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Abstract—The optimal power flow (OPF) problem minimizes
power system operating cost subject to both engineering and
network constraints. With the potential to find global solutions,
significant research interest has focused on convex relaxations
of the non-convex AC OPF problem. This paper investigates
“moment-based” relaxations of the OPF problem developed
from polynomial optimization theory. At the cost of increased
computational requirements, moment relaxations are generally
tighter than relaxations employed in previous research, thus
resulting in global solutions for a broader class of OPF problems.
Exploration of the feasible spaces of test systems illustrates the
effectiveness of the moment relaxations.

Index Terms–Optimal power flow, Global optimization,
Moment relaxation, Semidefinite programming

I. INTRODUCTION

The optimal power flow (OPF) problem determines an
optimal operating point for an electric power system in terms
of a specified objective function (typically generation cost
per unit time), subject to both network equality constraints
(i.e., the power flow equations, which model the relationship
between voltages and power injections) and engineering limits
(e.g., inequality constraints on voltage magnitudes, active and
reactive power generations, and line flows).

The OPF problem is generally non-convex due to the
non-linear power flow equations [1] and may have local
solutions [2]. Non-convexity of the OPF problem has made
solution techniques an ongoing research topic. Many OPF
solution techniques have been proposed, including successive
quadratic programs, Lagrangian relaxation, genetic algorithms,
particle swarm optimization, and interior point methods [3].

Recently, significant attention has focused on a semidefinite
relaxation of the OPF problem [4]. Using a rank relaxation,
the OPF problem is reformulated as a convex semidefinite
program. If the relaxed problem satisfies a rank condition (i.e.,
the relaxation is said to be “exact” or “tight”), the global
solution to the original OPF problem can be determined in
polynomial time. Prior OPF solution methods do not guarantee
finding a global solution in polynomial time; semidefinite pro-
gramming approaches thus have a substantial advantage over
traditional solution techniques. However, the rank condition
is not satisfied for all practical OPF problems [2], [5], [6].
This paper presents alternative “moment-based” relaxations
that globally solve a broader class of OPF problems.

There is substantial research interest in determining suffi-
cient conditions for which the semidefinite relaxation of [4] is

exact. Existing sufficient conditions include requirements on
power injection and voltage magnitude limits and either radial
networks (typical of distribution system models) or appropriate
placement of controllable phase shifting transformers [7].

Extending this literature to mesh networks without phase-
shifting transformers, [8] investigates the feasible space of
active power injections for weakly-cyclic networks (i.e., net-
works where no line belongs to more than one cycle). Assum-
ing no lower limits on active and reactive power injections
at each bus and with line-flow limits represented as voltage
differences (i.e., for voltage phasors Vi and Vj , constrain the
flow between buses i and j as |Vi − Vj | ≤ ∆V max

ij ), the
semidefinite relaxation of [4] is proven exact for weakly-cyclic
networks with cycles of size three.

While the sufficient conditions developed thus far are
promising, they only apply to a limited subset of OPF prob-
lems. For more general cases, [9] proposes a method for
finding a globally optimal solution that is “hidden” in a higher-
rank subspace of solutions to the semidefinite relaxation.
That is, the solution to the semidefinite relaxation obtained
numerically does not satisfy the rank condition but a rank
one solution exists with the same globally optimal objective
value. For these cases, the semidefinite relaxation is exact in
the sense that it yields the globally optimal objective value
rather than a strict lower bound, but this fact is not evident as
the semidefinite relaxation solution does not directly provide
globally optimal decision variables (i.e., the optimal voltage
phasors). With a heuristic for finding such “hidden” solutions,
[9] broadens the applicability of the semidefinite relaxation.

However, there exist practical problems for which the
semidefinite relaxation is not exact (i.e., the semidefinite
relaxation solution has optimal objective value strictly less
than the global minimum) [6], [9]. For such cases, [8] and [9]
propose heuristics for obtaining an (only-guaranteed-locally)
optimal solution from the semidefinite relaxation. Heuristics
are promising for finding local solutions, and the optimal
objective value of the semidefinite relaxation provides a metric
for the potential suboptimality of these solutions. For example,
the heuristic in [9] finds a solution to a modified form of the
IEEE 14-bus system that is within 0.13% of global optimality.
This compares favorably to a solution from the interior-point
solver in MATPOWER [10], which is only within 4.83% of
global optimality.

