor boundary in an image.

3. Floor boundary estimation using a dynamic
Bayesian network

In our experiments, we discovered (perhaps some-
what surprisingly) that simple heuristics for detecting the
floor/wall boundary work well only on a very limited set
of scenes. Specifically, they often fail when we train and
test on images from different buildings, so that the test set’s
floor color, wall color, floor texture, etc. are not known in
advance. (See the discussion in Section 4.2.) We there-
fore developed a more complex dynamic Bayesian network
model to solve this task.

In our model, we let C be a random variable indicat-
ing the floor chroma.9 For each column j in the image,

7Qb(j) is determined from qb(j) and Equation 3, where qb(j) is an
intersection of the floor boundary and a line which passes through qk and
the vertical vanishing point. In the simplest case where the optical axis is
parallel to the floor, then qb(j) is the floor boundary pixel in column j.

8In the case that, due to noise in the measurements, this set of equations
has no solution, one could simply use the point that minimizes the distance
between the two 3d lines:

(α̂k, λ̂k) = arg minαk,λk
‖Qb(j) + λknfloor − αkK−1qk‖2.

9 In this work, we used the CIE-Lab color space for our measurements.



Figure 4. Dynamic Bayesian network model.

let Yj denote the position of the floor boundary in that col-
umn, and let Dj be a latent random variable that indicates
the orientation (in the image) of the floor boundary, tak-
ing on values corresponding to the vanishing points in the
image.10 Finally, for a point (i, j) in the image, B(i,j) indi-
cates whether there is a floor boundary at that point, and
we let X(i,j) denote all local image measurements made
at that point. We use the Bayesian network shown in
Figure 4 to model the joint distribution of these variables
P (D1:N , Y1:N , B(1:M,1:N),X(1:M,1:N), C), where M and
N are the number of rows and columns of the image respec-
tively. The model assumes (naively) that the local image
measurements are conditionally independent of each other
given the information about the floor chroma C and the floor
boundary Y1:N . We have:

P (D,Y,B,X,C) = P (D1)P (Y1)P (C) ·
N∏

j=2

P (Dj |Dj−1)P (Yj |Yj−1,Dj−1) ·

M∏
i=1

P (B(i,j)|Yj)P (X(i,j)|B(i,j), C) (5)

We now define the probability distributions in the model.
To avoid dealing with a continuous random variable, we
first run K-means clustering to identify 4 dominant chroma
groups present in the bottom part of the image (in prac-
tice, 4 groups seemed to be enough to find good chroma
candidates). Then, the chroma random variable is treated,
for this image, as a discrete random variable that can uni-
formly take any of the corresponding 4 mean values of these
groups. The initial boundary direction variable D1, and the
initial position Y1 are both modeled using a uniform dis-
tribution over their domains. A simple multinomial model

10The vanishing points of an image can be found using completely stan-
dard algorithms. [16]

is used for the transitions P (Dj |Dj−1).11 We model Yj as
Yj = f(j, Yj−1,Dj−1) + Nj , where Nj is a noise vari-
able and f(j, y, d) is a function that returns where the line,
that passes through (j − 1, y) and vanishing point d, inter-
sects column j. From our experiments, we observed that Nj

was best modeled by a heavy-tailed distribution. The con-
ditional probability P (Yj |Yj−1,Dj−1) was therefore mod-
eled by a mixture of two Gaussians (with variances σ2

1 and
σ2

2), both of which were centered at the predicted bound-
ary position in column j given Yj−1 and Dj−1. Finally,
P (B(i,j)|Yj) is deterministic (i.e. B(i,j) = 1{i − 0.5 ≤
Yj < i + 0.5}).

Since X is a high-dimensional continuous-valued ran-
dom variable, to succinctly represent the conditional proba-
bility P (X(i,j)|B(i,j), C), one natural option would be to
use a generative model and assume that it has a multi-
variate Gaussian distribution for every possible instance of
B(i,j). However, in our experiments this learning proce-
dure, which is often referred to as Gaussian Discriminant
Analysis (GDA), resulted in poor floor detection perfor-
mance. This appeared to correspond to the the well known
fact that discriminative learning algorithms, which directly
estimate the conditional probability distributions used at
testing time, can significantly outperform generative learn-
ing algorithms. (See [14].) Since at testing time the X(i,j)

are observed, the task of inferring the floor boundary is bet-
ter done by modeling the conditionals P (B(i,j)|X(i,j), C).
In order to keep our suggested Bayesian network structure
and at the same time learn a more meaningful conditional
distribution from data, we apply Bayes rule and express
P (X(i,j)|B(i,j), C) in a discriminative form:

P (X(i,j)|B(i,j), C) =
P (B(i,j)|X(i,j), C)P (X(i,j)|C)

P (B(i,j)|C)
(6)

