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Abstract - The periodical repetition of mark et conditions
over time leadsto the repeatedplaying of similar games(or
supergames)by participants in electricity markets. This rep-
etition of gamestempts participants to walk away from the
best-responseequilibrium strategies provided by Nash so-
lutions. Although Nash solutions make theoretical sensein
non-repeatedgames their applicability in repeatedgamesis
weakenedby the fact that thesesolutionsare not, in general,
Pareto optimal. This fact pavesthe way to more complex
gameswhere participants are driven by profit maximization
in the long run and are, therefore, enticed to explore dif-
ferent solutions in the short term. Knowing that they will
meetin similar gamesin the near futur e, makesthe players
adoptimplicit cooperative behavior. The willingnessto work
to a common end may be modeledin automata or agents—
which substitute the players—that incorporate collaborative
profilesin their stochasticalresponseso the other automata
strategic moves.

Keywords - Electricity markets, supergames, Pareto
optimal, automata

1 INTRODUCTION

HE shift from cost-basedo price-basedrade solu-

tionsin re-regulatedelectricity marketsgave rise to
market gamingby participantsseekingprofit maximiza-
tion. Stratgyic solutions,namelystrateyic equilibria, are
of major interestin helpingto understandrading— and
tradingoutcomes- in thenew competitive electricitymar
kets. Multiple equilibria have beenshawn to exist in a
Poolco model wherein some particular assumptionsare
made[1, 2]. In addition,a methodto find thesemultiple
equilibria underthis model hasbeenproposed3]. The
modelwe referto assumeshatthe participantsor players
in the market arerational and attemptto maximizetheir
individual profits by untruthfully revealingtheir costsin
their bid curves. Whatthey play is assumedo be char
acterizedas a static, non-cooperatie, continuous-krnel
gameundercompleteinformation,andthe solutionspre-
scribedby this gameareNashequilibria[4], eitherin pure
or in mixedstrateyies.

Whenthe gameis non-repeatedthe playersare left
with multiple Nash equilibria to choosefrom. A Nash
equilibrium (or non-cooperatie equilibrium)is asolution
thatis anindididual’s bestresponsdo stratgjiesactually
playedby his or her opponentsln otherwords,it hasin-
dividual stability.

However, the market conditions have cycles corre-

spondingto the naturalandpredictableswingsof theload
over daily, monthly, seasonallyandyearly periods. This
makes the players meet again and again under similar
scenarioaand, moreimportantly makesthe playerslearn
and collect information from theserepeatedyames. Su-
pergameis the termusedto describeaninfinite sequence
of theseordinary gamesplayedrepeatedlyover time. In
[5], supegameequilibria were characterizedor games
whereina discountfactorwasappliedto the players’rev-
enuesbtainedfor aninfinite time horizon. This discount
factoris what allows playersto measurethe temptation
of deviating from the equilibrium solutionfor a particular
stageof the game. If, however, the period of time over
whichthegamewill berepeatedlplayedis unknown, the
discountfactorlosesits applicability. In our modelwe as-
sumethereis no suchknown parameter Moreover, we
assumehat playersdo not take refugein an equilibrium
solutionto avoid beinghurt by otherplayers’stratajies.

In addition, evidenceextractedfrom experimentation
suggestshathigh revenuesolutionscanbemaintainede-
peatedlywhenthesedonotnecessarilgorrespondo near
equilibriumoutcomeg6]. This paradoxicateality under
linestheideathatthe repetitionof gamescombinedwith
thefactthatNashequilibriaarenot, in general Paretoop-
timal, drivesthe market participantgo higherrevenueso-
lutions. A decisionvectoris Paretooptimal if theredoes
not exist anotherdecisionvectorfor which someindivid-
ual objective function may be improved without deteri-
orating the remainingindividual objective functions[7].
In additionto Paretooptimality we canalsodefineweak
Paretooptimality. A decisionvectoris weakly Paretoop-
timal if theredoesnot exist ary otherdecisionvectorfor
which all theindividual objective functionsareimproved.
TheParetooptimalsetis asubsebf theweakly Paretoop-
timal set. The following definitionsandtheoremswhich
may be foundin [7, 4] alongwith the respectie proofs,
formalizetheconcept®of NashequilibriumandParetoop-
timality.

