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Abstract

The influence of wind turbine generators (WTGs) on power system dynamic per-
formance is becoming increasingly important as wind generation grows. The dynamic
behaviour of WTGs should therefore be thoroughly understood. The report analyzes dy-
namic models of type-3 WTGs, and in particular the WECC generic model. The behaviour
of such models is governed by interactions between the continuous dynamics of state vari-
ables, and discrete events associated with limits. It is shown that these interactions can
be quite complex, and may lead to switching deadlock that prevents continuation of the
trajectory. Switching hysteresis is proposed for eliminating deadlock situations. Various
type-3 WTG models include control blocks that duplicate integrators. It is shown that
this leads to non-uniqueness in the conditions governing steady-state, and may result in
pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue
in the linearized WTG model.

1 Introduction

The dynamic behaviour of wind turbine generators (WTGs) is quite different to that of
synchronous generators. It is to be expected, therefore, that the dynamic performance of
power systems may change as traditional generation is displaced by ever increasing numbers
of WTGs. Numerous studies have investigated this issue, and have drawn various conclusions
[1, 2, 3, 4, 5]. This current report does not address the system-wide implications of large-scale
wind generation per se. Rather, it focuses on the dynamic modelling of WTGs. In particular,
the modelling of type-3 WTGs is considered, as they are currently the dominant technology for
new wind farm developments. Such WTGs are also known as doubly fed induction generators
(DFIGs) or doubly fed asynchronous generators. A schematic is provided in Figure 1.

The accuracy of system studies depends on the fidelity of the underlying models [6, 7].
Accordingly, the modelling of type-3 WTGs has received considerable attention, see [1, 8,
9, 10, 11, 12] and references therein. Turbine manufacturers routinely develop and maintain
accurate models for their products, though disclosure of those models is highly restricted. In
some cases they have released models that describe functionally similar behaviour [13], though
such practise is not common. Regional reliability organizations need to exchange models and
data that are relevant to their jurisdiction. This has motivated the development of generic
models that can be used to capture the functional characteristics of a wide variety of type-3
WTGs [14, 15].

As indicated in Figure 1, the electrical characteristics of type-3 WTGs are governed by
interactions between the wound-rotor induction machine and the back-to-back inverter. The
inverter excites the rotor of the induction machine with a variable AC source. This provides
control of the rotor flux frequency, enabling the rotor shaft frequency to optimally track
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Figure 1: Schematic diagram of a type-3 wind turbine generator.

wind speed [16]. The inverter response time is very fast relative to electromechanical time
constants. As a result, the natural dynamics of the induction machine are largely masked
from the power system. The dynamic behaviour of a type-3 WTG, as seen from the grid,
is therefore dominated by controller response rather than physical characteristics. This is in
marked contrast to traditional synchronous generators, where behaviour is governed by device
physics.

Controller limits play an integral role in the dynamic performance of type-3 WTGs, with
further details provided in Section 2. Intrinsic interactions between continuous dynamics and
limit-induced discrete events suggest that type-3 WTGs may be classified as hybrid dynamical
systems [17, 18, 19]. It will be shown in Section 3 that the resulting hybrid dynamics may, in
fact, lead to unusual forms of behaviour. The hybrid nature of dynamics also has implications
for small disturbance studies.

The studies presented in this report focus on the WECC generic type-3 model [15]. This
model has been chosen because it is widely used, and is indicative of type-3 models that are
generally available. All such generic models are an approximation of the actual dynamics
exhibited by a WTG. It is important, though, that this approximation reflects the physical
reality of the modelled device.

The report is organized as follows. Section 2 provides a thorough description of the
WECC type-3 WTG model. It is shown in Section 3 that non-windup limiter models may
cause switching deadlock, preventing trajectory continuation in the usual sense. Alternative
model formulations that circumvent such behaviour are discussed. Section 4 shows that the
model allows multiple equilibria, and discusses the implications. Small disturbance analysis
is considered in Section 5, and conclusions are presented in Section 6.

2 Type-3 WTG model

The WECC type-3 wind turbine generator model is defined in [15]. The complete WTG
model is divided into four functional blocks, as indicated in Figure 2. This report is primarily
concerned with the dynamic interactions of the converter control model WT3E, the pitch
control model WT3P, and the wind turbine model WT3T. Accordingly, only those models
are described in detail in the following analysis.
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Figure 2: Type-3 WTG dynamic model connectivity, from [15].
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Figure 3: Converter control model WT3E, from [15].

