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Abstract - The periodical repetition of market conditions
over time leadsto the repeatedplaying of similar games(or
supergames)by participants in electricity markets.This rep-
etition of gamestempts participants to walk away fr om the
best-responseequilibrium strategies provided by Nash so-
lutions. Although Nash solutions make theoretical sensein
non-repeatedgames,their applicability in repeatedgamesis
weakenedby the fact that thesesolutionsare not, in general,
Pareto optimal. This fact paves the way to more complex
gameswhere participants are dri ven by profit maximization
in the long run and are, therefore, enticed to explore dif-
ferent solutions in the short term. Knowing that they will
meet in similar gamesin the near futur e, makesthe players
adopt implicit cooperative behavior. The willingnessto work
to a common end may be modeled in automata or agents–
which substitute the players– that incorporate collaborative
profilesin their stochasticalresponsesto the other automata
strategic moves.

Keywords - Electricity markets, supergames, Pareto
optimal, automata

1 INTRODUCTION

HE shift from cost-basedto price-basedtradesolu-
tions in re-regulatedelectricity marketsgave rise to

market gamingby participantsseekingprofit maximiza-
tion. Strategic solutions,namelystrategic equilibria, are
of major interestin helping to understandtrading– and
tradingoutcomes– in thenew competitiveelectricitymar-
kets. Multiple equilibria have beenshown to exist in a
Poolcomodel wherein someparticular assumptionsare
made[1, 2]. In addition,a methodto find thesemultiple
equilibria underthis model hasbeenproposed[3]. The
modelwe referto assumesthattheparticipantsor players
in the market arerationalandattemptto maximizetheir
individual profits by untruthfully revealingtheir costsin
their bid curves. What they play is assumedto be char-
acterizedas a static, non-cooperative, continuous-kernel
gameundercompleteinformation,andthe solutionspre-
scribedby thisgameareNashequilibria[4], eitherin pure
or in mixedstrategies.

When the gameis non-repeated,the playersare left
with multiple Nashequilibria to choosefrom. A Nash
equilibrium(or non-cooperativeequilibrium)is asolution
that is an indididual’s bestresponseto strategiesactually
playedby his or heropponents.In otherwords,it hasin-
dividual stability.

However, the market conditionshave cycles corre-

spondingto thenaturalandpredictableswingsof theload
over daily, monthly, seasonally, andyearly periods.This
makes the playersmeet again and again under similar
scenariosand,moreimportantly, makestheplayerslearn
andcollect information from theserepeatedgames.Su-
pergameis the termusedto describean infinite sequence
of theseordinarygamesplayedrepeatedlyover time. In
[5], supergameequilibria were characterizedfor games
whereina discountfactorwasappliedto theplayers’rev-
enuesobtainedfor aninfinite time horizon.This discount
factor is what allows playersto measurethe temptation
of deviating from theequilibriumsolutionfor a particular
stageof the game. If, however, the periodof time over
which thegamewill berepeatedlyplayedis unknown, the
discountfactorlosesits applicability. In ourmodelweas-
sumethereis no suchknown parameter. Moreover, we
assumethat playersdo not take refugein an equilibrium
solutionto avoid beinghurt by otherplayers’strategies.

In addition,evidenceextractedfrom experimentation
suggeststhathighrevenuesolutionscanbemaintainedre-
peatedlywhenthesedonotnecessarilycorrespondtonear-
equilibriumoutcomes[6]. This paradoxicalreality under-
lines the ideathat the repetitionof gamescombinedwith
thefactthatNashequilibriaarenot, in general,Paretoop-
timal, drivesthemarketparticipantsto higher-revenueso-
lutions. A decisionvectoris Paretooptimal if theredoes
not exist anotherdecisionvectorfor which someindivid-
ual objective function may be improved without deteri-
orating the remainingindividual objective functions[7].
In additionto Paretooptimality we canalsodefineweak
Paretooptimality. A decisionvectoris weaklyParetoop-
timal if theredoesnot exist any otherdecisionvectorfor
which all theindividualobjective functionsareimproved.
TheParetooptimalsetis asubsetof theweaklyParetoop-
timal set. The following definitionsandtheorems,which
may be found in [7, 4] alongwith the respective proofs,
formalizetheconceptsof NashequilibriumandParetoop-
timality.
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Definition2 3 A decisionvector ���3�!� is weaklyPareto
optimal if there doesnot exist another decisionvector�(�4� such that
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is weaklyParetooptimal.