Definition 1 A decisionvectorx* € S is called a non-
coopeativeequilibriumor Nashequilibriumif
fi(x*) = sup fi(z;,x*,)foralli=1,...,k,

xr;, €S,
whete f; are the individual utility functions,andx*; de-
notesx* with z; removed.

Definition 2 A decisionvectorx* € S is Paretooptimal
if there doesnot exist anotherdecisionvectorx € .S sudh
that f;(x) > fi(x*) forall i = 1,...,k and f;(x) >
f;(x*) for at leastoneindex j.
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Definition 3 A decisionvectorx* € S is weaklyPareto
optimal if there doesnot exist another decisionvector
x € Ssudthat f;(x) > f;(x*)foralli =1,... k.

Theorem1 Thesolutionof theweightingproblem

k
maximize Zwl - fi(x)
i=1
subjectto x € S,
whee w; >0 forall
k

Zi:l w; = 1

is weaklyParetooptimal.

i=1,...,k and

Theorem2 The solution of the weighting problem is
Pareto optimal if the weightingcoeficientsare positive
thatisw; > Oforall: =1,... k.

Becausedhe Paretooptimal solutionsetandthe Nash
equilibria setaredistinct, the playersare caughtbetween
choosing higher revenue stratgjies and best-response
stratgies. In our point of view, noneof them provides
the stratgic solutionsto thegametheplayershaveto face
repeatedly Instead,they will putin placestratgiesthat
maximizetheir revenuesin the long run, by reactingon
eachstageof the gameaccordingto the movesor read-
justmentsof the other players. This approachbringsin
notionsof “collaboratve” and“non-collaboratve” thatin-
dicatethe player’s profile or measurehe degreeby which
the playersfeel attractedto contribute to a higher rev-
enuejoint solution. This comprisesa paradoxicabeha-
ior, for it is clearthat rationality dictatesthe choice of
best-responseolutions. However, in the long-runthese
might leadto lower revenueoutcomedor all the players
involved.

In [8], the authorsaddresghe problemof distributed
decision-makingby distributed agentsand characterize
the problemof chosingbetweenattractorsand Paretoop-
tima as a questionof local versusglobal optimization.
They proposeways of changingtheir decision-attractors
bothby modifying the way the agentswvork andby modi-
fying their ervironment.

As marketsbecomemorecomple, players’stratgjies
arelikely to be representethy computerprogramsor au-
tomatathatconductstratgiesbasednobsenationof past
movesby its opponentsin [9], theauthorsexploretheex-
istenceof Nashequilibriain repeatecgameswvhereplay-
ersusefinite automatao implementtheir strateyies. It is
assumedhat the playersseekprofit maximizationwhile
minimizing implementationcosts. In our modelwe as-
sumeno suchcostimplementationinsteadwe proposea
very simple,finite statemachinethatis capableof imple-
mentinga simplestochastigame.

So,ratherthanproposingary type of supegameequi-
librium, we find a stochasti@approactmodelingthe play-
ers’ behavior to be more appropriate. Stochastionoves
maybeseernasa meango maskstratgjiesand,asaresult,
to leadto non-equilibriumsolutions.Thatis, themodelwe
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proposedoesnot provide us with deterministicsolutions
for the market outcome. It is a stochastianodelthatin-

dicateshow, basedon deterministicinformationprovided
by the Nashequilibriaandthe Paretooptimalsets the su-
pergamesin electricity markets shouldbe playedby au-
tomatawhenpursuinglong term profit maximization.

Furthermoretheseautomatashouldnot only be able
to implementa specifiedstochastigrofile but alsocapa-
ble of updatingtheir profiles— dueto market changesas
new participantenter—usingestimatedasedn collected
marketdata.Besidesjf acollaboratve outcomeis thede-
sirablesolution, theseautomatashouldplay clearmoves
that are not mistaken by its opponentsand, therefore,do
not underminethe market confidencein a collaboratie
result— which likely hasthe consequencef driving the
marketto anequilibrium.

