Abstract—There is an increasing need for integrating renewable generation sources into electricity networks. To take advantage of the economic and environmental benefits offered by renewable sources, storage devices are important to mitigate their inherent variability. However, the physical properties of storage devices require operation to be optimized over a finite horizon. This paper provides a multi-period optimal power flow (OPF) formulation including both wind generation and energy storage that is based on a traditional AC-Quadratic Program (AC-QP) OPF solution method. Test cases are provided to demonstrate the economic benefits of the multi-period OPF solution. The sensitivity of the cost of operation and scheduled storage charging pattern to the length of the multi-period OPF horizon chosen is assessed. Additionally, the computation time for various OPF horizons is also examined. Finally, the effect of forecast errors on the choice of OPF horizon is investigated.

I. INTRODUCTION

The optimal power flow (OPF) problem has been well researched in the past few decades. As a result, many solution methods have been established for traditional electricity networks. One common practice is to use the DC power flow approximation to formulate the problem as a quadratic program (QP), for which reliable solvers are readily available [1]-[2]. However, while this method scales well for realistically large networks, it does not result in an AC-feasible solution and can have significant discrepancies compared to the AC solution [3]. More recently, semidefinite and second-order cone programming (SOCP) techniques have been applied to convex relaxations of the OPF problem, as in [4] and [5]. These relaxations, when tight, have the advantage that they guarantee a globally optimal solution. However, for arbitrary networks there are no guarantees that the relaxations will be tight or produce feasible solutions [6]-[7]. Furthermore, the solvers currently available do not necessarily scale well for large networks. Another solution method is the traditional AC-QP OPF algorithm, the details of which can be found in [8]. This method alternates between solving a simple quadratic program to minimize cost of generation and running an AC power flow to ensure AC-feasibility. It has the benefits of guaranteeing an AC-feasible solution, and QP solvers are available for arbitrarily large networks. These benefits come, however, with the tradeoff that the algorithm may produce locally, rather than globally, optimal solutions. Because AC feasibility is guaranteed, this solution method is the focus of this paper.

There is increasing need for integration of renewable generation sources into traditional electricity networks. Renewable sources are important for the economic and environmental operation of power systems. However, challenges arise due to their inherently variable nature. Thus, storage devices become important in the operation of these generation sources: they can charge using excess renewable energy at high production periods, and return power to the network when renewable generation is lacking [9]. By carefully scheduling these devices, they can thus reduce the impact of large fluctuations from renewable generation on network reliability. Therefore, the scheduling of storage devices must be carefully considered, which requires modifying traditional OPF methods. Including the model for storage devices, such as the one given in [10], in the OPF problem introduces temporal coupling over the OPF horizon, which results in a multi-period OPF formulation.

This multi-period OPF offers the ability to make current storage (dis)charging decisions taking into account not only current conditions, but also future forecasted conditions. Many multi-period OPF formulations that include renewable generation and storage, as in [11] and [12], use a horizon of 24 hours. The size and complexity of the multi-period OPF problem when using such a long horizon may substantially increase the computation time, thus limiting the real-time applications of the OPF tool developed. However, the length of the horizon affects the benefits that are derived from solving the multi-period OPF, as decisions seek to minimize cost over the entire horizon, not simply the cost at the current time period. Implementing a longer horizon may thus increase the quality of solution in terms of minimum cost of generation, but also makes the solution more susceptible to forecast error. This tradeoff becomes particularly important in real-time applications for realistically large networks. The paper explores various horizons, ranging from 1 hour to 8 hours, with a sampling time of half an hour. An 8-hour horizon therefore requires optimizing over 16 time steps. The results of the various horizons tested offer insights into the sensitivity of the solution to the choice of this horizon.
The organization of this paper is as follows. Section II establishes the notation used in the subsequent formulation, while Section III describes the multi-period OPF problem with storage and wind, and the AC-QP OPF solution method. Section IV describes the two test cases used to assess the performance of the proposed method. Section V gives the results of those test cases and demonstrates the sensitivity of the OPF solution to the OPF horizon, the impact that forecast errors can have on the final solution, and the inherent tradeoff between the increased complexity/computation time and economic benefits derived from using a longer OPF horizon. Conclusions are then offered in Section VI.

