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Abstract— Stability limits place restrictions on the avail-
able transfer capability (ATC) of power systems. Calcu-
lation of these limits is therefore very important, but has
traditionally been quite difficult. This paper proposes an it-
erative algorithm for determining parameter values which
result in marginal stability of a system. (A system is
marginally stable for a particular disturbance if the post-
disturbance trajectory lies on the stability boundary.) A
knowledge of the critical parameter values allows the dy-
namic ATC to be determined. The algorithm is based on the
Gauss-Newton solution of a nonlinear least-squares problem.
This solution process uses trajectory sensitivities.

I. Introduction

IN many power systems, the maximum power transfer
across the network is limited by stability considerations.

If the transfer level is raised too high, instability may oc-
cur for certain disturbances. To minimize this risk, opera-
tors are guided by constraints which ensure that if certain
prescribed large disturbances occur, for example faults or
generator tripping, then the system will continue to op-
erate in a controlled fashion. A good knowledge of these
stability constraints is very important. If the constraints
are underestimated, then systems tend to be operated over-
conservatively, with an associated economic penalty. How-
ever should the constraints be overestimated, then the sys-
tem may well be operated in a vulnerable state without
a clear understanding of the risk. Unfortunately though,
the computation of these stability limits, and hence the
dynamic available transfer capability (ATC), is difficult.
Underlying the calculation of dynamic ATC is the need

to find a loading condition (set of parameters) at which the
disturbed system is marginally stable. This set of parame-
ters may include the generation schedule, loads, and con-
troller setpoints, for example. Generally it is necessary to
consider many disturbance scenarios, with a critical loading
condition being calculated for each case. A comparison of
those critical loading conditions with the current operating
point gives the desired dynamic ATC.
The concept is straightforward, but implementation is

difficult. It is not easy to find a marginally stable sys-
tem. Lyapunov-based direct methods provide a useful ap-
proach. However modelling restrictions limit their applica-
tion and accuracy. Otherwise, no systematic approach has
been available. Hence stability limits are generally deter-
mined off-line, for a limited set of operating conditions and
disturbance scenarios. The results of these studies are then
used to guide operators.

This paper proposes a novel approach to finding parame-
ters that correspond to marginally stable system behaviour.
It is shown in the sequel that the proposed algo-

rithm is applicable (under fairly mild assumptions) to any
system which can be modelled as a set of differential-
algebraic-discrete (DAD) equations. The DAD model is
extremely general, and allows full representation of non-
linear/nonsmooth devices. Examples include higher order
machine models, controller limits and arbitrarily compli-
cated protection characteristics. This model is discussed
in Section II, along with some useful background system
theory, and an overview of trajectory sensitivities. The
proposed algorithm is described in Section III, and an ex-
ample is explored in Section IV. Conclusions are given in
Section V.

II. Background

A. Model

Power systems frequently exhibit a mix of continuous
time dynamics, discrete-time and discrete-event dynamics,
switching action and jump phenomena. It is shown in [1]
that such systems, known generically as hybrid systems,
can be modelled by a set of switched differential-algebraic
equations, coupled with equations to describe state re-
setting. A compact version of that differential-algebraic-
discrete (DAD) model can be written as

ẋ = f(x, y) (1)

0 = g(0)(x, y) (2)

0 =
{

g(i−)(x, y)
g(i+)(x, y)

yd,i < 0
yd,i > 0 i = 1, ..., d (3)
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−, y−) ye,j = 0 j ∈ {1, ..., e} (4)
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An expanded presentation of this model is given in [1].
However this compact version is convenient for the later
algorithm development. In this model,
• x are the continuous dynamic states, for example gener-
ator angles, velocities and fluxes;
• z are discrete dynamic states, such as transformer tap
positions and protection relay logic states;



• y are algebraic states, e.g., load bus voltage magnitudes
and angles; and
• λ are parameters such as generator mechanical powers,
line reactances and switching times.
The function f is structured so that, of the dynamic

states x, only x evolves continuously over time. Simi-
larly, the state reset equations hj ensure that only the
discrete states z undergo a step change at reset events.
It follows that the parameters λ remain constant over all
time. The algebraic states y generally vary continuously
as x evolves. They may take a step change at reset events
when z changes, and at constraint switching events.
Away from discontinuities, system dynamics evolve con-

tinuously according to the familiar differential-algebraic
(DA) model

ẋ = f(x, y) (5)
0 = g(x, y). (6)

where g is composed of (2) together with functions from
(3) chosen depending on the signs of the elements of yd.
The system flows for x and y are defined as