The paper has three more sections. In Section 2
we presentthe readjustmentalgorithm usedin the re-
peatedgame. In addition, the automatamodelsare also
explained. Our proposalsare exemplified in Section3
througha simple case. In Section4 we drav somecon-
clusionsaboutthe work presentedn this paper

2 THE READJUSTMENT STRATEGY

Under the Individual Welfare Maximization (IWM)
algorithm, the playersfind the non-cooperatie equilib-
rium solutionsfor the non-repeatedyame by indepen-
dently solving a nestedoptimizationproblemfor eachof
the bidding spaceregions definedby transmissionline
constraintg1, 2, 3]. The problemassumesheform

max Fp, = fp(Pp, Dy, Ap), VpeEP

s.t.(Pp, D,, Ap) aredeterminedy

)?1%% ZBi<Dia api) — ZC’i(Pi, ap;)
€D i€g
st h(x,P,D)=0
g(x,P,D) <0

)

where f,,(-) denoteghe utility functionof playerp in the
setof players,P. Also, f,(-) is definedasthe difference
betweenthe sumof benefitsminus chaigesandthe sum
of paymentsminus costsfrom the setof his or her con-
trolled generatorsand loads. The vectorsof generation
andloadcontrolledby playerp aredenotedby P, andD,,,
respectiely. Eachplayerp controlsa vectorof reported
variablesthatis representetby o,. The nodalpricesap-
pliedto thegeneratiorandload controlledby playerp are
a byproductof the OPFandappearas A,. The costand
benefitfunctionsof eachgeneratorandload are denoted
by C; and B;, respectiely. G representthesetof genera-
torsandD representshe setof loads. The costandbene-
fit functionareassumedo be well describedy quadratic
functions
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Ci(P) =
B;(D;) =

CLp’Z'.PZ-2 + bpﬂ'.Pi +cp;, 1eg (2)
CLD’i.l)i2 + bD,i-Di +¢p,i, 1 €D 3)

whereay,, theuntruthfully reportedparameteor parame-
ters, substitutesone or more of the true cost coeficients
in the quadraticfunction. The equality and inequality
constraintsarerepresentetdy g(-) andh(-), respectiely,
whereP is the vectorof all generatedpower, D is the
vector of all loads, and x representghe vector of state
variables.

A Paretooptimal solutioncanbe found, accordingto
theoremsl and2, by substitutingheobjective functionby
theweightedsumof all individual utility functions.

max Fy, = E Wy, - fq(Pg:Dg, Ag), VPEP
p
qeP

s.t.(Pg, Dy, A,) aredeterminecy
X Z Bi(D;,ap,;) — Z Ci(P;, apy)

€D i€g
st. h(x,P,D)=0
g(x,P.D)<0
where w,, >0, Vg€ P and Z Wp,q = 1.
qeP

(4)

This methodis called the Weighting Method and the
weightsw,, , measurehe relative importancethat player
p givesto the objective functionof playerq. The problem
asgivenin (1) may be seenasa specialcaseof problem
(4) whenw, , = 0,Vq € P suchthatp # ¢. In anon-
cooperatve competitve ervironmentit is, however, dif-

ficult to agreeuponthe rankingor relative merit among
functionsof the multiobjective problem. Two casesap-
pear neverthelessasbeingparticularlyrelevant: thefirst,

whentheobjective functionsareall weightedequally cor-

respondingto the equivalent situation where thereis a
unique decisionmaler; the second,when the profits at
the Paretooptimal point areall madeequal,which corre-
sponddo asomavhat‘f air outcome Wewill discusdater
the consequencesf not agreeingupon the samePareto
optimum.

The automatareadjuste, for eachstageof the re-
peatedgameby choosingthe objective functionto be ei-
theranequilibriumor a Paretooptimal solutionandthen,
usingalocalreadjustmentechniquemove onestepin the
desireddirection.Newton’s method

a}()kJrl) — a;k) —e- (Vipr)*l |k . V%FP”/@’ Vp g(g
is agoodchoicefor thereadjustmenschemebecausét is
locally optimal,it is easilyimplementedy anautomaton,
andit is amethodlessproneto misinterpretatiorby other
automata.The ability to interpretthe movesby the other
automatais of crucialimportancesincethe gamemodel