II. Notation

Parameters:
- \(\mathcal{G} \) set of conventional generation nodes
- \(C_i(P_{g,i}) \) quadratic cost curve for each generator \(i \in \mathcal{G} \)
- \(S \) set of storage nodes
- \(\mathcal{W} \) set of wind nodes
- \(\mathcal{T} \) set of time periods
- \(T_{term} \) time of day at the end of the OPF horizon
- \(T \) length in hours of OPF horizon
- \(\mathcal{N} \) set of nodes in the network
- \(\text{slack} \) slack node in the network
- \(W_{i}^{\text{max}}(t) \) available wind at node \(i \in \mathcal{W} \) at time \(t \in \mathcal{T} \)
- \(S_{i}^{\text{max}} \) maximum apparent power flow in line from node \(i \) to node \(j \)
- \(P_{g,i}^{\text{min}}, P_{g,i}^{\text{max}} \) minimum, maximum active power limits when generator at node \(i \in \mathcal{G} \) in service
- \(Q_{g,i}^{\text{min}}, Q_{g,i}^{\text{max}} \) minimum, maximum reactive power limits when generator at node \(i \in \mathcal{G} \) in service
- \(T_s \) sampling time in storage dynamics model
- \(\eta_i \) storage device charging, discharging efficiencies
- \(\eta_i^{\text{term}} \) terminal state of charge of storage at node \(i \in \mathcal{S} \)
- \(b_{i,0} \) initial state of charge of storage at node \(i \in \mathcal{S} \)
- \(B_i \) storage energy limit at node \(i \in \mathcal{S} \)
- \(P_{c,i}^{\text{max}}, P_{d,i}^{\text{max}} \) maximum charging, discharging of storage at node \(i \in \mathcal{S} \)
- \(\partial S \partial q_\theta(t) \) AC line flow sensitivity factors
- \(J(t) \) AC power flow Jacobian matrix at time \(t \in \mathcal{T} \)
- \(V_{i}^{\text{min}}, V_{i}^{\text{max}} \) minimum, maximum voltage magnitude at node \(i \in \mathcal{N} \)
- \(\gamma \) (nonnegative) cost coefficient penalizing the deviation of terminal state of charge of storage device \(i \in \mathcal{S} \) from specified value \(b_{i}^{\text{term}} \)

Control Variables:
- \(\Delta P_{g,i}(t) \) change in active power generation at node \(i \in \mathcal{G} \) at time \(t \)
- \(\Delta Q_{g,i}(t) \) change in reactive power generation at node \(i \in \mathcal{G} \) at time \(t \)
- \(\Delta r_{c,i}(t), \Delta r_{d,i}(t) \) change in battery active power charging, discharging at node \(i \in \mathcal{S} \) at time \(t \)
- \(b_{i}(t) \) battery energy at node \(i \in \mathcal{S} \) at time \(t \)
- \(\Delta P_{w,i}(t) \) change in wind curtailment at node \(i \in \mathcal{W} \) at time \(t \)
- \(\Delta V_{i}(t), \Delta \theta_{i}(t) \) change in voltage magnitude, angle at node \(i \in \mathcal{N} \) at time \(t \)

III. AC-QP OPF Solution Method

The following algorithm is based on the traditional AC-QP OPF method described in [8]. This method begins by solving an AC power flow from an initial operating point. In this application, the initial generation and voltage schedules come from the solution of a modified, multi-period version of the SOCP OPF relaxation given in [5] that includes both wind and storage. The full problem description of this modified SOCP relaxation can be found in [13]. The SOCP solution also provides a lower bound on the globally optimal cost of generation, which is used to assess the quality of solution coming from the AC-QP OPF method. After the initial power flow is run, the QP that follows is solved to find an operating point which minimizes the total quadratic cost of traditional generation while enforcing power balance in the network. The linearization/sensitivity terms required by this QP are obtained from the AC power flow solution. The results of the QP give the generation and voltage schedules used to run an AC power flow at the next QP-power flow iteration.