2.1 Converter control model WT3E

The converter control model is composed of separate active and reactive power control func-
tions. Reactive power control is very fast, due to the power electronic converter. This report
focuses on the slower dynamics associated with interactions between active power (torque)
control, pitch control, and the coupling through the shaft dynamics. Accordingly, only the
active power model, which is shown in Figure 3, will be discussed. Again, full details of the
reactive power controller are provided in [15].

The non-windup (anti-windup) limits on the PI block in the centre of Figure 3 are driven
by the non-windup Pmax/Pmin limits associated with the Pord lag block. The model docu-
mentation stipulates that:

(i) If Pord is on its Pmax limit and ωerr (the input to the PI block) is positive, then the
Kitrq-integrator is blocked, i.e., the state Tω of that integrator is frozen.

(ii) If Pord is on the Pmin limit and ωerr is negative, then the Kitrq-integrator state is frozen.

This form of non-windup limit is unusual, though a precedence can be found in Annex E.5
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of IEEE Standard 421.5-2005 [20]. It will be shown in Section 3 that such non-windup logic
can result in switching deadlock [21].

The function f(Pgen) is typically modelled as a piece-wise affine function. WECC default
parameters, which are provided in Appendix C, produce the curve shown in Figure 4.

Assembling all the equations for the model gives,

dωref

dt
=

1

Tsp

(
f(Pgen)− ωref

)
(1)

dTω

dt
= Kitrq(ω − ωref )× yfreeze (2)

dPord

dt
= Pord,rtlm × ymx,sw × ymn,sw (3)

Pord,rate =
1

Tpc

(
ω
(
Tω +Kptrq(ω − ωref )

)
− Pord

)
(4)

together with the switched equations (27)-(30) that are given in Appendix A.
The value of the model (1)-(4) and (27)-(30) is that it provides a precise, unambiguous

description of dynamic behaviour. This level of detail is vitally important for analyzing the
model idiosyncracies that are discussed in later sections.

2.2 Pitch control model WT3P

The pitch control model WT3P is shown in Figure 5. Of particular interest is the implemen-
tation of the non-windup limiter on the pitch angle θ. As stated in the model documentation,

“The Pitch Control and Pitch Compensation integrators are non-windup integrators as
a function of the pitch, i.e., the inputs of these integrators are set to zero when the
pitch is in limits (PImax or PImin) and the integrator input tends to force the pitch
command further against its limit.”

To illustrate, consider the case where θ is on its lower limit PImin. A negative input to
the pitch-control integrator would cause the corresponding state xp to reduce, which in turn
would force θ further against its PImin limit. To prevent that wind-up effect, the integrator
is blocked under such conditions. Similarly, the pitch-compensation integrator is blocked
when its input is negative. When θ is on its upper limit PImax, blocking of the up-stream
integrators occurs when their respective inputs are positive.
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dFigure 5: Pitch control model WT3P, from [15].

This blocking philosophy is the same as that employed in the converter control model
WT3E, as discussed in Section 2.1. It should again be mentioned that such blocking can
result in switching deadlock. This will be explored in Section 3.

The equations describing the WT3P model can be written,

dxp
dt

= Kip

(
ω − ωref

)
× yfr,1 (5)

dxc
dt

= Kic

(
Pord − Pset

)
× yfr,2 × ysw (6)

dθ

dt
= θrtlm × ymx,sw × ymn,sw (7)

θrate =
1

TPI

(
θcmd − θ

)
(8)

θcmd = xp + xc +Kpp

(
ω − ωref

)
+Kpc

(
Pord − Pset

)
(9)

along with the switched equations (31)-(36) that are provided in Appendix B.

2.3 Wind turbine model WT3T

The single-mass wind turbine model WT3T from [15] is shown in Figure 6. A two-mass
model is also provided in [15], but the single-mass model suffices for the discussions in this
report. The model consists of two parts, 1) a simplified model of the aerodynamic relationship
between blade pitch θ and mechanical power Pmech, and 2) a model of the shaft dynamics.
The damping constant D is always zero, so the single-mass WT3T model can be described
by,

dω

dt
=

1

2Hω

(
Pmech − Pgen

)
(10)

Pmech = Pmo −Kaeroθ
(
θ − θo

)
. (11)
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Figure 6: Single-mass turbine model WT3T, from [15].

2.4 Hybrid system model

It is clear from (1)-(11) and (27)-(36) that the WTG model is composed of:

i) Differential and algebraic equations that describe continuous behaviour of the associated
states, and

ii) Discrete events that introduce nonsmooth behaviour through switching actions.