we proposepreseresnon-cooperatiommongplayers.
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Given that the automatashouldnot play using short-
termrationality, they requirearepresentationf the play-
ers’preferencesr profiles.In absencef short-ternratio-
nal — thereforedeterministic— choices,the profile repre-
sentatiorhasto benecessarilgtochasticOnesimplerep-
resentatiorwould be amatrix wherea playerwriteshis or
herwillingnessto collaborateatthenext stageof thegame
conditionedon his or her perceptionof the otherplayers’
movesduring the previous stage. Thesecould have been
eithernon-collaboratie (NC) or collaboratve (C). Sucha
tablewould look like Table 1, wherep+, p2, p3, and py
representonditionalprobabilities.

Otherplayers’
lastmove
C NC
3
(@] p1 D2
€
17
£ O
> p3 P4
2 Z

Table 1: Players’profiles

Thesesimpleautomatahatmove stochasticallyn re-
actionto their opponentsmovesmaybe alsorepresented
by finite statesmachines,asillustratedby Figure 1. In
this casewe assumethat the playerslimit their choices
to this particulartype of machinewith this setof possi-
ble states,which meansthe playerswill move eitherto-
wardsthe equilibrium solution(to stateNC) or towardsa
particularParetooptimum(to stateC). Wereeitherof the
players’stratggiesmorecomplicatecbr the setof possible
desirableoutcomesiugmented multiple Nashequilibria,
multiple Paretooptima— the machinesvould necessarily
have to includemaorefinite states.

p3/C

pl/ C (1-p3)/C

p2/ NC (1-p4)/NC

(1-p2)/ NC

Figure 1: Automatonasa finite statemachine

Any representatiomf the players’ profilesthat relies
on the interpretationof the other players’ reactionsbe-
comesmoreandmorechallengedasthe numberof play-
ersincreases.For an Oligopoly with a reducednumber
of playersiit is easyto estimatethe individual movesfor
eachstageof the game.Moreover, a goodestimateof the
profilesmayalsobe constructedIf the numberof players
is high, clearestimateof the individual movesand pro-
files may bedifficult to obtainandmay requirethe useof
complicatednetrics.Whenthisis the case anestimateof
the market willingnessto pursuecollaboratve outcomes
may be betterobtainedby looking at aggrejatedvariables
suchasthe market-clearingoricesandquantities.
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3 EXAMPLE

In orderto illustrate the merits of our proposalswe
ransomeexperimentonasimple,losslessunconstrained
system,which includesonly two competinggenerators
andoneindependentoad. The coeficient valuesfor the
linear pricesof the generatorsaand value of the load are
given,respectiely, in Tables2 and3.

. ap, bp,i
Generato(i) || (g/ari2n) | ($/MWh)
1 0.01 10.0
2 0.02 10.0
Table 2: Pricecoeficients
Load (i) | (s/a11172n) ($/?\?§Vh)
1 [ -004 | 300 |

Table 3: Valuecoeficients

In theseexperimentsve assumehateachof the gen-
eratorsusesan automatorto implementhis or her strate-
giesduring the supegamethat consistsof several stages
of a gameof similar market conditionsdefined by the
unchangingload. We representhe players’ profiles by
similar transitiontablesas Table 1 andwe assumegiven
thereducechumberof players,thatthe movesby the op-
ponentautomatonare always correctly interpreted. So,
oncethe automatamake their moves,they becomecom-
monknowledge. In addition,andfor a matterof simplic-
ity, the automatauseonly oneparamete(the linear coef-
ficient of their reportedprice curve) to gamethe system.
The profiles’ conditional probabilitiesare uniformly dis-
tributedandtheautomataeadjustheir gamingparameter
usingNewton’s method(5).

The representatie solutions,whosereportedparame-
tersareshovedon Table4, for this simplesystemare:the
Nashequilibrium; the Paretooptimal solutionwhereboth
individual profit functionsareequallyweighted(Paretol
or P1); andthe Paretooptimal solutionwherethe profits
aremadeequalfor bothplayers(Pareto2 or P2).

