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Abstract—With the potential to find global solutions, significant
research interest has focused on convex relaxations of the non-
convex OPF problem. Recently, “moment-based” relaxations
from the Lasserre hierarchy for polynomial optimization have
been shown capable of globally solving a broad class of OPF
problems. Global solution of many large-scale test cases is
accomplished by exploiting sparsity and selectively applying the
computationally intensive higher-order relaxation constraints.
Previous work describes an iterative algorithm that indicates the
buses for which the higher-order constraints should be enforced.
In order to speed computation of the moment relaxations, this
paper provides a study of the key parameter in this algorithm as
applied to relaxations from both the original Lasserre hierarchy
and a recent complex extension of the Lasserre hierarchy.

Index Terms—Optimal power flow, Global optimization, Mo-
ment relaxation, Semidefinite programming

I. INTRODUCTION

The non-convex optimal power flow (OPF) problem is one

of the most important power system optimization problems.

The OPF problem minimizes an objective function subject to

physical network constraints and engineering limits. There is

an extensive literature of solution techniques for OPF prob-

lems, including successive quadratic programs, Lagrangian re-

laxation, heuristic optimization, and interior point methods [1],

[2]. However, while these local solution techniques often find

global solutions [3], they may fail to converge or converge to

a local optimum [4], [5].

Recent research has focused on convex relaxations of the

OPF problem. Convex relaxations lower bound the objective

value and can certify infeasibility of OPF problems. For

many OPF problems, a convex relaxation based on semidef-

inite programming (SDP) is exact (i.e., the lower bound is

tight and the solution provides the globally optimal decision

variables) [6]. A second-order cone programming (SOCP)

relaxation is provably exact for radial systems that satisfy

certain non-trivial technical conditions [7]. Developing tighter

and faster relaxations is an active research area [8]–[10].

This paper focuses on a generalization of the SDP relaxation

of [6] using the Lasserre hierarchy of semidefinite relaxations

The support of the Dow Sustainability Fellowship Program, ARPA-E grant
DE-AR0000232, and Los Alamos National Laboratory subcontract 270958 is
gratefully acknowledged.

for real polynomial optimization problems [11]. The primal

form of the Lasserre hierarchy is interpreted as a truncated

moment series, while the dual form is interpreted as a sum-

of-squares optimization problem. We therefore refer to the

order-γ relaxation in this hierarchy as MSOSγ-R.

The OPF problem is a polynomial optimization problem

in terms of the complex voltage phasors. Separating the

complex voltages into real and imaginary parts yields a

polynomial optimization problem in real variables. The first-

order relaxation in the Lasserre hierarchy (i.e., MSOS1-R) is

equivalent to the SDP relaxation of [6]. Higher-order moment

relaxations globally solve a broader class of OPF problems at

the computational cost of larger SDPs.

Recent work builds a complex hierarchy MSOSγ-C that is

inspired by the Lasserre hierarchy [12]. Rather than decom-

posing into real and imaginary parts, this complex hierarchy

is directly constructed from the complex voltages, which

provides computational advantages for many problems. This

paper summarizes MSOSγ-C through analogy to MSOSγ-R.

The computational requirements of both MSOSγ-R and

MSOSγ-C grow quickly with increasing relaxation order γ.

Fortunately, low-order relaxations (γ 6 2) solve many small

OPF problems [13]–[15]. However, dense formulations for

low-order relaxations are intractable for problems with more

than approximately ten buses. Applying a “chordal sparsity”

technique for the first-order relaxations enables solution of

OPF problems with thousands of buses [16], [17]. Extending

the chordal sparsity technique to higher-order relaxations [18]

facilitates the solution of the second-order relaxation for OPF

problems with up to approximately 40 buses [19].

Selectively enforcing the computationally intensive higher-

order constraints only at “problematic” buses enables exten-

sion to larger problems [19], including some OPF problems

with thousands of buses [12], [20]. The iterative algorithm

in [19] applies the higher-order relaxation constraints to spe-

cific buses identified with a heuristic, based on “power injec-

tion mismatches”, that provides an indication of the quality

of the solution at each bus. (Further details are provided in

Section III-C.)

The algorithm in [19] requires a single parameter specifying

how many buses should have higher-order constraints applied

at each iteration. There is a computational trade-off associated

with this parameter: applying higher-order constraints at more



buses potentially requires fewer iterations but a larger com-

putational cost per iteration. By balancing this trade-off, this

parameter can have a large impact on overall solution times.

To improve the computational effectiveness of both

MSOSγ-R and MSOSγ-C, this paper presents a study of this

parameter. Specifically, appropriate choice of this parameter

is investigated by applying the algorithm in [19] to a variety

of large test cases (Polish models in MATPOWER [21] and

European models from the PEGASE project [22]).

This paper is organized as follows. Section II describes the

OPF problem in complex variables. Section III summarizes

MSOSγ-R and MSOSγ-C as applied to the OPF problem,

including the sparsity-exploiting algorithm in [19]. Section IV

presents a computational study of the parameter in this algo-

rithm. Section V concludes the paper.