Additionally, the net of charging and discharging of each storage device in the QP solution is used to determine the (dis)charging status of that device. That status is then enforced in the QP solved at the next iteration by setting the appropriate charging or discharging limit of that device to be 0; this eliminates the possibility of simultaneous charging and discharging of storage devices in the QP solution. The status is then updated after each subsequent QP solution. A more detailed discussion of this processing step can be found in [14]. This approach explicitly enforces storage complementarity, while avoiding the use of binary variables. The successive linearization procedure then continues, alternating between solving a full AC power flow and the QP until the two solutions agree within a specified tolerance. The overall AC-QP OPF solution method is summarized in Figure 1.

The QP solved at each iteration makes use of the power flow linearization:

\[
J(t) = \begin{bmatrix} \frac{\partial P(t)}{\partial \theta(t)} & \frac{\partial P(t)}{\partial q_\theta(t)} \\ \frac{\partial Q(t)}{\partial \theta(t)} & \frac{\partial Q(t)}{\partial q_\theta(t)} \end{bmatrix}, \quad \Delta x(t) = \begin{bmatrix} \Delta \theta(t) \\ \Delta V(t) \end{bmatrix}
\]

\[
\Delta S(t) = \begin{bmatrix} \Delta P_g(t) - \Delta r_{c}(t) - \Delta r_{d}(t) - \Delta P_w(t) \\ \Delta Q_g(t) \end{bmatrix}
\]

and is formulated as:

\[
\min \sum_{t \in T} \sum_{i \in G} C_i(P_{g,i}^0 + \Delta P_{g,i};t) + \gamma \sum_{i \in S} \|b_i(T) - b_{i}^{\text{term}}(T_{term})\|_2^2
\] (1a)

subject to (\forall t \in T):

\[
J(t)\Delta x(t) = \Delta S(t)
\] (1b)

\[
P_{g,i}^{\text{min}} \leq P_{g,i} + \Delta P_{g,i} \leq P_{g,i}^{\text{max}}, \quad \forall i \in \mathcal{G}
\] (1c)

\[
Q_{g,i}^{\text{min}} \leq Q_{g,i} + \Delta Q_{g,i} \leq Q_{g,i}^{\text{max}}, \quad \forall i \in \mathcal{G}
\] (1d)

\[
\Delta \theta_{\text{slack}} = 0
\] (1e)

\[
-\pi \leq \Delta \theta_i(t) \leq \pi, \quad \forall i \in \{\mathcal{N} \setminus \text{slack}\}
\] (1f)

\[
V_{i}^{\text{min}} \leq V_{i}(t) + \Delta V_i(t) \leq V_{i}^{\text{max}}, \quad \forall i \in \mathcal{N}
\] (1g)

\[
0 \leq P_{w,i}^0(t) + \Delta P_{w,i}(t) \leq W_{i}^{\text{max}}(t), \quad \forall i \in \mathcal{W}
\] (1h)

\[
b_i(0) = b_{i,0}, \quad \forall i \in \mathcal{S}
\] (1i)
The multi-period OPF seeks to minimize the total generation cost over the horizon of interest. To do so, it can use storage freely, and only incurs a penalty cost if the state of charge of each storage device at the end of the horizon deviates from the reference usage pattern. This terminal penalty also ensures fair usage of storage devices over the entire day. As storage devices begin the 24 hours charged to half of their energy rating, they should be returned to that initial value at the end of the 24-hour period. This is achieved by varying the penalty coefficient γ throughout the 24 hours, depending on the time at the end of the OPF horizon, according to the following scheme:

$$
\gamma = \begin{cases}
10^2, & T_{term} \in [1, 15] \\
10^3, & T_{term} \in (15, 17] \\
10^4, & T_{term} \in (17, 19] \\
10^5, & T_{term} \in (19, 21] \\
10^6, & T_{term} \in (21, 24] \\
10^8, & T_{term} > 24.
\end{cases}
$$

This coefficient is relatively low for the first part of the day and then gradually increases as the day progresses. The specific values given above are designed such that the largest coefficient is of the same order of magnitude as the cost of conventional generation. Additionally, including several steps to increase this penalty coefficient ensures a relatively smooth transition to return storage energy levels at the end of the 24 hours to their initial values. Moreover, the very large coefficient over the last few hours ensures that if it is feasible to do so, the state of charge of each storage device will be returned to its initial value.