@ a2 wy wa
($/MW?2n) | ($/MW?2h)
Nash 0.0292 0.0369 - -
P1 0.0700 0.1400 0.5 0.5
P2 0.0988 0.0928 | 0.4661] 0.5339

Table 4: Reportecharametersor specificsolutions

The profitsattainedat eachof thesethreesolutionsare

givenin Table5.

fi f2 fi+ fa
($/hy | ($M) | ()
NashEq. | 475.6 | 331.1| 806.7
Paretol 769.2 | 384.6 | 1153.8
Pareto2 570.4| 570.4| 1140.8
Table 5: Profitsfor specificsolutions

Figures2 and3 depict,respectiely, the Paretooptimal
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decisionvectorsetandthe Paretooptimal profit setwhen
theweightingfactorsw; = w andwy = 1—w varywithin
thegiveninterval.

042<w<0.52

0.25

0.2r

Pareto 1

2

a, ($/IMW?h)
o
o
ul

0.11 Pareto 2

0.05 0.1 0.15 ,0.2
a, (8IMW?h)

Figure 2: Paretooptimaldecisionvectors

0.42<w<0.52

Pareto 2

Pareto 1

3001

200
200

400 5l 700 800

300 00 600 900
f, (8/h)

Figure 3: Paretooptimal profits

Fromthe point of view of collaborationamongplay-
ers, it is desirableto maintainthe solutionsat every stage
of the gameinside a region wherethe profits for every
player involved in the gameare higher than the profits
obtainedat the Nashequilibrium. Moreover, if the play-
ers are seekingthe maximizationof their revenues they
shouldnever play beyondthe curve definedby the Pareto
set, e.g., to the right of the curve in Figure 2. If the
threeconditions— for the two playersof our example—
are met, the resultis the region of mutualbenefitasde-
pictedin Figure4. The pointsdefiningthis areaare, be-
sidesthe Nashequilibrium,the extremepoints(a,, Go) =
(0.0653,0.1648) and(d1, a2) = (0.1226, 0.0820).

Limiting the gameto this region bringsthe gameto a
new level of rationality, but doesnot provide the players
with adeterministicsolution. Thisis sobecaus@f thein-
finite numberof solutionsonthe Paretooptimalset.In the
absenceof agreement®r side paymentsthe playersare
still compelledto keepplaying stochasticallyasa means
to keepthemaway from the non-cooperatie equilibrium.
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Figure 4: Mutually beneficialregion

However, keepingthe movesinsidethe region of mu-
tual benefitcreatests own challenges.Eachplayercon-
trols only its own unitsandthereforecanonly move along
specificcoordinatesWithoutary typeof coordinationthe
playershave to divise a strateyy if they wantto keepthe
solutionsin adesirableegion. Theonly way to overcome
thelack of coordinationis for the playersto assumesome
principle or non-enforciblerule that dictatesthe strategyy.
Oneof thoserulescouldbetheplayersselfimposingequal
maximumdeviation from the currentsolutionin all coor
dinates. This strateyy would translateinto quadrangular
gaming areasof variablesize for the two-player exam-
ple. It canbeseenin Figure5 thatthis stratgy effectively
keepsthe gameinsidethe mutually beneficialregion.

0.181 "no rule”

0.161

0.14f

"quadrangular gaming"

0.04

0.02 . .
0.02 0.04 0.06

0.08 9'1 012 0.14 0.16
&, (&/MW?h)

Figure 5: Deviation stratgies

Without adoptingsomekind of rule asthe one pro-
posedthebestthe playerscandois to restricttheirmoves
to the rectangularareaenclosingthe mutually beneficial
region. In the experimentsof this sectionwe assumehis
is thecase.

All the experimentsthat follow wererun for 50 peri-
ods,eachperiodincluding 50 stagesf the game. At the
beginning of eachperiod, the initial valuesfor the play-
ers’ reportedparametersare randomly chosento lie on
the rectangularegion definedby the Nashsolutionand
the electedPareto solution — given by properchoice of
weightsw,, , in (4) — with a uniform distribution. We
picked e = 0.1 for the Newton's method stepsizeto
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avoid largejumpsin thevaluesof thereportedoarameters
causedy thesteepnessf thefunctionwhentheseparam-
etershave smallvalues.Fromatheoreticaktandpointthe
choiceof the stepsizeis not important. What mattersis
that the players’ moves may be correctly interpretedby
their opponents.