φ(x0, t) =
[

φx(x0, t)
φy(x0, t)

]
=

[
x(t)
y(t)

]
(7)

where x(t) and y(t) satisfy (1)-(4), along with initial con-
ditions,

φx(x0, t0) = x0 (8)
g(x0, φy(x0, t0)) = 0. (9)

B. System theory

B.1 Marginally stable trajectories

The proposed algorithm is based on the assumption that
the limit set for the system is composed only of isolated
points. (The limit set is the set of points to which the
system converges in either forward or backward time.) This
assumption excludes the existence of limit cycles, or other
more complicated limit behaviour. It is also assumed that
the trajectory and the stability boundary intersect, rather
than the trajectory jumping the stability boundary, or vice
versa, under the action of a switching or reset event.
Under those assumptions, the stability boundary is com-

posed of the stable manifolds of type-1 unstable equilibrium
points (UEPs) that lie on the boundary [2]. Therefore an
unstable trajectory must pass through the stable manifold
of a type-1 UEP. If a disturbance to the system is critically
cleared, the trajectory will lie on the stable manifold of a
UEP, and approach that UEP in infinite time. A trajectory
which is nearly critically cleared, whether stable or unsta-
ble, will pass close to that UEP. But generally the UEP is
unknown. Energy function methods require a knowledge
of this ‘controlling UEP’ [3]. The proposed algorithm does
not.
Equilibria of the system (5)-(6) satisfy

f(x, y) = f(x, y, z;λ) = 0 (10)

with (6) being satisfied everywhere. Therefore proximity
to equilibria can be established using the quadratic cost
function

J (x, y) =
1
2
f(x, y)tWf(x, y) (11)

whereW is a diagonal matrix that is used to weight the rel-
ative importance of the various f functions. Near an equi-
librium point, the cost J (x, y) becomes small. By monitor-
ing J (x, y) along a trajectory, points that are local minima
can be found. Many of these points indicate proximity to
equilibria.
The proposed algorithm is based on the idea that J (x, y)

defines a hypersurface in the variables t (time) and x0 (ini-
tial conditions and parameters). Starting from a local min-
imum in J on the initial trajectory, t and x0 can be varied
to minimize J over that hypersurface. As J is minimized,
the minimum point moves closer towards a UEP, and hence
the trajectory moves closer to passing through that UEP.
More complete details are given in Section III. The example
of Section IV illustrates these concepts.
It remains to determine the number of parameters that

should be varied to move a trajectory so that it becomes
coincident with the stability boundary. This is addressed
in the following subsection.

B.2 Parameter dimension

Let x ∈ R
n , so that state-space has dimension n. (The

algebraic states y can be thought of as implicit functions
of x, and so do not influence the state-space dimension.)
Then the stable manifold of a type-1 UEP has dimension
n − 1. (This manifold can be thought of as being defined
by a single equation in n unknowns.) If p parameters are
allowed to vary then the stable manifold, denoted S(x, λ),
becomes an (n+ p − 1)-manifold in (n+ p)-space.
Now consider the system flow φ(x0, t). For constant pa-

rameters, φ(x0, t) is a 1-manifold, parameterized by time,
that exists in state-space. The dimension of this manifold
increases by one for each free parameter. Define F(x, λ) as
the (p+ 1)-manifold, in (n+ p)-space, that corresponds to
p free parameters.
The intersection S(x, λ)∩F(x, λ) is therefore generically

a p-manifold in (n+ p)-space [4]. Now we desire this inter-
section to be a trajectory that lies on the stability bound-
ary. So the intersection must be a 1-manifold, i.e., p = 1.
Hence a single parameter should be varied in order to ob-
tain a marginally stable system.
Two comments are in order:

• There is no guarantee that S and F will intersect for all
choices of the single free parameter. However if they do
intersect, then generically the intersection will be a single
isolated trajectory that approaches the UEP.
• If more than one parameter are varied, then generically
a continuum of trajectories will be obtained.