While deserving of further study, heuristics eliminate the
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global optimality guarantee that is one of the main advan-
tages of the semidefinite relaxation. This paper proposes an
alternative moment-based convex relaxation that, when exact,
yields the global optimum. Using polynomial optimization
theory [11], moment relaxations have the potential to globally
solve a broad class of OPF problems, including many problems
for which the semidefinite relaxation of [4] is not exact. The
moment relaxation exploits the fact that the OPF problem is
composed of polynomials in the voltage phasor components
and is therefore a polynomial optimization problem.

The ability to globally solve a broader class of OPF
problems has a computational cost. Whereas the semidefinite
relaxation of [4] optimizes matrices composed of all degree-
two combinations of the voltage phasor components, the
moment relaxations optimize matrices composed of higher-
degree combinations. For an n-bus system, the order-γ mo-
ment relaxation is solved using a semidefinite program which
has a positive semidefinite constraint on a k×k matrix, where
k = (2n+ γ)!/ ((2n)!γ!) (i.e., this matrix is composed of all
combinations of voltage components up to order 2γ). Thus,
the computational requirements of the moment relaxations can
be substantially larger than the semidefinite relaxation of [4],
especially for higher relaxation orders.

Fortunately, experience with small systems suggests that low
(often second) order relaxations globally solve a broad class of
OPF problems, including problems for which the semidefinite
relaxation of [4] is not exact due to disconnected or otherwise
non-convex feasible spaces.1 The capabilities of low-order
moment relaxations are independently studied in [12].

Applying moment relaxations to large OPF problems re-
quires exploitation of power system sparsity. Using a matrix
completion decomposition and selectively applying the mo-
ment relaxations to problematic regions, the related work [13]
extends the moment relaxations to large OPF problems (up
to 300 buses). Selective application of the moment relaxation
is also discussed in [14], but a computationally expensive
subproblem and lack of concurrent exploitation of sparsity
limits application to systems with approximately 40 buses.

This paper is organized as follows. After introducing the
OPF problem formulation in Section II and describing the
moment relaxation in Section III, we explore the feasible space
of the second-order moment relaxation for a two-bus system
in Section IV. For some parameter choices, the semidefinite
relaxation of [4] is not exact for this system. Since, conversely,
the moment relaxation is exact for this problem, a comparison
of the feasible spaces of the relaxations illustrates the effective-
ness of the proposed approach. Section V then presents results
from the application of the moment relaxation to other small
OPF problems for which the semidefinite relaxation of [4] is
not exact. Section VI concludes the paper and discusses future
research directions.

1Note that no fixed-order relaxation is exact for all OPF problems due to the
polynomial-time complexity of semidefinite programs as compared to the NP-
hardness of some OPF problems [4]. Indeed, as discussed in Section V, some
of the NP-hard problems in [4] provide examples where low-order moment
relaxations are not exact.

II. OPF PROBLEM FORMULATION

We first present the OPF problem as it is classically formu-
lated. This formulation is in terms of rectangular voltage co-
ordinates, active and reactive power generation, and apparent-
power line-flow limits. Consider an n-bus power system,
where N = {1, 2, . . . , n} is the set of all buses, G is the set
of generator buses, and L is the set of all lines. PDk + jQDk

represents the active and reactive load demand at each bus
k ∈ N . Vk = Vdk + jVqk represents the voltage phasors in
rectangular coordinates at each bus k ∈ N . Superscripts “max”
and “min” denote specified upper and lower limits. Buses with-
out generators have maximum and minimum generation set to
zero (i.e., Pmax

Gk = Pmin
Gk = Qmax

Gk = Qmin
Gk = 0, ∀k ∈ N \G).