3.1 Collaborativeplayers

In this first experimentwe choosetwo collaboratie
playerswhoseprofilesarechoserto bethesameandequal
to {p1 = 0.9;p2 = 0.5;p3 = 0.7; p4 = 0.5}. We assume
thatthe playersagreeon the weakly Paretooptimal solu-
tion to be the Pareto2. The stochasticsolutionsobtained
for theseprofilesareillustratedon Figure6.

0.18

Pareto 2

0.02 0.04 0.06 0.0 0.12 0.14 0.16
a

8 g‘.l
($/MW2h)
Figure 6: Stochastisolutionsfor two collaboratve players

The straighttrajectoriesthat may be obsenred at the
uppetleft andlowerright edgeson Figure6 aretheresult
of restrictingthe movesof the automatato the rectangu-
lar areadefiningtheregion of mutualbenefit.\We obsene
that the playerstendto concentrateéheir movescloseto
the Pareto2 point, whichis thedesirablesolutionfor most
of thetime. This gamegrantsthe playersthe approximate
averageprofitsasshovedonrow 1 of Table6 for ary par
ticular 50-stageperiod.

. fi f2

Experlment ($/h) ($/h)
1 578 437

2 586 468

3 492 549
(@) 496 | 549
4(b) 570 | 493
() 298 | 561
Nash 476 331

Table 6: Averageprofits

Thesevaluesare obtainedby runningseveral periods
of the gameuntil the averageprofits corverge. The dif-
ferencein profitsresultsfrom the asymmetryof the profit
functions.Anyway, bothplayersachiere anaverageprofit
thatis well above the Nashequilibrium profits.



14th PSCC, Sevilla, 24-28 June 2002

3.2 Non-collaboative players

This experimentis similar to the previous experiment
exceptfor thefactthattheplayershaveanon-collaboratie
profile describedyy {p1 = 0.5;p2 = 0.2;p3 = 0.5;py =
0.2}. Theresultsof this experimentareillustratedon Fig-
ure 7. The averageprofits are given on row 2 of Table
6. Surprisingly this gamegrantsan averageprofit that
is higherfor both playersthanfor the previous game. It
shavsthatthesolutionsof thegamedonotalwaysconcide
with what the playersantecipate.Instead,the outcomes
are dependenbn the particularprofit functions. In this
secondxperimenthestochasticolutionsendup concen-
tratingin morefavorablezones contraryto whatwasex-
pecteddueto the particularshapeof the profit functions.

02 . . . . .
0.02 0.04 0.06 0.08 9 0.12 0.14 0.16

1
a, ($IMW2h)

Figure 7: Stochasticsolutionsfor two non-collaboratie players

3.3 Onecollaborative playerandonenon-collaboative
player

In this experimentwe are ableto evaluatethe risk of
engagingn collaboratie behaior whentheotherplayers
arenotwilling to do so. We chooseplayer1 to be collab-
orative and player2 to be non-collaboratre. The profile
tableshave the sameprobabilitiesasusedpreviously. Fig-
ure 8 shavs a periodof this stochastigame.

0.18

0.161

a, ($/MW2h)
o o o
s ° & B
© = N S

o

o

&
T

0.041

0.02 ; .
0.02 0.04 0.06

008 Q1 012 014 016
a, ($IMWZh)

Figure 8: Stochastisolutionsfor onecollaboratve playerandonenon-
collaboratve player

In comparisorto the previous experiments,player 2
is betteroff andplayer1l is effectively “double-crossed”,
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seeinghis or her profitscomingdown (seerow 3 of Table
6). However, theaverageoutcomes still advantageoufor
bothplayerswhencomparedo the Nashequilibrium.

3.4 Disagreemenbverthe Paretooptimalsolution

In this experimentwe want to evaluatethe impactof
thedisagreemenin the desirableParetooptimal solution.
We assumehatplayerl choosesheParetol ashisor her
desirablecollaborative solutionandthatplayer2 chooses
the Pareto2 solutioninstead— reflectedin assumedval-
uesof wy, 4 in (4). The previousthreeexperimentsarerun
as beforewithout ary further change. We may obsene
in Figure 9 a period of the gamewhen both playersare
collaboratve.