Models that involve such interactions between continuous dynamics and discrete events have
become known as hybrid dynamical systems [17, 18, 19]. The discrete events introduce rich
forms of behaviour that are not exhibited by smooth systems described by differential (and
possibly coupled algebraic) equations. In fact, it will be shown in Section 3 that both the
WT3E and WT3P models are susceptible to switching deadlock, where a discrete state should
simultaneously take two different values. This situation is impossible, of course; the trajectory
is not defined (in the usual sense) beyond such an impasse.

The WTG model (1)-(11), (27)-(36) has been formulated according to the differential-
algebraic impulsive switched (DAIS) structure described in [19, 22]. A subtle (but technically
important) modification was required however. In the original DAIS definition, switched
algebraic equations had the form

0 =

{
g+(x, y), ys > 0

g−(x, y), ys < 0

where behaviour is undefined if the trigger variable ys remains at zero. In the case of a WTG
though, it is quite common for the pitch angle θ to be initialized on its lower limit PImin.
To cater for that (and similar) situations, the DAIS definition has been altered to allow the
trigger variable ys to remain at zero, giving the slightly modified switching description,

0 =

{
g+(x, y), ys ≥ 0

g−(x, y), ys < 0.

In the case of the non-windup limits within the WTG model, (28)-(29) and (32)-(34), it
has been arbitrarily decided that the integrator should remain active when its state lies on
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the limit, i.e., when the trigger variable ys = 0. The integrator only becomes blocked when
the input seeks to force the state across the limit, resulting in ys < 0.

Technical issues arise when an equilibrium point coincides with a switching condition
ys = 0. If the equilibrium is asymptotically stable, then generically, as the trajectory ap-
proaches the equilibrium point, the time between subsequent switching events will progres-
sively diminish. In the limit, switching will (theoretically) become infinitely fast. Also,
linearization about the equilibrium point is not defined, as the vector field is not smooth.
Consequently, small disturbance analysis is not possible. This latter point is explored further
in Section 5.

3 Trajectory deadlock

3.1 Background

Conceptually, deadlock refers to the situation where a trajectory encounters a condition that
precludes further progress. Such behaviour is unusual for systems described by continuous
dynamics1, though differential-algebraic systems can experience deadlock in the form of alge-
braic singularity2 [24, 25].

Hybrid dynamical systems, on the other hand, are more prone to deadlock, due to their
inherent interactions between continuous dynamics and discrete events. In this context, dead-
lock has been formally defined in [21]. The form of deadlock of particular relevance to WTG
modelling is known as chattering Zeno, which refers to situations where “the discrete compo-
nent infinitely jumps instantaneously between different domains, while the continuous com-
ponent remains unchanged” [21]. Subsequent sections describe this behaviour in the context
of the type-3 WTG model, and provide an alternative model formulation that alleviates the
deadlock phenomenon.

It should be noted that because deadlock precludes continuation of a trajectory, numerical
simulation techniques that accurately capture hybrid system dynamics cannot proceed beyond
the deadlock point. Conversely, simulators that continue through deadlock cannot be truly
implementing the hybrid system model. Special techniques have been developed for continuing
approximate solutions beyond deadlock, with Filippov solution concepts forming the basis for
those methods [26]. Such concepts are required, for example, in analyzing sliding mode
behaviour [27]. They are not pursued in this report.

3.2 Deadlock in WTG models

The switching logic that gives rise to trajectory deadlock in the type-3 WTG model can be
explained with the aid of the simplified model of Figure 7. Referring to Figure 5, it can be
seen that this reduced model is equivalent to the output lag block and one of the upstream
PI regulators of the WT3P model.

Consider the case where x1 is on its lower limit xmin, and the input u is negative. Ac-
cording to the non-windup logic of WT3P, the x2-integrator would be blocked. Assume that
u is increasing, though remains negative. This increase in u will translate directly into an
increase in y, as x2 is constant. With increasing y, conditions conducive to deadlock occur
when y reaches x1 = xmin. This may be explained by noting that ẋ1 = (y−x1)/T , and hence

1Technically, deadlock cannot occur if the vector field is Lipschitz [23].
2In this case, the term impasse is often used rather than deadlock.
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ẋ1 = 0 at the point where y encounters x1 = xmin. The evolution of x1 from that point is
therefore governed by ẍ1, which can be written

ẍ1 =
1

T
(ẏ − ẋ1) =

1

T
ẏ =

1

T
(u̇+ ẋ2).

If the x2-integrator is blocked, ẋ2 = 0, giving ẍ1 = 1
T u̇ > 0 because u is increasing. In this

case, x1 will tend to increase away from the xmin limit, and the x2-integrator will become
unblocked. On the other hand, if the x2-integrator is unblocked, the sign of ẍ1 is given by
u̇+ ẋ2 = u̇+Ku, which may be negative. If so, x1 will tend to decrease onto the xmin limit,
blocking the x2-integrator. A contradiction arises: if the x2-integrator is blocked it should
unblock, but if it’s unblocked it should block.