Y = G+ jB denotes the network admittance matrix.
The network physics are described by the power flow

equations:

PGk =fPk (Vd, Vq) = Vdk

n∑
i=1

(GikVdi −BikVqi)

+ Vqk

n∑
i=1

(BikVdi +GikVqi) + PDk (1a)

QGk =fQk (Vd, Vq) = Vdk

n∑
i=1

(−BikVdi −GikVqi)

+ Vqk

n∑
i=1

(GikVdi −BikVqi) +QDk (1b)

Define a convex quadratic cost function for active power
generation:

fCk (Vd, Vq) = ck2 (fPk (Vd, Vq))
2
+ ck1fPk (Vd, Vq) + ck0

(2)
Define a function for squared voltage magnitude:

(Vk)
2
= fV k (Vd, Vq) = V 2

dk + V 2
qk (3)

Squared apparent-power line-flows (Slm)
2 are polynomial

functions of the voltage components Vd and Vq . We assume
a Π-model with series admittance glm + jblm and total shunt
susceptance bsh,lm for the line from bus l to bus m. (For
inductive lines and capacitive shunt susceptances, blm is a
negative quantity and bsh,lm is a positive quantity.)

Plm = fPlm (Vd, Vq) = blm (VdlVqm − VdmVql)

+ glm
(
V 2
dl + V 2

ql − VqlVqm − VdlVdm

)
(4a)

Qlm = fQlm (Vd, Vq) = blm
(
VdlVdm + VqlVqm − V 2

dl − V 2
ql

)
+ glm (VdlVqm − VdmVql)−

bsh,lm
2

(
V 2
dl + V 2

ql

)
(4b)

(Slm)2 = fSlm (Vd, Vq) = (fPlm (Vd, Vq))
2 + (fQlm (Vd, Vq))

2

(4c)
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The classical OPF problem is then

min
Vd,Vq

∑
k∈G

fCk (Vd, Vq) subject to (5a)

Pmin
Gk ≤ fPk (Vd, Vq) ≤ Pmax

Gk ∀k ∈ N (5b)

Qmin
Gk ≤ fQk (Vd, Vq) ≤ Qmax

Gk ∀k ∈ N (5c)(
V min
k

)2

≤ fV k (Vd, Vq) ≤
(
V max
k

)2

∀k ∈ N (5d)

fSlm (Vd, Vq) ≤ (Smax
lm )2 ∀ (l,m) ∈ L (5e)

Vq1 = 0 (5f)

Note that this formulation limits the apparent-power flow
measured at each end of a given line, recognizing that line
losses can cause these quantities to differ. Constraint (5f) sets
the reference bus angle to zero.

III. MOMENT-BASED RELAXATION OVERVIEW

The OPF problem (5) is comprised of polynomial functions
of the voltage components Vd and Vq and can therefore be
solved using moment-based relaxations [11]. We next present
the moment relaxation for the OPF problem (5). More detailed
descriptions of moment relaxations are available in [11].

Polynomial optimization problems, such as the OPF prob-
lem, are a special case of a class of problems known as
“generalized moment problems” [11]. Global solutions to
generalized moment problems can be approximated using mo-
ment relaxations that are formulated as semidefinite programs.
For polynomial optimization problems that satisfy a technical
condition on the compactness of at least one constraint polyno-
mial, the approximation converges to the global solution(s) as
the relaxation order increases [11]. (This technical condition
can always be satisfied by adding large bounds on all variables
and is therefore not restrictive for OPF problems.) Note that
while moment relaxations can find all global solutions to
polynomial optimization problems, we focus on problems with
a single global optimum.

Formulating the moment relaxation requires several def-
initions. Define the vector x̂ =

[
Vd1 Vd2 . . . Vqn

]ᵀ,
which contains all first-order monomials. Given a vector α =[
α1 α2 . . . α2n

]ᵀ with α ∈ N2n representing monomial

exponents, the expression x̂α = V α1

d1 V α2

d2 · · ·V α2n
qn defines the

monomial associated with x̂ and α. A polynomial g (x̂) is then

g (x̂) =
∑

α∈N2n

gαx̂
α (6)

where gα is the scalar coefficient corresponding to x̂α.
Next define a linear functional Ly {g}:

Ly {g} =
∑

α∈N2n

gαyα (7)

This functional replaces the monomials x̂α in a polynomial
function g (x̂) with scalar variables yα. If the argument to the
functional Ly {g} is a matrix, the functional is applied to each
element of the matrix.