Theorem2 The solution of the weighting problem is
Pareto optimal if the weightingcoefficientsare positive,
that is < � /EA for all � �6 �#"#"	"#�	% .

Becausethe Paretooptimal solutionsetandtheNash
equilibriasetaredistinct, the playersarecaughtbetween
choosing higher revenue strategies and best-response
strategies. In our point of view, noneof them provides
thestrategic solutionsto thegametheplayershaveto face
repeatedly. Instead,they will put in placestrategiesthat
maximizetheir revenuesin the long run, by reactingon
eachstageof the gameaccordingto the movesor read-
justmentsof the other players. This approachbrings in
notionsof “collaborative” and“non-collaborative” thatin-
dicatetheplayer’sprofileor measurethedegreeby which
the playersfeel attractedto contribute to a higher rev-
enuejoint solution. This comprisesa paradoxicalbehav-
ior, for it is clear that rationality dictatesthe choiceof
best-responsesolutions. However, in the long-run these
might leadto lower revenueoutcomesfor all the players
involved.

In [8], the authorsaddressthe problemof distributed
decision-makingby distributed agentsand characterize
theproblemof chosingbetweenattractorsandParetoop-
tima as a questionof local versusglobal optimization.
They proposeways of changingtheir decision-attractors
bothby modifying theway theagentswork andby modi-
fying their environment.

As marketsbecomemorecomplex, players’strategies
arelikely to berepresentedby computerprogramsor au-
tomatathatconductstrategiesbasedonobservationof past
movesby its opponents.In [9], theauthorsexploretheex-
istenceof Nashequilibria in repeatedgameswhereplay-
ersusefinite automatato implementtheir strategies. It is
assumedthat the playersseekprofit maximizationwhile
minimizing implementationcosts. In our model we as-
sumeno suchcostimplementation.Instead,we proposea
very simple,finite statemachinethat is capableof imple-
mentinga simplestochasticgame.

So,ratherthanproposingany typeof supergameequi-
librium, we find a stochasticapproachmodelingtheplay-
ers’ behavior to be more appropriate.Stochasticmoves
maybeseenasameansto maskstrategiesand,asaresult,
to leadto non-equilibriumsolutions.Thatis, themodelwe

proposedoesnot provide us with deterministicsolutions
for the market outcome. It is a stochasticmodel that in-
dicateshow, basedon deterministicinformationprovided
by theNashequilibriaandtheParetooptimalsets,thesu-
pergamesin electricity marketsshouldbe playedby au-
tomatawhenpursuinglong termprofit maximization.

Furthermore,theseautomatashouldnot only be able
to implementa specifiedstochasticprofile but alsocapa-
ble of updatingtheir profiles– dueto market changesas
new participantsenter– usingestimatesbasedoncollected
marketdata.Besides,if acollaborativeoutcomeis thede-
sirablesolution, theseautomatashouldplay clearmoves
that arenot mistaken by its opponentsand,therefore,do
not underminethe market confidencein a collaborative
result– which likely hasthe consequenceof driving the
market to anequilibrium.

The paper has three more sections. In Section 2
we presentthe readjustmentalgorithm used in the re-
peatedgame. In addition, the automatamodelsarealso
explained. Our proposalsare exemplified in Section3
througha simplecase. In Section4 we draw somecon-
clusionsaboutthework presentedin this paper.

2 THE READJUSTMENT STRATEGY

Under the Individual Welfare Maximization (IWM)
algorithm, the playersfind the non-cooperative equilib-
rium solutions for the non-repeatedgameby indepen-
dently solving a nestedoptimizationproblemfor eachof
the bidding spaceregions definedby transmissionline
constraints[1, 2, 3]. Theproblemassumestheform

FHGJIK�L M�N � � N 
PO N �RQ N ��S N � �UTWV �3X
s.t.