We assumed P (B(i,j)|C) to be uniform, and modeled
P (X(i,j)|C) as a Gaussian distribution over the difference
between local chroma and the floor chroma C. Finally, we
used the following logistic regression model for the condi-
tional distribution P (B(i,j)|X(i,j), C):

P (B(i,j)|X(i,j), C) =
1

1 + e−θ·φ(X(i,j),C)
. (7)

Here, φ denotes features computed from X(i,j) and C; and
θ are the parameters of the model. This logistic regression
model is similar to that of [12], which demonstrated good

11To make this model invariant to vanishing point labeling, we used a
distribution with 3 parameters which only assumes that “V1” is the label
given to the vertical vanishing point:

θ1 = P (Dj = Dj−1|Dj−1 �= V1) ,
θ2 = P (Dj = V1|Dj−1 �= V1) ,
θ3 = P (Dj = Dj−1|Dj−1 = V1) .



Figure 5. Local image measurements used
for floor boundary detection on an exam-
ple of an image patch, with a specified floor
chroma. The measurements were extracted
along the white line, while the green line indi-
cates the true floor boundary.

performance in a similar context. (See Section 4.1 for a
comparison between this discriminative form of the algo-
rithm and the generative one.)

The logistic regression model uses three different types
of local image features φ. Our set of features includes
standard multi-scale intensity gradients in both the horizon-
tal and vertical directions, as well as their absolute values
and their squares. Also for each pixel (i, j), a set of five
samples of color are taken at coordinates (i − 10, j − 10),
(i+10, j−10), (i, j), (i−10, j+10), and (i+10, j+10) and
are used as features. Finally, a measure of similarity to the
floor chroma12 is extracted at (i, j), (i − 20, j), (i + 20, j),
(i, j − 20), (i, j + 20). Overall, about 50 features are used
to predict if a given pixel is on the floor boundary (see an
example of extracted features in Figure 5).

To train and evaluate our algorithm, we acquired a set of
48 pictures taken inside eight different buildings. Each pair
of buildings had visibly different interior designs or were
patterned on fairly dissimilar themes (for example, differ-
ent carpeting, different styles of doors, etc.). The actual
floor boundary in each image was then hand-labeled. We
used standard maximum likelihood estimate to train the pa-
rameters for P (X(i,j)|B(i,j), C) and P (X(i,j)|C). The pa-
rameters for P (Yj |Yj−1,Dj−1) and P (Dj |Dj−1) were es-
timated using the EM algorithm since our training set did
not have explicit labels for the floor boundary directions.

Given our learned model of the joint distribution
P (D,Y,B,X,C), we then apply it to floor boundary de-
tection in novel images by finding the MAP estimate of the
most likely sequence for (D,Y,B,C) given the image. We

12Similarity was measured using Euclidean distance in the CIE-Lab
color space.

use:

(D,Y,B,C) = arg max
D,Y,B,C

P (D,Y,B,X,C) (8)

In order to make inference tractable, we first add to the
above optimization problem the constraint that Yj take only
discrete values (Yj ∈ {1, ...,M}). We then formulated the
junction tree shown in Figure 6, which is a chain that rep-
resents the same distribution as our DBN. Since X is al-
ways observed and all other variables are now discrete, we
can therefore apply standard forward-backward belief prop-
agation [10] to compute approximately the max-product of
Equation 8. Having extracted the floor boundary Y1:N , fol-
lowing the discussion of Section 2, a 3d reconstruction of
the scene can be generated.

Figure 6. Equivalent junction-tree.

4. Experimental Results

4.1. Accuracy of Algorithm

All 48 images used in this section (including Figure 1)
were taken with a calibrated digital camera in 8 buildings of
Stanford university’s campus and had size 960*1280. The
3d reconstructions were obtained using a form of leave-one-
out cross validation in which we repeatedly train our model
on images from 7 out of the 8 buildings, and test on the
held-out building. Since no two buildings in the training set
had similar interior designs nor were otherwise patterned on
a common theme, we believe that these results are therefore
indicative of the algorithm’s ability to generalize to novel
buildings and scenes.

Figure 8 shows the 3d reconstructions resulting from the
detected floor boundaries.13 Even in fairly complex envi-
ronments, the algorithm is able to detect robustly the floor
boundary and generate accurate 3d reconstructions.

To evaluate our algorithm more formally, we test it ac-
cording to two different criteria. First, we measure the RMS
error (in pixel space) between the detected floor boundary
and the actual floor boundary in the image, and plot the re-
sult as a function of the position of the true floor boundary
in the image (see Figure 7(a)). Then, in Figure 7(b), the
error of the distances recovered (for each column of pixels)

13We have also placed VRML files of the 3d reconstructions online at:
http://www.stanford.edu/∼edelage/indoor3drecon/.



is measured, and plotted as a function of the distance of the
nearest wall (to the camera) within that column of pixels.
The true distance of the wall is found using the hand-labeled
boundary and the camera’s calibration parameters. This is
a more direct measurement of the algorithm’s performance
on the depth reconstruction problem.