Consider, for example, the vector x̂ =
[
Vd1 Vd2 Vq2

]ᵀ
corresponding to the voltage components of a two-bus system.
(For notational convenience, the angle reference constraint
Vq1 = 0 is used to eliminate Vq1.) Consider the polynomial
g (x̂) = −1+ fV 2 (Vd, Vq) = −1+V 2

d2 +V 2
q2. (The constraint

g (x̂) = 0 forces the squared voltage magnitude at bus 2 to
equal 1 per unit.) Then Ly {g} = −y000 + y020 + y002. Thus,
L {g} converts a polynomial g (x̂) to a linear function of y.

The order-γ moment relaxation forms a vector xγ composed
of all monomials of the voltage components up to order γ:

xγ =
[
1 Vd1 . . . Vqn V 2

d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]ᵀ
(8)

We now define moment and localizing matrices. The sym-
metric moment matrix Mγ (y) has entries yα corresponding
to all monomials xα up to order 2γ:

Mγ (y) = Ly

(
xγx

ᵀ
γ

)
. (9)

Consider, for instance, a two-bus example system with x2

given in (10). For γ = 2, this system has the moment matrix
shown in (11). This matrix has entries yα corresponding to all
monomials xα up to degree four.

Note that several terms are repeated in the moment matrix
beyond those expected for a generic symmetric matrix. In

x2 =
[
1 Vd1 Vd2 Vq2 V 2

d1 Vd1Vd2 Vd1Vq2 V 2
d2 Vd2Vq2 V 2

q2

]ᵀ (10)

M2 (y) = Ly (x2x
ᵀ
2) =



y000 y100 y010 y001 y200 y110 y101 y020 y011 y002

y100 y200 y110 y101 y300 y210 y201 y120 y111 y102

y010 y110 y020 y011 y210 y120 y111 y030 y021 y012

y001 y101 y011 y002 y201 y111 y102 y021 y012 y003

y200 y300 y210 y201 y400 y310 y301 y220 y211 y202

y110 y210 y120 y111 y310 y220 y211 y130 y121 y112

y101 y201 y111 y102 y301 y211 y202 y121 y112 y103

y020 y120 y030 y021 y220 y130 y121 y040 y031 y022

y011 y111 y021 y012 y211 y121 y112 y031 y022 y013

y002 y102 y012 y003 y202 y112 y103 y022 y013 y004



(11)
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M1 {(fV 2 − 0.81) y} =


y020 + y002 − 0.81y000 y120 + y102 − 0.81y100 y030 + y012 − 0.81y010 y021 + y003 − 0.81y001

y120 + y102 − 0.81y100 y220 + y202 − 0.81y200 y130 + y112 − 0.81y110 y121 + y103 − 0.81y101

y030 + y012 − 0.81y010 y130 + y112 − 0.81y110 y040 + y022 − 0.81y020 y031 + y013 − 0.81y011

y021 + y003 − 0.81y001 y121 + y103 − 0.81y101 y031 + y013 − 0.81y011 y022 + y004 − 0.81y002

 (12)

M2 (y), for instance, the terms corresponding to second-order
monomials (e.g., y200) appear in both the second diagonal
block of M2 (y) and the first row and column. There are also
repetitions in the off-diagonal block, whose entries correspond
to third-order monomials (e.g., y210) and in the third diago-
nal block of M2, whose entries correspond to fourth-order
monomials (e.g., y220).

Symmetric localizing matrices are defined for each con-
straint of (5). The localizing matrices consist of linear com-
binations of the moment matrix entries y. Each polynomial
constraint of the form f−a ≥ 0 in (5) (e.g., fV 2−V min

2 ≥ 0)
corresponds to the localizing matrix

Mγ−β {(f − a) y} = Ly

{
(f − a)xγ−βx

ᵀ
γ−β

}
(13)

where the polynomial f has degree 2β or 2β − 1. The bus 2
lower voltage limit with V min

2 = 0.9 per unit for the two-bus
example system, for example, has the corresponding localizing
matrix in (12).