C. Trajectory sensitivities

Trajectory sensitivities provide a way of quantifying the
variation of a trajectory due to small changes in parameters



and/or initial conditions [5]. This section summarizes the
main concepts. Further details can be found in [1].
To obtain the sensitivity of the flows φx and φy to initial

conditions, and hence to parameter variations, we form the
Taylor series expansions of (7). Neglecting higher order
terms gives

∆x(t) =
∂x(t)
∂x0

∆x0 ≡ xx0
(t)∆x0 (12)

∆y(t) =
∂y(t)
∂x0

∆x0 ≡ yx0
(t)∆x0. (13)

It is important to keep in mind that x0 incorporates λ,
so sensitivity to x0 includes sensitivity to λ. Equations
(12),(13) provide the changes ∆x(t) and ∆y(t) in a trajec-
tory, at time t, for a given (small) change in initial condi-
tions ∆x0 = [∆xt

0 ∆zt
0 ∆λt]t.

Full details of trajectory sensitivity calculations for the
DAD model (1)-(4) are given in [1]. An important con-
clusion is that trajectory sensitivities are defined for com-
plex event driven behaviour. It is shown in [1] that the
sensitivities can be calculated efficiently as a by-product
of using an implicit numerical integration technique, such
as trapezoidal integration, to produce the nominal system
trajectory.
Other recent power system applications of trajectory sen-

sitivities include [6], [7], [8], [9], [10].

III. Algorithm

A. Development

The algorithm is based on minimizing the quadratic cost
function J (x, y) given by (11). But notice from (7) that
x and y are functions of x0 and t. It was shown in Sec-
tion II.B.2 that this optimization problem had isolated so-
lutions if a single parameter was varied. Therefore we para-
meterize x0 (the initial conditions and system parameters)
by a scalar parameter α. A discussion of this parameteri-
zation is given in Section III.B.
Therefore J can be reformulated as

J (t, α) =
1
2
f(φx(x0(α), t), φy(x0(α), t))

tW ·
f(φx(x0(α), t), φy(x0(α), t))

=
1
2
f̃(t, α)tWf̃(t, α). (14)

The aim of the algorithm is to find t and α that minimize
(14).
Let z = [t α]t. Then (14) can be rewritten

J (z) = 1
2
f̃(z)tWf̃(z). (15)

This unconstrained minimization can be achieved using a
Gauss-Newton iterative method [11]. Iterations follow the
scheme

zk+1 = zk −
(
∇f̃(zk)tW∇f̃(zk)

)−1

∇f̃(zk)tWf̃(zk)a

(16)

where a is an acceleration factor,

∇f̃ =

[
∂f̃

∂t

∂f̃

∂α

]
(17)

and

∂f̃

∂t
=

∂f

∂x

∂φx

∂t
+

∂f

∂y

∂φy

∂t

= fxẋ+ fy ẏ (18)

∂f̃

∂α
=

∂f

∂x

∂φx

∂x0

∂x0

∂α
+

∂f

∂y

∂φy

∂x0

∂x0

∂α

=
(
fxxx0

+ fyyx0

) ∂x0

∂α
. (19)

The notation xx0
and yx0

refers to the trajectory sensi-

tivities; see (12),(13). The vector ∂x0
∂α is discussed in Sec-

tion III.B. Recall that the algebraic equations (6) are sat-
isfied everywhere. From (6) we obtain

gxẋ+ gy ẏ = 0
⇒ ẏ = −(gy)−1gxẋ.

Substituting back into (18) gives

∂f̃

∂t
=

(
fx − fy(gy)−1gx

)
ẋ

=
(
fx − fy(gy)−1gx

)
f(x, y). (20)

Iterations of the Gauss-Newton method cease when ei-
ther f̃(zk) ≈ 0 or when ∇f̃(zk)tf̃(zk) ≈ 0. The former
case corresponds to an equilibrium point lying on the tra-
jectory. If that point in not the stable equilibrium point
(SEP), then it means a marginally stable trajectory has
been found, i.e., parameter values which cause the trajec-
tory to run to a UEP have been identified. (Note that
because a UEP can only be approached in infinite time,
the optimal value of t given by the Gauss-Newton method
will theoretically approach infinity. However in practice,
iterations can be halted before t grows too large.)
The second condition corresponds to some local optimum

point where f̃ is orthogonal to the space spanned by ∇f̃ . It
is not clear that such points have any physical significance.