Returning to the type-3 WTG model, this deadlock phenomenon can be illustrated using
the WECC test system and default parameters that are provided in Appendix C. Resulting
trajectories are shown in Figure 8. For the sake of clarity, only the pitch-compensation
integrator will be discussed, though the pitch-control integrator exhibits similar behaviour.
It should be noted that in order to generate the trajectories shown in Figure 8, it was necessary
to introduce hysteresis into the switching process associated with the pitch angle non-windup
limit. The implementation of hysteresis is discussed in Section 3.3.

The pitch angle θ is initially in steady-state on the lower non-windup limit, where θ0 =
PImin = 0 deg. In response to the disturbance, θ undergoes a transient increase, before return-
ing to PImin at 5.6 sec. The error signal xc,err = Pord − Pset driving the pitch-compensation
integrator is negative at that time, so the corresponding state xc is frozen. Over the subse-
quent period, θ and xc remain frozen, but the signal θerr = θcmd − θ, which drives variations
in θ, steadily increases until reaching zero3 at around 7 sec. At that point, θ should transi-
tion from blocked to unblocked, so the pitch-compensation integrator driving xc should also
unblock. But notice that xc,err is negative, so as soon as the integrator unblocks, xc will
decrease, driving θerr negative. This forces θ back onto its PImin limit, blocking xc again.
But with xc blocked, θerr increases above zero, and xc is unblocked. Without hysteresis, this
process would repeat ad infinitum.

In summary, at the point where θerr encounters zero,

• If θ is blocked, then θ and xc should unblock.

• If θ is unblocked, then θ and xc should block.

3The hysteresis implementation actually allows θerr to rise a little beyond zero before the xc-integrator is
unblocked. Further details are provided in Section 3.3.
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In other words, at the instant when θerr = 0, the discrete state describing integrator blocking
undergoes infinitely many switches, preventing the continuation of the trajectory.

This impasse can be overcome by implementing hysteresis in the blocking/unblocking
process, as described in the following section.

3.3 Implementation of hysteresis

The explanation of hysteresis will refer to Figure 9. This is an expanded view of the relevant
time interval of Figure 8. In order to provide a clearer view of behaviour, however, the
hysteresis band has been widened from 0.002 in Figure 8 to 0.05 in Figure 9.

At 6.85 sec, the error signal θerr crosses through zero. Upon doing so, the integrator
driving the pitch angle θ is unblocked, so θ begins to increase. At 7.3 sec, θ encounters the
hysteresis threshold, whereupon the pitch-compensation integrator is unblocked. The error
signal xc,err driving that integrator is negative, as shown in Figure 8, so xc immediately begins
to reduce. This causes θerr to reduce. Eventually θerr goes negative, and θ begins to fall,
encountering the non-windup limit PImin = 0 at 7.6 sec. When that limit is encountered, θ
and xc are immediately blocked, so θerr again begins to increase. The process then repeats.

The actual implementation of the hysteresis logic is presented in [28].
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4 Equilibrium conditions

4.1 Initialization

For the initial point to be in equilibrium, the derivatives in (1)-(3), (5)-(7) and (10) must
be set to zero. Notice though that because (2) and (5) are effectively duplicate integrators,
they both contribute exactly the same equilibrium equation, ω − ωref = 0. The redundant
equation will be ignored when assembling the complete set of initialization equations.

The status of the switched equations must also be consistent with equilibrium conditions.
It is safe to assume that none of the limits in the converter control model WT3E would be
active during normal steady-state operation. Under that assumption, Pord will equal the
electrical power Pgen delivered to the WTG terminal bus. This relationship will be used to
eliminate Pgen from the equilibrium equations.

In the case of the pitch control model WT3P, limits may be active at steady-state. For
wind conditions up to rated wind-speed, the pitch angle θ would normally sit at its minimum
limit PImin. Blocking the associated integrator would, however, leave the initial value of
θcmd undefined. The initialization process must therefore override integrator blocking, or
equivalently, assume θ lies infinitesimally above the PImin limit.