YO N �RQ N ��S N � aredeterminedby
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 � �RO&�RQ ���onp 
 � �RO&�$Q �_qrn
(1)

where
� N 
 > � denotestheutility functionof player

V
in the

setof players,X . Also,
� N 
 > � is definedasthe difference

betweenthe sumof benefitsminuschargesand the sum
of paymentsminuscostsfrom the setof his or her con-
trolled generatorsand loads. The vectorsof generation
andloadcontrolledby player

V
aredenotedby

O N and
Q N ,

respectively. Eachplayer
V

controlsa vectorof reported
variablesthat is representedby s N . Thenodalpricesap-
plied to thegenerationandloadcontrolledby player

V
are

a byproductof the OPFandappearas
S N . The costand

benefitfunctionsof eachgeneratorandload aredenoted
by
j �

and
b �

, respectively. t representsthesetof genera-
torsand u representsthesetof loads.Thecostandbene-
fit functionareassumedto bewell describedby quadratic
functions



j � 
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vc � �w� x f ] � "~c z� |B} f ] � "~c � |B� f ] � � � � u (3)

wheres N , theuntruthfully reportedparameteror parame-
ters,substitutesoneor moreof the true costcoefficients
in the quadraticfunction. The equality and inequality
constraintsarerepresentedby p 
 > � and m 
 > � , respectively,
where

O
is the vector of all generatedpower,

Q
is the

vector of all loads,and � representsthe vector of state
variables.

A Paretooptimalsolutioncanbe found,accordingto
theorems1 and2, by substitutingtheobjectivefunctionby
theweightedsumof all individualutility functions.
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(4)

This method is called the Weighting Method and the
weights< N ] � measurethe relative importancethatplayerV

givesto theobjective functionof player
�
. Theproblem

asgiven in (1) may be seenasa specialcaseof problem
(4) when < N ] � ��A ��T?� �EX suchthat

V��� �
. In a non-

cooperative competitive environmentit is, however, dif-
ficult to agreeupon the rankingor relative merit among
functionsof the multiobjective problem. Two casesap-
pear, nevertheless,asbeingparticularlyrelevant: thefirst,
whentheobjectivefunctionsareall weightedequally, cor-
respondingto the equivalent situation where there is a
uniquedecisionmaker; the second,when the profits at
theParetooptimalpoint areall madeequal,which corre-
spondsto asomewhat‘f air’ outcome.Wewill discusslater
the consequencesof not agreeingupon the samePareto
optimum.

The automatareadjust s N for eachstageof the re-
peatedgameby choosingthe objective function to be ei-
theranequilibriumor a Paretooptimalsolutionandthen,
usinga local readjustmenttechnique,moveonestepin the
desireddirection.Newton’smethod

s�� 7��
:��

N � s�� 7
�

N h+� > 
v��zK?L M N �
� : 7 > � K?L M N � 7 �UT�V �3X

(5)
is agoodchoicefor thereadjustmentschemebecauseit is
locally optimal,it is easilyimplementedby anautomaton,
andit is a methodlessproneto misinterpretationby other
automata.Theability to interpretthemovesby theother
automatais of crucial importancesincethe gamemodel
we proposepreservesnon-cooperationamongplayers.

Given that the automatashouldnot play usingshort-
termrationality, they requirea representationof theplay-
ers’preferencesor profiles.In absenceof short-termratio-
nal – thereforedeterministic– choices,the profile repre-
sentationhasto benecessarilystochastic.Onesimplerep-
resentationwouldbeamatrixwhereaplayerwriteshisor
herwillingnessto collaborateat thenext stageof thegame
conditionedon his or herperceptionof theotherplayers’
movesduring the previousstage.Thesecouldhave been
eithernon-collaborative(NC) or collaborative(C). Sucha
tablewould look like Table1, where

V :
,
V z , V�� , and

V=�
representconditionalprobabilities.

Otherplayers’
lastmove

C NC

M
y

la
st

m
ov

e

C ��� ���

N
C ��� �J�

Table 1: Players’profiles

Thesesimpleautomatathatmovestochasticallyin re-
actionto their opponents’movesmaybealsorepresented
by finite statesmachines,as illustratedby Figure 1. In
this casewe assumethat the playerslimit their choices
to this particulartype of machinewith this setof possi-
ble states,which meansthe playerswill move either to-
wardstheequilibriumsolution(to stateNC) or towardsa
particularParetooptimum(to stateC). Wereeitherof the
players’strategiesmorecomplicatedor thesetof possible
desirableoutcomesaugmented– multipleNashequilibria,
multiple Paretooptima– themachineswould necessarily
have to includemorefinite states.