B. Parameterization of x0

The scalar parameter α describes the way in which x0,
the initial conditions and system parameters, are to be var-
ied in order to find a marginally stable system trajectory. A
single element of x0 may be varied independently, in which
case ∂x0

∂α is a vector of zeros except for a single nonzero
entry in the appropriate location. Alternatively α may in-
fluence a few elements of x0. Then

∂x0
∂α gives a direction

vector in x0-space.
Typically, in studies of system behaviour, the system

starts from a stable equilibrium point. Then variation of
α may well shift the equilibrium point. From (5),(6), and



using the fact that f = [f t 0t 0t]t, the starting equilibrium
point is described by

0 = f(x0(α), y0)
0 = g(x0(α), y0).

Differentiating gives

0 = fx
∂x0

∂α
dα + fydy0

0 = gx
∂x0

∂α
dα+ gydy0

and further manipulation yields

0 =
(
fx − fy(gy)−1gx

) ∂x0

∂α
= f∗

x

∂x0

∂α
. (21)

Note that f∗
x is not square. With x = [xt zt λt]t ∈ R

n+l+p ,
f∗

x is an n × (n + l + p) matrix. Equation (21) can be
rewritten

0 = f∗
x

∂x0

∂α
+ f∗

z

∂z0

∂α
+ f∗

λ

∂λ

∂α
.

The x0 are dependent variables, whilst z0 and λ are inde-
pendent variables. The desired ∂x0

∂α can be found using

∂x0

∂α
= −(f∗

x)
−1

(
f∗

z

∂z0

∂α
+ f∗

λ

∂λ

∂α

)

where ∂z0
∂α and ∂λ

∂α are independent, and hence specified.
Note that for some choices of α, such as fault clearing

time or machine inertia, ∂x0
∂α will be zero. But for choices

such as load level or generator mechanical torque, ∂x0
∂α will

reflect the change in the equilibrium point.

IV. Example

The algorithm of Section III is illustrated using a power
system of the form shown in Figure 1. Both generators were
represented by a two axis (fourth order) machine model
[12]. In all cases, the system was disturbed by the applica-
tion of a three phase fault at the terminal bus of Genera-
tor 1.
Two studies are presented. In the first, the calculation

of the critical fault clearing time is considered. The second
study, which is more relevant to dynamic ATC, explores
the maximum loading of the generators.

A. Critical clearing time

For this study, the fault-on time tf was chosen as the
unknown parameter α which was varied to minimize the
cost function J given by (14). The fault switching mecha-
nism, and hence tf , was incorporated into the DAD model
(1)-(4), by introducing the equations

ẋt = 1

0 = (xt − tinit)(xt − (tinit + tf ))− y

P2

P1

V2

V1

δ2

0V∞δ1

1

2

3

Fig. 1. Two machine infinite bus system.

where xt is a timer, and tinit is the time at which the fault
is initiated. The algebraic variable y is negative during
the fault-on period, and positive otherwise. It is used to
switch an algebraic equation, as in (3). When y is negative,
fault current is added to the net current injection at the
faulted bus. Therefore tf can be treated just like any other
parameter. Variation of tf does not affect other initial
conditions though, so ∂x0

∂α in (19) and (21) is a vector of
zeros except for a 1 in the location corresponding to tf .
In this investigation an initial guess of tf = 0.40sec was

used. It can be seen from the phase portrait of Figure 2
that the system was clearly unstable. Subsequent Gauss-
Newton iterations using (16) are given in Table I. The final
estimate of tf = 0.2931sec compares well with the actual
critical value of t∗f = 0.2866sec obtained by repetitive sim-
ulation. The iterations are illustrated in Figure 2. (Note
that this figure is only a two dimensional projection of the
eight dimensional state-space.) The figure shows the tra-
jectories corresponding to the initial guess, the iterations
and final estimate, and the actual critical value.
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Fig. 2. Phase portrait view of trajectories, study A.