The pitch compensation non-windup limiter of WT3P has the equilibrium characteristic
shown in Figure 10. If the input Pord − Pset < 0 at steady-state, then xc will be forced to its
lower limit of zero. On the other hand, if Pord − Pset = 0 at steady-state, then xc may take
any non-negative value. Summarizing this relationship gives,

xc ≥ 0, Pset − Pord ≥ 0, xc(Pset − Pord) = 0,
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which is a complementarity condition [29, 30] that can be expressed compactly using standard
notation,

0 ≤ xc ⊥ (Pset − Pord) ≥ 0. (12)

The resulting initialization equations can be written,

0 = f(Pord)− ωref (13)

0 = ω − ωref (14)

0 = ωTω − Pord (15)

0 = Pmo −Kaeroθ
(
θ − θo

)
− Pmech (16)

0 = Pmech − Pord (17)

0 = xp + xc +Kpc

(
Pord − Pset

)
− θcmd (18)

0 = θcmd − θ (19)

together with (12). The dependent state variables are ωref , Tω, Pord, xp, xc, θ, ω, θcmd and
Pmech, while Kaero, Kpc, Pmo and Pset are parameters. By definition, θo is the specified initial
value for the pitch angle θ, thereby providing a further initialization equation,

θ − θo = 0. (20)

Because Pmo and Pset are independent parameters, it is important to consider initialization
for the three cases, Pmo < Pset, Pmo = Pset and Pmo > Pset. To do so, first notice that
(16)-(17) and (20) together infer Pmo = Pord at initialization. Therefore, for the case Pmo =
Pord < Pset, the complementarity condition (12), expressed visually in Figure 10, ensures that
xc = 0. In the second case, when Pmo = Pord = Pset, (12) only specifies that xc ≥ 0. It follows
that the initialization description consists of only eight independent equations describing nine
variables. The set of equations is under-determined. This can be confirmed by noting that
xc and xp appear only in (18), and therefore cannot be uniquely determined. To resolve this
situation, (12) should be replaced at initialization by an equation that assigns a specific initial
value to xc or xp. For consistency with the Pmo < Pset case, it is convenient to replace (12)
by

xc = 0. (21)

The third case Pmo = Pord > Pset implies the integrator would be driven by a sustained
positive input. The WT3P model does not define an upper limit though, so equilibrium could
not be achieved.
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4.2 Post-disturbance steady-state

For well-posed dynamical models, the post-disturbance steady-state should match the pre-
disturbance (initial) equilibrium when pre- and post-disturbance parameter sets are identical.
This is generically not the case for the WECC type-3 WTG model. The following analysis
shows that this unusual behaviour is due to switching associated with the duplicate integrators
(2) and (5).

The initialization equations (12)-(19) govern post-disturbance steady-state conditions, as
they were obtained by setting derivatives to zero. Initialization also made use of the auxiliary
equation (20), but that equation plays no role as the system evolves towards steady-state. As a
consequence of discarding (20), the description of steady-state conditions is under-determined.

This indeterminacy is resolved when the duplicate integrators (2) and (5) remain un-
blocked for the entire time horizon. In that case, the integrator states can be written in
integral form,

Tω(t) = T o
ω +Kitrq

∫ t

0

(
ω(τ)− ωref (τ)

)
dτ (22)

xp(t) = xop +Kip

∫ t

0

(
ω(τ)− ωref (τ)

)
dτ (23)

where T o
ω and xop are the initial values for the respective states. Equating the integrals in (22)

and (23) gives the affine relationship,

xp(t) =
Kip

Kitrq
Tw(t) +

(
x0p −

KipT
0
w

Kitrq

)
(24)

which implies that any variation in Tω(t) will be matched by a corresponding variation in
xp(t). This relationship provides the extra equation required to uniquely determine the post-
disturbance steady-state, and in fact implies that if all parameters remain unchanged, the
system will evolve to a steady-state that exactly matches the initialization point.

The assumption that the duplicate integrators remain unblocked for all time is seldom
true, however. Blocking of one or other of the integrators will alter the corresponding integral
term in (22) or (23), invalidating the relationship (24). Under such conditions, it becomes
impossible for both Tω and xp to evolve back to their initial values. Consequently, the system
will settle to a post-disturbance steady-state that cannot equal the initial point, even though
the parameters of the system are unchanged.

The WECC test system and default parameters of Appendix C illustrate this phenomenon.
The pitch angle response of Figure 8 is repeated in Figure 11, where the time horizon has
been extended to 30 seconds. Notice that the pitch angle evolves to a steady-state value of
0.33 deg, even though it was initialized at 0 deg.

Figure 12 shows the relationship between Tω and xp. These two states initially follow a
straight line given by (24), with the states reaching the extreme point (Tω, xp) = (0.847, 0.56),
before returning along the line to (0.835, 0.08). At that instant, the pitch angle θ encounters
its limit, causing the integrator driving xp to block. The integrator remains blocked until θ
enters a period where hysteresis is active. During that period, the xp-integrator successively
blocks and unblocks, giving rise to the staircase phenomenon apparent in the figure. At
the end of that period, θ finally comes off its limit, the xp-integrator is restored to normal
operation, and the behaviour of Tω and xp reverts to a straight-line locus given by an affine
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relationship like (24). The slope over that final section is the same as earlier, but the offset
has changed. Hence the system converges to a steady-state that differs from the starting
equilibrium point.