We can now form the order-γ moment relaxation of the OPF
problem.

min
y

Ly

{∑
k∈G

fCk

}
subject to (14a)

Mγ−1

{(
fPk − Pmin

k

)
y
}
≽ 0 ∀k ∈ N (14b)

Mγ−1

{(
Pmax
k − fPk

)
y
}
≽ 0 ∀k ∈ N (14c)

Mγ−1

{(
fQk −Qmin

k

)
y
}
≽ 0 ∀k ∈ N (14d)

Mγ−1

{(
Qmax

k − fQk

)
y
}
≽ 0 ∀k ∈ N (14e)

Mγ−1

{(
fV k − V min

k

)
y
}
≽ 0 ∀k ∈ N (14f)

Mγ−1

{(
V max
k − fV k

)
y
}
≽ 0 ∀k ∈ N (14g)

Mγ−2

{(
Smax
lm − fSlm

)
y
}
≽ 0 ∀ (l,m) ∈ L (14h)

Mγ (y) ≽ 0 (14i)
y00...0 = 1 (14j)
y⋆η⋆⋆...⋆ = 0 ∀η ≥ 1 (14k)

where ≽ 0 indicates that the corresponding matrix is positive
semidefinite and ⋆ represents any integer in [0, γ]. The mo-
ment relaxation is thus a semidefinite program. (A dual form
of the moment relaxation is a sum-of-squares program [11].)
Note that the constraint (14j) enforces the fact that x0 = 1.
The constraint (14k) corresponds to (5f); the angle reference
can alternatively be used to eliminate all terms corresponding
to Vq1 to reduce the size of the semidefinite program.

Equality constraints are modeled as two inequality con-
straints. Since, for a symmetric matrix A, the constraints
A ≽ 0 and −A ≽ 0 imply A = 0, all entries of a localizing
matrix corresponding to an equality constrained polynomial
(e.g., the power flow constraints at load buses) are zero.

The order-γ moment relaxation yields a single global so-
lution if rank (Mγ (y)) = 1. A solution x∗ to the OPF
problem (5) can then be determined from the elements of y
corresponding to the linear monomials (e.g., V ∗

d1 = y100···0).
If rank (Mγ (y)) > 1, then there are either multiple global
solutions requiring the solution extraction procedure in [11]
or the order-γ moment relaxation is not exact and yields only
a lower bound on the objective value. If the order-γ moment
relaxation is not exact, the order-(γ + 1) moment relaxation
will improve the lower bound and may give a global solution.

Note that the order γ of the moment relaxation must be
greater than or equal to half of the degree of any polynomial
in the OPF problem (5). All polynomials can then be written
as linear functions of the entries of Mγ . For instance, the
OPF problem with a linear cost function and without apparent-
power line-flow limits requires γ ≥ 1. Although direct
implementation of (5) requires γ ≥ 2 due to the fourth-
order polynomials in the cost function and apparent-power
line-flow limits, these limits can be rewritten as second-order
polynomials using a Schur complement [4]. The OPF problem
reformulated in this way only requires γ ≥ 1, but experience
suggests that implementing both (5) directly and with a Schur
complement has numerical advantages.

It is interesting to compare the first-order moment relaxation
and the semidefinite relaxation of [4]. The first-order moment
relaxation has a moment matrix with elements corresponding
to all monomials up to second-order. The localizing matrices
are the constraints multiplied by the scalar 1; the localiz-
ing matrix constraints for the first-order moment relaxation
simply enforce the linear scalar equations Ly {f − a} =∑

α∈N2n (fαyα) − y0a ≥ 0 for all constraints in (5). Thus,
the first-order moment relaxation is closely related to the
semidefinite relaxation of [4] which has a feasible space
defined by a positive semidefinite matrix constraint and linear
constraints on the matrix elements. The slight difference
between the formulations is that the semidefinite relaxation
of [4] uses a matrix corresponding to only the second-order
monomials (e.g., the second diagonal block in (11)), whereas
the first-order moment relaxation additionally has elements
corresponding to constant and linear polynomials in its mo-
ment matrix M1 (y). This may yield different results for the
first-order moment relaxation and the semidefinite relaxation
of [4] when the relaxations are not exact.
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IV. APPLICATION TO A TWO-BUS EXAMPLE SYSTEM

With three degrees of freedom Vd1, Vd2, and Vq2 (the angle
reference constraint (5f) forces Vq1 = 0), the entire feasible
space of the two-bus example system in [15] can be visualized
in three dimensions. For some choices of parameters, the
OPF problem (5) for this system has a disconnected feasible
space, and the semidefinite relaxation of [4] is not exact.
(Note that this system does not satisfy the sufficient conditions
for exactness of the semidefinite relaxation described in [7].)
This section illustrates the feasible space for the second-order
moment relaxation, which finds a global solution for a much
larger range of parameters for this problem.