Figure 2 shows that behaviour becomes rather compli-
cated as the critical parameter value is approached. This
reflects into the cost function J as multiple local minima.
In this case the algorithm converged to a nearby local min-



Initial Iterations (sec) Actual
guess (sec) 1 2 3 value (sec)
0.4000 0.3011 0.2940 0.2931 0.2866

TABLE I

Estimates of tf .

imum rather than the desired minimum corresponding to
the UEP. However from a practical perspective, the error
in the final estimate of tf is insignificant. If desired, an
improved final estimate can be obtained by restarting the
iterative solution process.
Further illustration is provided by Figure 3, where the

cost function J is plotted against time. It is clear that
for the initial parameter guess, J had only a single mini-
mum, near 1sec. However as the parameter estimate was
progressively improved, a local minimum developed near
1.5sec. The solution process in this case locked onto that
local minimum. By restarting the process from the deeper
minimum at 2.4sec, an improved estimate of tf = 0.2878sec
was obtained.
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Fig. 3. Cost function J versus time.

Throughout this sequence of studies an acceleration fac-
tor of a = 1 was used. A more sophisticated choice of a
may well have resulted in direct convergence to the im-
proved estimate of tf . Further investigations are required.

B. Critical generator loading

The aim of this study was to determine the values of gen-
erator mechanical torques Tm which corresponded to the
system being marginally stable, given the fault scenario
described earlier. In this case the fault-on time was held
fixed at 0.3sec. The study therefore effectively determined
the maximum power that could be delivered by the gen-
erators whilst still ensuring stability for the specified fault
condition. A comparison of this stability limited maximum
power transfer with the nominal transfer level would yield
the dynamic ATC.

An initial guess of Tm = 0.72pu was used for both gener-
ators. Also, Tm was varied in unison at the two generators
during the iterations. (This was not a limitation of the
algorithm, but rather was done for presentation clarity.)
The phase portrait of Figure 4 shows the system response
for the base case. The system was clearly stable. The
Gauss-Newton algorithm proceeded to estimate a critical
value of Tm = 0.7934pu. Repetitive simulations indicated
that the actual critical value (to four decimal places) was
Tm = 0.7930pu. Figure 4 shows the trajectories corre-
sponding to the estimated and actual critical values. There
is clear propinquity.
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Notice in Figure 4 that the trajectories for Tm = 0.72pu
and Tm = 0.7934pu start at different points. (The starting
points are marked by a ‘◦’.) This occurs because variation
of Tm alters the operating point, i.e., the initial point x0.
The dependence of x0 on the parameter is reflected through
∂x0
∂α , in accordance with (21).

Convergence from the initial guess for Tm to the final
estimate took 11 iterations. The iterations are shown by
‘×’ in the contour plot of Figure 5. This plot shows con-
tours of the cost function J for various values of Tm and
time t. (Recall from (14) that J is a function of t and α,
in this case Tm.) Progress is slow over the last few itera-
tions because the cost function near the critical parameter
value is quite flat. An improved strategy for choosing the
acceleration factor would speed convergence.

It is interesting to note that the first iteration step is very
small. This is because the cost function is quite flat near
the initial parameter guess. In fact that initial point in near
a saddle in J . If the algorithm was started from a guess of
Tm ≈ 0.7pu, subsequent iterations would move away from
the desired minimum, towards a minimum corresponding
to a stable equilibrium point.
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V. Conclusions

The paper develops an iterative approach to finding pa-
rameter values that result in marginally stable system be-
haviour for a specified disturbance. This approach is based
on the fact that trajectories which lie on the stability
boundary must approach an unstable equilibrium point.
The algorithm varies parameters to minimize a cost func-
tion which is a measure of the distance from equilibria. By
minimizing this cost function, trajectories move closer to
passing through a UEP, and hence move closer to lying on
the stability boundary.
Two studies have illustrated the algorithm. In the first,

the fault-on time was chosen as the parameter of interest.
The second study found the generator loading condition
that corresponded to the transient stability limit. Calcu-
lation of the dynamic ‘available transfer capability’ follows
directly from a knowledge of this maximal loading condi-
tion.
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