5 Small disturbance analysis

5.1 Singularity

Linearizing the WTG equations (1)-(11) about an equilibrium point, and eliminating the
algebraic equations, yields the seventh-order linear model,

d

dt



∆ωref

∆Tω

∆Pord

∆xp

∆xc

∆θ
∆ω


=



a11 . a13 . . . .
a21 . . . . . a27
a31 a32 a33 . . . a37
a41 . . . . . a47
. . a53 . . . .

a61 . a63 a64 a65 a66 a67
. . a73 . . a76 .





∆ωref

∆Tω

∆Pord

∆xp

∆xc

∆θ
∆ω


(25)

where the aij refer to elements of the system A-matrix that are potentially non-zero, while all
other elements are identically zero. The exact arrangement of the non-zero aij is dependent
upon the status of limits.

As in Section 4, it is assumed that none of the limits in the converter control model WT3E
are enforced at steady-state, and that pitch angle θ dynamics are active. In the case of the
pitch compensation xc-integrator, its dynamics may be active at steady-state or the limiter
may be enforced, as indicated in Figure 10. Both situations must be considered.

The initial value θo for the pitch angle also has an important influence on the linear model.
When (11) is linearized with θo = 0, the term associated with the simplified aerodynamic
model becomes zero. In that case, perturbations in the pitch angle θ have no influence
on Pmech, and as a consequence a76 = 0 in (25). On the other hand, when θo ̸= 0, the
aerodynamic model contributes a non-zero term to (11), resulting in a76 ̸= 0.

In considering the various cases identified above, it should be kept in mind that (2) and
(5) are duplicate integrators. Because these integrators differ only by a scaling factor, the
corresponding rows of the A-matrix, 2 and 4 respectively, are linearly dependent. Therefore
A must have at least one eigenvalue whose value is zero.

The two conditions for the xc-integrator, together with the two possibilities for θo, give
four separate cases:

5.1.1 xc-integrator active, θo ̸= 0

The condition θo ̸= 0 implies a76 ̸= 0, so all the aij shown in (25) are non-zero. The A-matrix
has a single zero eigenvalue due to the linear dependence of rows 2 and 4, which correspond
to the duplicate integrators. By inspection, columns 4 and 5 are linearly dependent, implying
that the right eigenvector associated with the zero eigenvalue involves only ∆xp and ∆xc.
Substituting that zero-eigenvector4 into (25) gives a matrix-vector product that is zero. Hence,
the linear system will be in steady-state at any point along the zero-eigenvector.

4For convenience, the right eigenvector associated with the zero eigenvalue will be referred to as the zero-
eigenvector.
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5.1.2 xc-integrator active, θo = 0

In this case θo = 0 so a76 = 0. By inspection, rows 5 and 7 are linearly dependent, as well
as rows 2 and 4, implying the system now has two eigenvalues that are zero. This second
zero-eigenvalue is a consequence of pitch angle ∆θ being decoupled from mechanical power
∆Pmech when θo = 0 in the simplified aerodynamic model. With a76 = 0, columns 4, 5 and 6
are clearly linearly dependent. The two zero-eigenvectors in this case involve ∆xp, ∆xc and
∆θ. The linear system will be in steady-state at any point on the plane spanned by the two
zero-eigenvectors.

5.1.3 xc-integrator blocked, θo ̸= 0

Blocking the xc-integrator implies ∆xc ≡ 0. Accordingly, the fifth row and column of the
A-matrix should be removed, reducing the linearized system to six dynamic states. The
linear dependence of rows 2 and 4 is unaffected by this reduction, so one of the eigenvalues
remains zero. Because a76 ̸= 0, no simple pairing of columns produces linear dependence. In
fact, linear dependence involves all the columns of the reduced A-matrix. Accordingly, the
zero-eigenvector includes a contribution from all six states of the reduced model.

5.1.4 xc-integrator blocked, θo = 0

This case also has ∆xc ≡ 0, so the A-matrix is again reduced. Because θo = 0, the element
a76 = 0, and by inspection the columns corresponding to ∆xp and ∆θ are linearly dependent.
The zero-eigenvector therefore involves only ∆xp and ∆θ.