Finally, apparent power line flow limits are enforced by including a linearized line flow constraint,

$$
S_{ij}^0(t) + \sum_{k \in N} \frac{\partial S_{ij}}{\partial V_k}(t) \Delta V_k(t) \leq S_{ij}^{max}, \quad \forall i \in S.
$$

in the QP for every line that is at or above 95% of its line flow limit after the initial power flow. Additional line flow constraints are then included as necessary for any further overloaded lines in subsequent OPF-power flow iterations.

The convergence of this method depends on the accuracy of the linearization used in the QP at each iteration. To improve the convergence of this method, a step is added to check the accuracy of the linearization before the OPF is solved at each iteration. This additional step is based on the trust-region formulation provided in [15]. After each power flow is solved, the actual change in system losses,

$$
\Delta P_{loss_{act}}(t) = P_{loss}^k(t) - P_{loss}^{k-1}(t),
$$

is compared to the predicted change in losses from the QP solution,

$$
\Delta P_{loss_{pred}}(t) = \sum_{i \in N} \sum_{k \in N} \left[\frac{\partial P_i}{\partial V_k}(t) \Delta V_k(t) + \frac{\partial P_i}{\partial V_k}(t) \Delta V_k(t) \right]
$$

for every time period in the multiperiod OPF horizon. If they are within a specified tolerance, the linearization is considered sufficiently accurate. If, however, the predicted and actual changes in system losses do not closely agree, the linearization is not considered sufficiently accurate, and the constraints on control variable updates are reduced by a scaling factor. This reduces the magnitude of allowable controllable variable changes,
the assumption of load and wind forecast accuracy. Initially, results are presented assuming perfect wind and load forecasts. This test case is used to assess the computational scalability of the method and to demonstrate the sensitivity of the total cost of generation to the OPF horizon chosen. The second test case introduces an event such that the load forecast has significant error, as shown by the dotted line in Figure 3. This case highlights the sensitivity of the OPF solution to forecast errors, and considers the effect of horizon length.

V. RESULTS AND DISCUSSION

A. Test Case 1: Perfect Wind and Load Forecasts

The results of the first test case are given in Figures 4–9. Both the total cost of generation and total stored energy of all 300 storage devices over the 24-hour period considered are given in Figure 4. The storage state of charge reference pattern over the entire day, denoted by T=24 in the lower figure, establishes the terminal value that is used in the penalty term in the OPF objective function (1a).

Figure 4 demonstrates the improved performance of the longer OPF horizons in scheduling storage (dis)charging. Shorter horizons, such as 1 or 2 hours, result in storage charging over the valley period (hours 7–13) being insufficiently scheduled, such that during the peak demand period (hours 15–24) less storage is available to achieve lower peak operating costs. This highlights the short-sighted nature of these horizons that are unable to anticipate the upcoming peak demand. It should also be observed that these shorter horizons not only charge storage devices to a lower state of charge, but also begin discharging several hours before the peak demand period, contributing to a higher cost of operation. Conversely, longer horizons, such as 4, 6 or 8 hours, successfully charge storage devices to a higher state of charge level before the peak demand period. Storage can then be discharged during the peak periods, resulting in significant cost savings.

Figure 5 highlights the economic improvement for each horizon tested, relative to the cost of operation with no storage in the network. Both the 1- and 2-hour horizons achieve some cost savings during hours 14–16, but they also incur higher cost during the high-demand hours of 19–21, as storage must be charged to return to its initial state of charge. However,
using a longer horizon, such as 4, 6, or 8 hours, avoids this issue and can achieve cost savings up to 4% during peak demand periods in this case. Figure 6 shows the improved cost savings over an entire day that result from optimally scheduling storage (dis)charging. The savings can be up to 0.9% per day in this case. While longer horizons produce higher cost savings, there is a diminishing benefit as the length of the OPF horizon is increased.