0.18

0.02 0.04 0.06 0.0 0.12 0.14 0.16
a;

?$/nghl)

Figure 9: Stochastisolutionsfor two collaboratve playersdisagreeing
onthe Paretooptimal solution

The resultson rows 4(a), 4(b), and 4(c) of Table 6
shaw that,again,contraryto whatwasexpectedplayerl’'s
profitsdecreaséor experimentd(a)and4(b) andincrease
for experiment4(c) whencomparedo the corresponding
threeprevious experiences.Player2’s profitsincreasdn
all threeexperiments.Whencomparingthe resultsof ex-
periment4(b) with thoseof 4(a) we now concludethatfor
the non-collaboratte game only the revenuesof player2
decreasekor experiment4(c) we obtainsimilar resultsas
to thoseof thefirst experiment.

3.5 Comments

We adoptedhis smallsystemin theseexperimentgor
illustrative purposes. The major drawback of usingthis
smallsystemss the steepnessf the profit functionswhich
lead to someunexpectedresults. If more playerswere
usedin theseexperiments the profit functionswould be
betterbehared, alsoallowing the adoptionof lessconser
vative stepsizedn Newton’s method.

It becomesgtlear after thesesimple experimentsthat
therevenuebtainedoy theplayersdepenchotonly upon
the choiceof one’s profile but also uponthe opponent$
choiceof profile. In addition,the choiceof the desirable
Paretooptimal solutionhasanimpacton everyones rev-
enuesaswell. More importantly independentlyof their
choices,the playersmaintainin all experimentsan aver-
ageprofit thatis higherthantheequilibrium profit, asmay
beobsenedon Table®6.
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4 CONCLUSIONS

The work presentechere proposesa stochasticap-
proachto the problem of finding trading solutionsin a
market where trading conditions repeatover time and
whereplayers’stratgjiestake into accountheexistenceof
both Nashand Paretooptimal solutions. By playingran-
domly throughthe useof automatathe playersdisguise
their individual movesto their opponentssinceonly the
profile probabilitiesare predetermine@ndnot the moves
themeseles.

Throughthe examplein this paperwe shaved that
thereexists a region betweenthe Paretooptimal setand
the Nash solution that always grantsthe playershigher
revenuesthan the Nashsolution. If the playersrestrict
their movesto this mutually beneficialregion they arein-
deedincreasingheir revenueover the gameperiod. One
key ideais that only randommovesallow themto reap
thosebenefitssincedeterministiacchoicesof best-response
movesdrive the playersto equilibriumsolutions.

Theideascornveyedin thepapemaybegeneralizedo
ary numberof players. The two-playerexampleusedin
the paperwasadoptedfor illustrative purposes.For a n-
playerscenariche Paretosetwould ben — 1 dimensional
and the mutually beneficialregion would take n dimen-
sions.

Oneinterestingeatureof Paretooptimalsolutionsthat
is exploredin the paperis thatoncea systemconstraints
hit, while the playersgamethe system at leastoneof the
playersinvolvedin the gamewill seehisor hergainsde-
creaseor stayconstant.Therefore the Paretooptimal set
is boundedby constraints. So, althoughNashequilibria
may be sustainedor differentsetsof active constraints
[3], only one equilibrium may exist for the set of con-
straintsactive for the Paretooptimal set. This and other
implicationsof bringing togetherthe Nashequilibria set
(multiple equilibria) andthe Paretooptimal sethave to be
addresseth futureresearch.

The paperassumesiutomatawith static profiles. Fu-
tureresearctshouldaddresshepossibilityof dynamically
changingprofiles. Althoughit is clearthat somecombi-
nationsof profilesleadto betteroutcomeghanothercom-
binations,the calculationof the expectedprofits with re-
spectto the continuouslychangingprofilesis beyondnor-
mal computationpower in a reasonablemountof time.
Whattheautomatanaydois startwith arandomlygener
atedsetof profilesand,asthegameevolvesthroughsubse-
guentstagesselectthe onesthatleadto a betteroutcome.
The dynamicupdatewill likely leadplayersto implicitly
adopttradingsolutionsthatarealmostalwayscloseto the
Paretooptimal set.
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