5.2 Eliminating the zero eigenvalue

It is possible to eliminate the zero eigenvalue caused by integrator duplication by exploiting
the explicit coupling between integrator states Tω and xp given by (24). Linearizing that
affine relationship gives

∆xp(t) =
Kip

Kitrq
∆Tw(t). (26)

In the linearized model (25), removing the row corresponding to ∆xp, and replacing all
occurrences of ∆xp by (26), reduces the system dimension by one. It can be shown that
the remaining eigenvalues are exactly the same as the original non-zero eigenvalues. If those
original non-zero eigenvalues all have negative real parts, as is generically the case, the system
will be exponentially stable.

Even though the linear model has a continuum of equilibria defined by the zero-eigenvector,
perturbations that satisfy (26) will induce behaviour that returns to the original equilibrium
point. On the other hand, perturbations that do not satisfy (26) will result in convergence to
points on the zero-eigenvector that generically differ from the original point.

5.3 Linearizing at limits

Linearization about an equilibrium point requires the dynamical system to be smooth in a
neighbourhood of that point. With hybrid dynamical systems, such as the WTG model,
equilibria may coincide with conditions that induce switching. In such cases, it is impossible
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to find a neighbourhood of the equilibrium point where the dynamical system is smooth.
Linearization is therefore not well defined.

Consider the pitch compensation xc-integrator, whose equilibrium characteristic is pro-
vided in Figure 10. Linearizing about an equilibrium point anywhere on the vertical or
horizontal sections of the characteristic, away from the transition point at the origin, is well
defined and discussed in Section 5.1. At the origin, however, switching will occur as per-
turbations in xc transition from positive to zero. To establish a linear model at this point,
switching must be disabled. The xc-limit may be ignored, so the origin behaves like a point
on the vertical characteristic, or it may be enforced, in which case the origin will act like a
point on the horizontal characteristic. It is important to note that the two cases will result
in different linear models, and hence eigen-structures that differ. Neither is strictly correct,
and results must be interpreted with great care.

A similar discussion applies for the pitch angle θ dynamics. As mentioned in Section 4.1,
it is common for θ to be initialized on its lower limit PImin. A choice must be made whether
to treat the integrator as active or blocked. The analysis of Section 5.1 was based on the
assumption that the integrator was active.

The ill-defined nature of linearization at a switching point is particularly important for
analysis packages that use finite differences to generate approximate derivatives. Care must
be taken to ensure that differences are calculated using perturbations that are physically
meaningful. Otherwise the linear model may be quite inaccurate.

6 Conclusions

The dynamic behaviour of type-3 WTGs is governed by interactions between a wound-rotor
induction machine and a back-to-back inverter. The inverter response time is much faster
than the time constants of the induction machine, allowing the inverter to respond rapidly to
the electromechanical dynamics of the WTG. Consequently, the dynamic characteristics of
a type-3 WTG that are important from the grid perspective are dominated by the response
of controllers that regulate active power, pitch angle and terminal voltage. These controllers
involve interactions between continuous dynamics of state variables and discrete events that
occur when limits are encountered. WTGs may therefore be classed as hybrid dynamical
systems.

Non-windup limits within the WECC type-3 WTG model have been structured so that
various integrators are blocked when a limit is encountered. The interactions inherent in
this model structure can be quite complex, and may lead to a form of trajectory deadlock
known as chattering Zeno. Deadlock precludes continuation of the trajectory in the normal
sense, so numerical simulation techniques that accurately capture hybrid system dynamics
cannot proceed beyond such a point. Filippov solution concepts are required for continuing
the trajectory. It has been shown that deadlock can be eliminated by incorporating hysteresis
into the switching of non-windup limits.

The converter controller and the pitch controller of the WECC type-3 WTG model both
include an integrator that is driven by the same frequency error signal. This integrator
duplication results in an under-determined description of steady-state conditions, allowing
the existence of a continuum of equilibria. As a consequence, power systems that incorporate
WTGs may converge to a post-disturbance steady-state that does not match initial conditions,
even though the parameter set has not changed. Furthermore, the duplicate integrators result
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in linearly dependent rows in the linearized WTG model, so the system is singular. Small
disturbance analysis of power systems with WTGs will yield at least one zero-eigenvalue for
every WTG.

A Switched equations for WT3E

In the following set of switched equations, (27) implements the rate limits associated with
the Pord block, establishing the rate-limited signal Pord,rtlm that drives Pord in (3). Equations
(28) and (29) implement the Pmax and Pmin non-windup limits respectively. Consider the
Pmax limit described by (28). While Pord ≤ Pmax, the trigger variable ymx ≥ 0, so the
switch ymx,sw = 1. This ensures the integrator (3) is not blocked. On the other hand, if
system conditions sought to drive Pord beyond Pmax, then ymx would immediately change
sign, triggering ymx,sw to switch to 0. That would force the right hand side of integrator
(3) to zero, ensuring Pord was frozen at its Pmax limit. While Pord,rtlm remained positive,
seeking to drive Pord harder onto the limit, the trigger variable ymx < 0. As soon as Pord,rtlm

changed sign though, allowing Pord to come off its limit, ymx would also change sign, and
ymx,sw would switch to 1, thus re-enabling the integrator (3). Similar logic applies in (29) for
the Pmin limit.