C NC

p3/C

(1-p2)/NC

p1/C

(1-p4)/NC
(1-p1)/C

p2/NC

p4/NC
(1-p3)/C

Figure 1: Automatonasafinite statemachine

Any representationof the players’profilesthat relies
on the interpretationof the other players’ reactionsbe-
comesmoreandmorechallengedasthenumberof play-
ers increases.For an Oligopoly with a reducednumber
of players,it is easyto estimatethe individual movesfor
eachstageof thegame.Moreover, a goodestimateof the
profilesmayalsobeconstructed.If thenumberof players
is high, clearestimatesof the individual movesandpro-
files maybedifficult to obtainandmayrequiretheuseof
complicatedmetrics.Whenthis is thecase,anestimateof
the market willingnessto pursuecollaborative outcomes
maybebetterobtainedby looking ataggregatedvariables
suchasthemarket-clearingpricesandquantities.



3 EXAMPLE

In order to illustrate the merits of our proposalswe
ransomeexperimentsonasimple,lossless,unconstrained
system,which includesonly two competinggenerators
andoneindependentload. The coefficient valuesfor the
linear pricesof the generatorsandvalueof the load are
given,respectively, in Tables2 and3.

���J� �  ��J� �
Generator(i) ¡d¢
£�¤!¥ ��¦�§ ¡d¢
£�¤¨¥ ¦�§

1 0.01 10.0
2 0.02 10.0

Table 2: Pricecoefficients

��© � �  ,© � �
Load(i) ¡d¢,£�¤¨¥ �R¦J§ ¡d¢,£�¤!¥ ¦�§

1 -0.04 30.0
Table 3: Valuecoefficients

In theseexperimentswe assumethateachof thegen-
eratorsusesanautomatonto implementhis or herstrate-
giesduring the supergamethat consistsof several stages
of a gameof similar market conditionsdefinedby the
unchangingload. We representthe players’ profiles by
similar transitiontablesasTable1 andwe assume,given
thereducednumberof players,that themovesby theop-
ponentautomatonare always correctly interpreted. So,
oncethe automatamake their moves,they becomecom-
monknowledge.In addition,andfor a matterof simplic-
ity, theautomatauseonly oneparameter(the linearcoef-
ficient of their reportedprice curve) to gamethe system.
The profiles’ conditionalprobabilitiesareuniformly dis-
tributedandtheautomatareadjusttheirgamingparameter
usingNewton’smethod(5).

Therepresentative solutions,whosereportedparame-
tersareshowedonTable4, for thissimplesystemare:the
Nashequilibrium;theParetooptimalsolutionwhereboth
individual profit functionsareequallyweighted(Pareto1
or P1); andthe Paretooptimal solutionwherethe profits
aremadeequalfor bothplayers(Pareto2 or P2).

ª� � ª� � « � « �¡d¢
£�¤!¥ � ¦�§ ¡d¢,£�¤¨¥ � ¦�§
Nash 0.0292 0.0369 – –
P1 0.0700 0.1400 0.5 0.5
P2 0.0988 0.0928 0.4661 0.5339

Table 4: Reportedparametersfor specificsolutions

Theprofitsattainedateachof thesethreesolutionsare
givenin Table5.

¬ � ¬ � ¬ ��­ ¬ �
($/h) ($/h) ($/h)

NashEq. 475.6 331.1 806.7
Pareto1 769.2 384.6 1153.8
Pareto2 570.4 570.4 1140.8

Table 5: Profitsfor specificsolutions

Figures2 and3 depict,respectively, theParetooptimal

decisionvectorsetandtheParetooptimalprofit setwhen
theweightingfactors< : � < and< z �! ®h < varywithin
thegiveninterval.
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Figure 2: Paretooptimaldecisionvectors
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Figure 3: Paretooptimalprofits

From the point of view of collaborationamongplay-
ers,it is desirableto maintainthesolutionsat every stage
of the gameinside a region where the profits for every
player involved in the gameare higher than the profits
obtainedat the Nashequilibrium. Moreover, if the play-
ersareseekingthe maximizationof their revenues,they
shouldnever play beyondthecurve definedby thePareto
set, e.g., to the right of the curve in Figure 2. If the
threeconditions– for the two playersof our example–
aremet, the result is the region of mutualbenefitasde-
pictedin Figure4. The pointsdefiningthis areaare,be-
sidestheNashequilibrium,theextremepoints


�¯x :R��¯x z ���
 A " A[°[±J² � A "  R°[³J´®� and

�¯x :#�,¯x z �_� 
 A "  $µ[µJ° � A " AJ´[µJA®� .