Fig. 1 gives the system’s one-line diagram assuming a
100 MVA base power. The generator at bus 1 has no limits
on active or reactive outputs and there is no line-flow limit.
Bus 1 voltage magnitude is in the range [0.95, 1.05] per unit,
while bus 2 voltage magnitude is greater than 0.95 per unit
and less than the parameter V max

2 .

R  + jX  = 0.04 + j0.20
V1 V2

P  + jQ
22

12 12

= 3.525 - j3.580

Fig. 1. Two-Bus System from [15]

Fig. 2 shows the feasible space for the semidefinite re-
laxation of [4]. The colored conic shape is the projection
of the feasible space of the semidefinite relaxation into the
space of squared voltage components (V 2

d1, V 2
d2, and V 2

q2),
with the colors based on a $1/MWh cost of active power
generation at bus 1. The red line forms the (disconnected)
feasible space for the OPF problem (5). With V max

2 = 1.05
per unit, both the semidefinite relaxation of [4] and the OPF
problem (5) have global minimum at the red square in Fig. 2,
and the semidefinite relaxation is exact. The more stringent
limit of V max

2 = 1.02 per unit is shown by the gray plane;
this constraint eliminates the feasible space to the left of the
plane. The solution to the semidefinite relaxation of [4] is at
the red circle on the gray plane, while the global solution to
the classical OPF problem is at the red triangle. Thus, the
semidefinite relaxation of [4] is not exact.

Conversely, the second-order moment relaxation is exact for
both V max

2 = 1.05 per unit and V max
2 = 1.02 per unit. Fig. 3

shows a projection of the feasible space for this problem.
The gray plane again corresponds to V max

2 = 1.02 per unit
in the projected space. The feasible space for the second-
order moment relaxation is planar with boundaries equal to
the feasible space of the OPF problem (5), which consists
solely of the two red line segments on the left and far right
of Fig. 3. (Both the colors showing the generation cost and
the feasible space values are recovered from the entries of
the moment matrix corresponding to the squared terms in the
second diagonal block of (11).) With V max

2 = 1.05 per unit,
the second-order moment relaxation finds the global solution
at the red square in Fig. 3.

Feasible Space of First-Order Relaxation for Two-Bus System
Objective Value

($/hour)

V
d1

2

V

Vd2
2

q2

2

Fig. 2. Feasible Space of the Semidefinite Relaxation of [4] for the Two-
Bus System. The solution with V max

2 = 1.05 per unit is at the red square.
For V max

2 = 1.02 per unit (illustrated by the gray plane), the semidefinite
relaxation finds the red circle on the gray plane rather than the global solution
at the red triangle.

V
d1

V

Vd2
2

q2

2

2

Objective Value
($/hour)

Feasible Space of Second-Order Relaxation for Two-Bus System

Fig. 3. Feasible Space of the Second-Order Moment Relaxation for the Two-
Bus System. The solution with V max

2 = 1.05 per unit is at the red square.
For V max

2 = 1.02 per unit (illustrated by the gray plane), the second-order
relaxation finds the solution at the red triangle rather than the point at the red
circle on the gray plane. The dashed line delimits the feasible space of the
second-order relaxation with V max

2 = 1.02 per unit.