Equation (30) enforces the rules specified in (i) and (ii) of Section 2.1 that link the blocking
of the PI-integrator with the Pord limit conditions. It does so through the use of switch variable
yfreeze that is used to turn on/off the integrator (2).

if Pord,rate > dPmax/dt

Pord,rtlm = dPmax/dt

elseif Pord,rate < −dPmax/dt

Pord,rtlm = −dPmax/dt

else

Pord,rtlm = Pord,rate

endif


(27)

if ymx ≥ 0

ymx = Pmax − Pord

ymx,sw = 1

else

ymx = −Pord,rtlm

ymx,sw = 0

endif


(28)
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if ymn ≥ 0

ymn = Pord − Pmin

ymn,sw = 1

else

ymn = Pord,rtlm

ymn,sw = 0

endif


(29)

if ymx,sw = 0 and ω − ωref > 0

yfreeze = 0

elseif ymn,sw = 0 and ω − ωref < 0

yfreeze = 0

else

yfreeze = 1

endif


(30)

B Switched equations for WT3P

In the following set of switched equations, (31) implements the rate limit associated with the
θ block, establishing the rate-limited signal θrtlm that drives θ in (7). Equations (32) and (33)
implement the PImax and PImin non-windup limits respectively, while (34) models the lower
non-windup limit on the pitch compensation integrator. Equations (35) and (36) enforce the
rules that link the blocking of the pitch-control and pitch-compensation integrators to the
PImax/PImin non-windup limits.

if θrate > PIrate

θrtlm = PIrate

else

θrtlm = θrate

endif


(31)

if ymx ≥ 0

ymx = PImax − θ

ymx,sw = 1

else

ymx = −θrtlm

ymx,sw = 0

endif


(32)
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if ymn ≥ 0

ymn = θ − PImin

ymn,sw = 1

else

ymn = θrtlm

ymn,sw = 0

endif


(33)

if yxc ≥ 0

yxc = xc − xc,lim

ysw = 1

else

yxc = Pord − Pset

ysw = 0

endif


(34)

if ymx,sw = 0 and ω − ωref > 0

yfr,1 = 0

elseif ymn,sw = 0 and ω − ωref < 0

yfr,1 = 0

else

yfr,1 = 1

endif


(35)

if ymx,sw = 0 and Pord − Pset > 0

yfr,2 = 0

elseif ymn,sw = 0 and Pord − Pset < 0

yfr,2 = 0

else

yfr,2 = 1

endif


(36)

C WECC default parameter values

The test system is given in Figure 13. Parameter values are given in Tables 1 to 7. The wind
generator output is 100 MW = 1.0 pu. A 10 MVAr capacitor is connected at bus 3, but no
shunt is connected at bus 5.

A three-phase fault is applied at bus 2 at 1 sec. It is cleared at 1.15 sec by disconnecting
one of the 230 kV transmission lines.
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Table 1: Impedance values for the test system of Figure 13.
R1 = R2 X1 = X2 B1 = B2 Rt Xt

0.025 0.250 0.05 0.0 0.1

Re Xe Be Rte Xte

0.015 0.025 0.01 0.0 0.05

Table 2: Parameter values for WT3G.
Xeq Kpll Kipll Pllmax

0.8 30 1 0.1

Table 3: Parameter values for WT3E reactive power control.
varflg vltflg Vref Kqi Vmax Vmin

0 0 1 0.1 1.1 0.9

Table 4: Parameter values for WT3E active power (torque) control.
Kptrq Kitrq Tpc Pmin Pmax Ipmax dPmax/dt Tsp

3 0.6 0.05 0.04 1.12 1.1 0.45 5

Table 5: Parameter values for speed-power curve f(Pgen).

ωpmin ωp20 ωp40 ωp60 Pωp100 ωp100

0.69 0.78 0.98 1.12 0.74 1.2

Table 6: Parameter values for WT3T single-shaft model.
Kaero θ0 Pm0 H D

0.007 0 1 4.94 0

Table 7: Parameter values for WT3P.
Kpp Kip Kpc Kic TPI PImax PImin PIrate Pset

150 25 3 30 0.3 27 0 10 1
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