Limiting thegameto this region bringsthegameto a
new level of rationality, but doesnot provide the players
with a deterministicsolution.This is sobecauseof thein-
finite numberof solutionsontheParetooptimalset.In the
absenceof agreementsor sidepayments,the playersare
still compelledto keepplaying stochasticallyasa means
to keepthemaway from thenon-cooperativeequilibrium.
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Figure 4: Mutually beneficialregion

However, keepingthemovesinsidetheregion of mu-
tual benefitcreatesits own challenges.Eachplayercon-
trolsonly its own unitsandthereforecanonly movealong
specificcoordinates.Withoutany typeof coordination,the
playershave to divisea strategy if they want to keepthe
solutionsin adesirableregion. Theonly way to overcome
thelackof coordinationis for theplayersto assumesome
principle or non-enforciblerule thatdictatesthe strategy.
Oneof thoserulescouldbetheplayersself imposingequal
maximumdeviation from thecurrentsolutionin all coor-
dinates. This strategy would translateinto quadrangular
gamingareasof variablesize for the two-playerexam-
ple. It canbeseenin Figure5 thatthisstrategy effectively
keepsthegameinsidethemutuallybeneficialregion.

Figure 5: Deviation strategies

Without adoptingsomekind of rule as the one pro-
posed,thebesttheplayerscando is to restricttheirmoves
to the rectangularareaenclosingthe mutually beneficial
region. In theexperimentsof this sectionwe assumethis
is thecase.

All the experimentsthat follow wererun for 50 peri-
ods,eachperiodincluding50 stagesof thegame.At the
beginning of eachperiod, the initial valuesfor the play-
ers’ reportedparametersare randomlychosento lie on
the rectangularregion definedby the Nashsolution and
the electedParetosolution – given by properchoiceof
weights < N ] � in (4) – with a uniform distribution. We
picked �¶�·A "  for the Newton’s method stepsizeto

avoid largejumpsin thevaluesof thereportedparameters
causedby thesteepnessof thefunctionwhentheseparam-
etershavesmallvalues.Fromatheoreticalstandpoint,the
choiceof the stepsizeis not important. What mattersis
that the players’ movesmay be correctly interpretedby
their opponents.

3.1 Collaborativeplayers

In this first experimentwe choosetwo collaborative
playerswhoseprofilesarechosento bethesameandequal
to ¸ V : �'A " ¹gºYV z �'A " ± ºYV�� �'A "¼»[ºPV�� �'A " ±�½ . We assume
that theplayersagreeon theweaklyParetooptimalsolu-
tion to be thePareto2. Thestochasticsolutionsobtained
for theseprofilesareillustratedon Figure6.
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Figure 6: Stochasticsolutionsfor two collaborative players

The straighttrajectoriesthat may be observed at the
upper-left andlower-right edgeson Figure6 aretheresult
of restrictingthe movesof the automatato the rectangu-
lar areadefiningtheregionof mutualbenefit.We observe
that the playerstend to concentratetheir movescloseto
thePareto2 point,which is thedesirablesolutionfor most
of thetime. Thisgamegrantstheplayerstheapproximate
averageprofitsasshowedonrow 1 of Table6 for any par-
ticular 50-stageperiod.

¾¬ � ¾¬ �Experiment ( ¢
£ ¦ ) ( ¢
£ ¦ )
1 578 437
2 586 468
3 492 549

4(a) 496 549
4(b) 570 493
4(c) 498 561
Nash 476 331

Table 6: Averageprofits

Thesevaluesareobtainedby runningseveral periods
of the gameuntil the averageprofits converge. The dif-
ferencein profitsresultsfrom theasymmetryof theprofit
functions.Anyway, bothplayersachieveanaverageprofit
thatis well abovetheNashequilibriumprofits.