In the projection shown in Fig. 3, it appears that imposing
the limit V max

2 = 1.02 per unit will result in the second-order
moment relaxation finding the point at the red circle (which
does not satisfy the condition rank (M2 (y)) = 1) rather than
the global optimum to the OPF problem (5), which is at the red
triangle. (Points on the plane between the red line segments,
such as the red circle, are not feasible for the OPF problem, but
are in the feasible space of the second-order moment relaxation
with V max

2 = 1.05 per unit.)
However, the second-order moment relaxation finds the

global solution at the red triangle and is therefore exact. While
the red circle is in the feasible space when V max

2 = 1.05
per unit, this and nearby points are eliminated from the
feasible space when V max

2 = 1.02 per unit by the upper
voltage magnitude constraint (14g). That is, the localizing
matrix M1

{(
V max
2 − fV 2

)
y
}

is positive semidefinite for
these points when V max

2 = 1.05 per unit but not when
V max
2 = 1.02 per unit. The feasible space with V max

2 = 1.02



 

18th Power Systems Computation Conference  Wroclaw, Poland – August 18-22, 2014 

 

per unit is the planar region between the black dashed line
and the red line on the right. (Note that there is a small
range V max

2 ∈ [1.0336, 1.0338] per unit where the second-
order relaxation does not yield a global optimum; a third-order
relaxation finds the global solution with V max

2 in this range.)
With the need to have consistent higher-order terms in y

that yield positive semidefinite moment and localizing ma-
trices, moment relaxations with γ > 1 are tighter than the
semidefinite relaxation of [4]. The improved tightness has
a computational cost: the largest matrix in the semidefinite
relaxation of [4] is 3×3 in contrast to 10×10 for the second-
order moment relaxation.

V. RESULTS FOR PREVIOUSLY PUBLISHED EXAMPLES

Section IV shows how a moment relaxation globally solves
a problem for which the semidefinite relaxation of [4] is not
exact. The moment relaxation is next applied to other small
problems for which the semidefinite relaxation of [4] is not
exact. These problems were solved using YALMIP’s moment
solver [16] and SeDuMi [17].

Table I lists small problems for which the semidefinite
relaxation of [4] is not exact for certain parameters. The
number of buses is appended to the case names. The table
shows the lowest order γmin needed for a global solution. A
second-order moment relaxation suffices for a broad class of
problems. Third-order relaxations are occasionally needed for
small parameter ranges. Application of the moment relaxations
to larger problems is discussed in [13].

Case Parameters γmin

LMBD3 [5] 50 MVA line limit 2
MLD3 [6] 100 MVA line limit 2
BGMT3 [2] 2
LH5 [1] PD3 = 17.17 per unit 2

BGMT5 [2]
Qmin

2 ∈ [−50,−27.36] MVAR 2
Qmin

2 ∈ [−27.35,−27.04] MVAR 3
Qmin

2 ∈ [−27.03, 0] MVAR 2
BGMT9 [2] 2
MSL10 ex1 [8] > 2
MSL10 ex2 [8] 2

TABLE I
MOMENT RELAXATION RESULTS

We have some specific comments on these examples. The
three-bus OPF problems LMBD3 and MLD3 have binding
apparent-power line-flow limits. The line-flow limit in MLD3
results in a disconnected feasible space [6]. Thus, the second-
order moment relaxation globally solves at least some prob-
lems for which the semidefinite relaxation of [4] is not exact
due to tight line-flow limits.

The semidefinite relaxation of [4] is not exact for the
three and nine-bus problems BGMT3 and BGMT9 due to
the presence of local optima. The second-order moment
relaxation finds the global optimum for these problems.
MATPOWER [10] with the MIPS solver initialized using
a “flat start” (unity voltage magnitudes with zero voltage
angles) finds a local optimum for BGMT9 with objective value
38% greater than the globally optimal objective value. The

semidefinite relaxation of [4] yields a lower bound that is 11%
less than the global optimum. Thus, existing techniques do not
perform well for this problem.

Similar to the problem in Section IV, a third-order moment
relaxation is needed to globally solve the five-bus problem
BGMT5 for a narrow parameter range.

The gray region in Fig. 4 shows the non-convex feasible
space of active power injections for the lossless five-bus OPF
problem LH5. The feasible space of the semidefinite relaxation
of [4] shown by the black curve in Fig. 4 is not tight for
some parameters (e.g., the dashed blue line representing a load
PD3 = 17.17 per unit with generation PG1 more expensive
than PG2) [6]. Conversely, the feasible space for the second-
order moment relaxation shown by the red dashed curve in
Fig. 4 is tight for varying load demands PD3, which result in
other lines parallel to the blue line, and generator costs.