Figures 7–8 show the computation time for various OPF horizons. For real-time OPF applications, an execution time target of 5 minutes is assumed. While longer horizons can schedule storage devices more economically, the computation time of the AC-QP OPF method increases significantly as the horizon increases, as shown in Figure 7. Moreover, when the initialization time to solve the SOCP OPF relaxation is considered in the total computation time, as shown in Figure 8, the increase in total time for longer OPF horizons is even more pronounced. Horizons longer than 8 hours have not been considered as they are likely to exceed the 5 minute target assumed for real-time applications. Computation time must be carefully addressed when choosing an appropriate horizon, especially considering the diminishing cost benefits achieved with longer horizons.
Figure 9 shows the sensitivity of these results to the choice of the storage terminal penalty coefficient γ. The first test case is repeated for a constant choice of γ throughout the day and a horizon of 4 hours. When γ is less than 10^4, storage is discharged before the peak demand period. This short-sighted operation of storage leads to a higher operating cost over the entire day, compared to the time-varying scheme proposed. Conversely, when γ is increased to 10^5 or 10^6, the storage usage pattern matches the reference pattern more closely. This leads to a slightly lower cost of operation compared to the time-varying scheme. However, this result relies upon the assumption of having a perfect demand forecast.

B. Test Case 2: Introducing Load Forecast Error

The second test case, the results of which are summarized in Figures 10–13, explores the impact of significant forecast errors on the quality of solutions for various OPF horizons. As the day begins, the wind and demand forecasts are those given by the solid lines in Figure 3. Then, at hour 16, a new demand forecast is received, which is shown by the dotted curve in Figure 3. Comparing the original forecast and actual demand curves, it is observed that there is significant error in the original forecast. In particular, the actual demand lacks the peak demand period that was originally anticipated. The degree to which this forecast error impacts the quality of the solutions achieved by the AC-QP OPF depends on the horizon chosen, as shown in Figure 10.

As in the first case, storage devices begin charging at hour 5. The longer horizons (4 and 6 hours) charge those devices more rapidly, and have them more fully charged by hour 14. This is due to the fact that those horizons are sufficiently long for the peak demand at hour 16 to be anticipated. However, the shorter horizons (1 and 2 hours) begin charging, but at a lower rate, as the peak demand has not yet been taken into account. As in the first case, the shorter horizon results are short-sighted, and so begin discharging storage devices at hour 14. In this case, however, the demand forecast for which the storage (dis)charging pattern was planned was in error. An event occurs at hour 16 such that a large portion of the anticipated demand does not eventuate, and load continues to decrease over the rest of the day. Consequently, the original peak demand period never occurs. The longer horizons have already incurred the extra cost of charging storage to a higher level in planning for that peak, which results in a higher cost compared to the shorter horizon results. This is just one example where relying upon a longer horizon, which is more economic given a reliable forecast, leaves operations vulnerable to forecast error and actually results in a higher cost solution.

Figure 11 emphasizes the impact that forecast error may have on the cost savings achieved by adding storage to a network. Compared to the case without any storage in the
Choosing appropriate values for γ per day. Forecast errors should also be taken into account when the 6-hour horizon is approximately 0.3%. In the presence of error on the quality of the solution. This plot shows that benefits in reducing operational costs. Conversely, when large forecast errors are anticipated, choosing a longer horizon may increase the operational cost, while shorter horizons can achieve greater cost savings. Together, these investigations demonstrate that optimal scheduling is reliant upon matching the horizon length to the forecast quality.

The scalability of the proposed approach has been demonstrated on a realistically large network and timing results fall within a reasonable (5-minute) operation time limit.

VI. CONCLUSIONS

The traditional AC-QP OPF solution method has been extended to a multi-period formulation to include both renewable generation and energy storage devices. Several factors influencing the choice of OPF horizon have been explored. First, when forecasts are accurate, longer horizons offer significant benefits in reducing operational costs. Conversely, when large forecast errors are anticipated, choosing a longer horizon may increase the operational cost, while shorter horizons can achieve greater cost savings. Together, these investigations demonstrate that optimal scheduling is reliant upon matching the horizon length to the forecast quality.

REFERENCES