These figures also show the result of an ablative analysis
that we performed to evaluate a number of design choices
made in the algorithm, namely the decision to replace the
generative form (GDA) for P (X(i,j)|B(i,j), C) with the dis-
criminative form (logistic regression); the decision to in-
corporate the hidden floor chroma state C; and the deci-
sion to incorporate the hidden direction state Dj . We see
from the figure that the full model performs significantly
better than one that omits any one of the components men-
tioned above. This indicates that the directional variables
Dj , chroma C, and the discriminative logistic regression all
play important roles in reducing error, and that simpler ver-
sions of our model do not perform as well. Overall, this
validation method estimated our approach to recover depth
with an RMS error of less than 0.8 meters for walls in the
3 to 8 meter range (the floor between 0 and 3 meters being
out of the camera’s view).

4.2. Robustness of Algorithm

In this section, we report results obtained using a
database of 44 images, with similar resolution, that were ob-
tained by doing searches on http://images.google.com. Our
goal was to verify that our algorithm can accurately obtain
3d reconstructions even from images found on the internet,
where we have no guarantees on the orthogonality in the
scene or on the alignment of the camera’s vertical axis with
the floor. Examples of such reconstructions are shown in
Figure 9 and on a web-site (refer to footnote 13). Overall,
the algorithm obtains a good estimate of the floor bound-
ary on 80% of the images, and generates accurate 3d recon-
struction on 66% of them. The main source of errors for re-
construction was the mislabeling of vanishing points when
the scene contained many irregular objects. We believe that
these errors can thereby be corrected by using more robust
algorithms for vanishing point detection. Errors also oc-
curred more often for points on the far left side or far right
side of the image, where the algorithm had less information
to infer the floor boundary. As expected, the algorithm gen-
erated slightly more errors in scenes that were composed of
curved walls, or scenes in which the floor had more than
one colored region (see Figure 9(d)).

We also used our test set images to compare our algo-
rithm to that of Hoiem et al. [9]. Qualitatively, their al-
gorithm showed significantly less accurate 3d reconstruc-
tions than ours. More specifically, we used the 44 images
as test set. Their algorithm failed more often to reconstruct
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Figure 7. Comparison of performance of
our graphical model to three of its simplified
forms. (a) Analysis of floor boundary local-
ization error in the image. (b) Analysis of
floor boundary depth estimation error.

the scenes accurately (20 valid reconstructions for theirs,
against 29 for ours). We believe that this difference is
mainly due to larger errors in the floor segmentation pro-
cess, and to the heuristic method they use to organize the
walls around the floor region. In fact, Hoiem et al.’s al-
gorithm does not explicitly use the geometric information
about indoor images that our algorithm uses, such as that
most walls lie in a small number of directions, and that they
connect to each other only in certain ways. This lack of
prior knowledge/constraints about indoor environments ex-
plains the superior performance of our algorithm on test im-
ages.

From our experiments, we also learned that the problem
of finding the floor boundary is not a trivial problem, and
that specifically it cannot be solved using simple methods.
For example, our extensive experiments (not reported here)
seemed to indicate that a naive application of the Hough



transforms does not work because it is difficult to choose
only the relevant edges (lines) for detecting floor bound-
aries; moreover, there may be errors in edge detection when
the image is highly textured. We also made numerous at-
tempts to perform this task using color segmentation [2]
and normalized cut [17]. But all of these approaches failed
to robustly segment the floor boundary on a majority of
the test images, because many of them, like Figure 9(c),
contain floor parts which have non-uniform brightness or
chroma, and rich textures. We found no other simple heuris-
tic whose performance even approached that of these algo-
rithms. Thus, to successfully detect the floor boundary, we
believe that one has to use a model that combines and rea-
sons about many different image cues, such as ones that
indicate the color, brightness, and geometry of the scene.

5. Conclusion

Monocular 3d reconstruction is inherently an ambiguous
problem, but by using prior knowledge about a domain, it
is often possible to recover distances from a single image.
In this paper, we showed how prior knowledge about indoor
scenes can be learned using a dynamic Bayesian network,
and demonstrated a successful application of this model
to monocular 3d reconstruction. The problem of learn-
ing to exploit other monocular cues for indoor and outdoor
environments, and building accurate 3d reconstructions of
scenes with a more diverse geometry, remains an impor-
tant research problem. We believe that our approach holds
promise for building better systems that can sense in, un-
derstand, and navigate rich 3d environments.
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Figure 8. Inferred 3d reconstruction of indoor scenes by our dynamic Bayesian network. (a,c,e,g,i,k)
present images obtained with a calibrated camera on Stanford’s campus, (b,d,f,h,j,l) present the 3d
reconstructions.
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Figure 9. Inferred 3d reconstruction of indoor scenes by our dynamic Bayesian network. (a,c,e,g,i,k)
present images obtained from the internet, (b,d,f,h,j,l) present the 3d reconstructions.