Fig. 4. Feasible Space for Five-Bus System in [1]

The ten-bus problem MSL10 ex1 has at least
two global solutions (the solution in [8] and[
PG4 PG5 PG6 PG9 PG10

]
=

[
16.99 32.66 0 0 38.35

]
MW). A moment relaxation with γ > 2 is needed to find
the multiple solutions, but only a second-order relaxation is
currently computationally tractable.

The second-order moment relaxation gives the single global
optimum for the related ten-bus problem MSL10 ex2. The
heuristic method proposed in [8] finds an only-locally-
optimal solution to this problem with an objective value
of $153.97, which is 28.4% greater than the global min-
imum of $119.95 with

[
PG4 PG5 PG6 PG9 PG10

]
=[

0 47.994 0 0 40.006
]

MW.
The moment relaxation was also applied to two NP-hard

OPF problems from [4]. The first problem, LLn 1 where n
represents an arbitrary number of buses, eliminates all active,
reactive, and line-flow limits to minimize network losses with
voltage magnitudes constrained to 1 per unit. The second prob-
lem, LLn 2, minimizes losses for a purely resistive network
with zero reactive power injections and voltages constrained
to the discrete set {−1, 1}.



 

18th Power Systems Computation Conference  Wroclaw, Poland – August 18-22, 2014 

 

Table II summarizes the application of the moment re-
laxations to these problems. Two network structures were
considered: a ring and a complete network (each bus connected
to every other bus). In both cases, the global solution was
obtained (or the computational capabilities were surpassed
without yielding a solution) at the same order of the moment
relaxation. For LLn 1, lines have 0.1 per unit reactances and
either zero or 1 × 10−3 per unit resistance. For LLn 2, lines
have zero reactance and 0.1 per unit resistance.

Case Parameters γmin

LLn 1, n = 2, . . . , 9 R = 1× 10−3 per unit 2
LL2 1, R = 0 per unit 3
LL3 1 R = 0 per unit 5
LL4 1 R = 0 per unit > 4
LLn 1, n = 5, 6 R = 0 per unit > 3
LLn 1, n = 7, 8, 9 R = 0 per unit > 2
LLn 2, n = 2, . . . , 9 2

TABLE II
MOMENT RELAXATION APPLIED TO NP-HARD PROBLEMS

Table II shows that low-degree moment relaxations have
some success for small problems of the forms LLn 1 and
LLn 2. While a second-order moment relaxation solves LLn 1
with lossy networks and LLn 2, low-order moment relaxations
are not well-suited for LLn 1 with lossless networks. This is
likely due to the fact that LLn 1 with lossless networks has
multiple global solutions, while LLn 1 with lossy networks
and LLn 2 have unique global solutions.

Since there exist NP-hard OPF problems, the moment
relaxation for a fixed-order γ (or any other polynomial-time
relaxation) cannot globally solve all OPF problems. However,
the NP-hard problems in [4] do not represent typical power
systems. The results shown in Table I suggest that the moment
relaxation may be exact for a broad class of OPF problems
that excludes some NP-hard problems.

VI. CONCLUSIONS AND FUTURE WORK

Using theory developed for polynomial optimization prob-
lems, this paper has proposed a moment-based relaxation for
the OPF problem. With the trade-off of increased computa-
tional requirements, the moment relaxation globally solves a
broader class of problems than previous convex relaxations,
such as the semidefinite relaxation of [4]. After formulating
the moment relaxation of the OPF problem, this paper has
investigated the feasible space of several test problems. Global
solution of several small problems for which the semidefinite
relaxation of [4] is not exact demonstrates the moment relax-
ation’s effectiveness.

There are many avenues for future work on moment re-
laxations, including computational improvements which build
on [13], developing sufficient conditions for exactness of the
relaxation, and extension to other power systems problems.
Generalizing current efforts to find sufficient conditions for
which the semidefinite relaxation of [4] is exact, future work
includes developing sufficient conditions for which an order-γ
moment based relaxation is exact. The moment relaxation can

also be extended to other power systems problems, including
those problems for which the semidefinite relaxation of [4]
has already shown some success (e.g., state estimation, voltage
stability, finding multiple power flow solutions). Further, the
ability of moment relaxations to include binary variables
provides the opportunity to consider problems with discrete
constraints such as transmission switching and unit commit-
ment.
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