3.2 Non-collabor
¿

ativeplayers

This experimentis similar to thepreviousexperiment
exceptfor thefactthattheplayershaveanon-collaborative
profile describedby ¸ V : �'A " ± ºPV z �'A " µ ºPV�� �'A " ± ºPV�� �A " µ�½ . Theresultsof thisexperimentareillustratedonFig-
ure 7. The averageprofits are given on row 2 of Table
6. Surprisingly, this gamegrantsan averageprofit that
is higherfor both playersthanfor the previous game. It
showsthatthesolutionsof thegamedonotalwaysconcide
with what the playersantecipate.Instead,the outcomes
are dependenton the particularprofit functions. In this
secondexperimentthestochasticsolutionsendupconcen-
trating in morefavorablezones,contraryto whatwasex-
pected,dueto theparticularshapeof theprofit functions.
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Figure 7: Stochasticsolutionsfor two non-collaborative players

3.3 Onecollaborativeplayerandonenon-collaborative
player

In this experimentwe areableto evaluatethe risk of
engagingin collaborativebehavior whentheotherplayers
arenot willing to do so. We chooseplayer1 to becollab-
orative andplayer2 to be non-collaborative. The profile
tableshavethesameprobabilitiesasusedpreviously. Fig-
ure8 showsa periodof thisstochasticgame.
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Figure8: Stochasticsolutionsfor onecollaborative playerandonenon-
collaborative player

In comparisonto the previous experiments,player2
is betteroff andplayer1 is effectively “double-crossed”,

seeinghis or herprofitscomingdown (seerow 3 of Table
6). However, theaverageoutcomeis still advantageousfor
bothplayerswhencomparedto theNashequilibrium.

3.4 Disagreementover theParetooptimalsolution

In this experimentwe want to evaluatethe impactof
thedisagreementonthedesirableParetooptimalsolution.
Weassumethatplayer1 choosesthePareto1 ashisor her
desirablecollaborativesolutionandthatplayer2 chooses
the Pareto2 solution instead– reflectedin assumedval-
uesof < N ] � in (4). Thepreviousthreeexperimentsarerun
as beforewithout any further change. We may observe
in Figure9 a periodof the gamewhenboth playersare
collaborative.
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Figure 9: Stochasticsolutionsfor two collaborative playersdisagreeing
on theParetooptimalsolution

The resultson rows 4(a), 4(b), and 4(c) of Table 6
show that,again,contraryto whatwasexpected,player1’s
profitsdecreasefor experiment4(a)and4(b)andincrease
for experiment4(c) whencomparedto thecorresponding
threepreviousexperiences.Player2’s profits increasein
all threeexperiments.Whencomparingtheresultsof ex-
periment4(b)with thoseof 4(a)wenow concludethatfor
thenon-collaborativegame,only therevenuesof player2
decrease.For experiment4(c)we obtainsimilar resultsas
to thoseof thefirst experiment.

3.5 Comments

Weadoptedthissmallsystemin theseexperimentsfor
illustrative purposes.The major drawbackof using this
smallsystemis thesteepnessof theprofit functionswhich
lead to someunexpectedresults. If more playerswere
usedin theseexperiments,the profit functionswould be
betterbehaved,alsoallowing theadoptionof lessconser-
vativestepsizesin Newton’smethod.

It becomesclear after thesesimple experimentsthat
therevenuesobtainedby theplayersdependnotonly upon
the choiceof one’s profile but alsoupon the opponent’s
choiceof profile. In addition,the choiceof the desirable
Paretooptimal solutionhasan impacton everyone’s rev-
enuesaswell. More importantly, independentlyof their
choices,the playersmaintainin all experimentsan aver-
ageprofit thatis higherthantheequilibriumprofit, asmay
beobservedonTable6.



4 CONCLUSIONS

The work presentedhere proposesa stochasticap-
proachto the problemof finding trading solutionsin a
market where trading conditions repeatover time and
whereplayers’strategiestakeintoaccounttheexistenceof
bothNashandParetooptimal solutions.By playing ran-
domly throughthe useof automata,the playersdisguise
their individual movesto their opponents,sinceonly the
profile probabilitiesarepredeterminedandnot themoves
themeselves.

Through the example in this paperwe showed that
thereexists a region betweenthe Paretooptimal setand
the Nashsolution that always grantsthe playershigher
revenuesthan the Nashsolution. If the playersrestrict
their movesto this mutuallybeneficialregion they arein-
deedincreasingtheir revenuesover thegameperiod.One
key idea is that only randommovesallow them to reap
thosebenefitssincedeterministicchoicesof best-response
movesdrive theplayersto equilibriumsolutions.

Theideasconveyedin thepapermaybegeneralizedto
any numberof players. The two-playerexampleusedin
the paperwasadoptedfor illustrative purposes.For a À -
playerscenariotheParetosetwouldbe À hÁ dimensional
and the mutually beneficialregion would take À dimen-
sions.

Oneinterestingfeatureof Paretooptimalsolutionsthat
is exploredin thepaperis thatoncea systemconstraintis
hit, while theplayersgamethesystem,at leastoneof the
playersinvolvedin thegamewill seehis or hergainsde-
creaseor stayconstant.Therefore,theParetooptimalset
is boundedby constraints.So, althoughNashequilibria
may be sustainedfor different setsof active constraints
[3], only one equilibrium may exist for the set of con-
straintsactive for the Paretooptimal set. This andother
implicationsof bringing togetherthe Nashequilibria set
(multiple equilibria)andtheParetooptimalsethave to be
addressedin futureresearch.

Thepaperassumesautomatawith staticprofiles. Fu-
tureresearchshouldaddressthepossibilityof dynamically
changingprofiles. Although it is clearthat somecombi-
nationsof profilesleadto betteroutcomesthanothercom-
binations,the calculationof the expectedprofits with re-
spectto thecontinuouslychangingprofilesis beyondnor-
mal computationpower in a reasonableamountof time.
Whattheautomatamaydois startwith a randomlygener-
atedsetof profilesand,asthegameevolvesthroughsubse-
quentstages,selecttheonesthatleadto abetteroutcome.
Thedynamicupdatewill likely leadplayersto implicitly
adopttradingsolutionsthatarealmostalwayscloseto the
Paretooptimalset.

ACKNOWLEDGMENTS

This work was supportedby the Scienceand Tech-
nology Foundationof the PortugueseMinistry of Sci-

ence and Technology, under the scholarshipPRAXIS
XX1/BD/13801/97, and by the U.S. National Science
FoundationthroughgrantsECS 00-80279and DMI 01-
09461.

REFERENCES

[1] JamesD. Weber, “IndividualWelfareMaximization
in Electricity MarketsIncludingConsumerandFull
TransmissionSystemModeling”, Ph.D.dissertation,
Universityof Illinois atUrbana-Champaign,Depart-
mentof ElectricalandComputerEngineering,Octo-
ber1999.

[2] J. D. WeberandT. J. Overbye, “A Two-level Op-
timization Problemfor Analysisof Market Bidding
Strategies”, in Proc.of 1999IEEE PowerEngineer-
ing SocietySummerMeeting., pp.682-687.

[3] PedroF. Correia,JamesD. Weber, ThomasJ.Over-
bye, and Ian A. Hiskens, “Strategic Equilibria in
CentralizedElectricity Markets”, in Proc. of IEEE
Power Tech. Porto, Portugal: September10-13th,
2001,VolumeI.

[4] Jean-PierreAubin, Optima and Equilibria. Nor-
well, MA: 2nded.,GraduateTexts in Mathematics,
Springer, 1998.

[5] JamesW. Friedman, “A Non-cooperative Equilib-
rium for Supergames”, The Review of Economic
Studies,Volume38,Issue1 (Jan.,1971),1-12.

[6] S. Ede,T. Mount, W. Schulze,R. Thomas,andR.
Zimmerman, “ExperimentalTestsof Competitive
Marketsfor ElectricPower”, in Proc. of theThirty-
Fourth AnnualHawaii InternationalConferenceon
SystemSciences, 2001.

[7] KaisaM. Miettinen, NonlinearMultiobjectiveOpti-
mization, Norwell, MA: Kluwer AcademicPublish-
ers,1999.

[8] SaroshTalukdarandEduardoCamponogara,“Net-
work Controlasa Distributed,DynamicGame”, in
Proc. of the Thirty-Fourth Annual Hawaii Interna-
tional Conferenceon SystemSciences, 2001.

[9] Dilip Abreu, and Ariel Rubinstein,“The Structure
of NashEquilibrium in RepeatedGameswith Finite
Automata’,Econometrica, Volume56,Issue6 (Nov.,
1988),1259-1281.
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