II. OPF PROBLEM FORMULATION

We first present an OPF formulation in terms of complex

voltages, active and reactive power injections, and apparent-

power line-flow limits. Consider an n-bus power system,

where N = {1, 2, . . . , n} is the set of all buses, G is the set of

generator buses, and L is the set of all lines. Let PDk+ jQDk

represent the active and reactive load demand, where j is

the imaginary unit, and Vk the complex voltage phasor at

each bus k ∈ N . Superscripts “max” and “min” denote

specified upper and lower limits. Buses without generators

have maximum and minimum generation set to zero. Let

Y denote the network admittance matrix. The generator at

bus k ∈ G has a quadratic cost function for active power

generation with coefficients ck2 > 0, ck1, and ck0.

We use a line model with an ideal transformer that has a

specified turns ratio τlme
jθlm : 1 in series with a Π circuit with

series impedance Rlm+ jXlm (equivalent to an admittance of

ylm = 1
Rlm+jXlm

) and shunt admittance jbsh,lm [21].

The OPF problem is

min
V ∈Cn

∑

k∈G

ck2
(

V HHkV +PDk

)2
+ck1

(

V HHkV +PDk

)

+ck0

(1a)
subject to

Pmin
k 6 V HHkV + PDk 6 Pmax

k ∀k ∈ N (1b)

Qmin
k 6 V HH̃kV +QDk 6 Qmax

k ∀k ∈ N (1c)
(

V min
k

)2
6 V Heke

⊺

kV 6 (V max
k )2 ∀k ∈ N (1d)

(

V H Flm+FH
lm

2
V

)2

+

(

V H Flm−FH
lm

2j
V

)2

6 (Smax
lm )

2

∀ (l,m) ∈ L (1e)
V1 − V 1 = 0 (1f)

where ( · ) denotes the complex conjugate, (·)⊺ indicates

the transpose, (·)H indicates the complex conjugate trans-

pose, and ek is the kth column of the identity matrix.

Hermitian matrices in the active and reactive power in-

jection constraints (1b) and (1c), respectively, are Hk =
YHe

k
e
⊺

k
+e

k
e
⊺

k
Y

2 and H̃k =
YHe

k
e
⊺

k
−e

k
e
⊺

k
Y

2j . Constraint (1d)

limits the squared voltage magnitude at bus k. For the

apparent-power line-flow constraints (1e), the Hermitian ma-

trix Flm =
(

ylm−jbsh,lm

τ2

lm

)

ele
⊺

l +
(

−ylm

τlmejθlm

)

eme
⊺

l . Flow

constraints (1e) are enforced at both line terminals ((l,m) ∈ L
and (m, l) ∈ L). The angle reference is set by (1f). Since Hk,

H̃k, eke
⊺

k , and Flm are Hermitian, all constraints in (1) are

real-valued polynomials in complex variables.

III. RELAXATION HIERARCHIES

The OPF formulation is composed of polynomials, which

enables global solution using polynomial optimization the-

ory. Separating the complex decision variables into real and

imaginary components Vk = Vdk + jVqk facilitates the

application of moment/sum-of-squares relaxations MSOSγ-R

from the Lasserre hierarchy [11] to the OPF problem [13]–

[15], [19]. Directly building a relaxation hierarchy from the

complex polynomial optimization formulation yields complex

moment/sum-of-squares relaxations MSOSγ-C [12]. This sec-

tion reviews these hierarchies in the context of the OPF

problem and discusses methods for exploiting sparsity.

A. Hierarchy for Real Polynomial Optimization Problems

The Lasserre hierarchy MSOSγ-R builds relaxations that

take the form of semidefinite programs. For generic polyno-

mial optimization problems that satisfy a technical condition1,

relaxations in the Lasserre hierarchy converge to the global

solutions of generic polynomial optimization problems at a

finite relaxation order [11], [23]. While the Lasserre hierarchy

can find all global solutions, we focus on OPF problems with

a single global optimum.2

We begin with several definitions. Define the vector of real

decision variables ξ ∈ R2n as ξ :=
[

Vd1 Vd2 . . . Vqn
]⊺

.3

A monomial is defined using a vector α ∈ N
2n of expo-

nents: ξα := V α1

d1 V
α2

d2 · · ·V α2n
qn . A polynomial is g (ξ) :=

∑

α∈N2n gαξ
α, where gα is the real scalar coefficient corre-

sponding to the monomial ξα.

Define a linear functional Ly {g} which replaces the mono-

mials ξα in a polynomial g (ξ) with real scalar variables y:

Ly {g} :=
∑

α∈N2n

gαyα. (2)

For a matrix g (ξ), Ly {g} is applied componentwise.

Consider, for example, the vector ξ =
[

Vd1 Vd2 Vq2
]⊺

corresponding to the voltage components of a two-bus system,

where the angle reference is used to eliminate Vq1, and the

polynomial g (ξ) = − (0.9)
2
+ V 2

d2 + V 2
q2. (The constraint

g (ξ) > 0 forces the voltage magnitude at bus 2 to be greater

than or equal to 0.9 per unit.) Then Ly {g} = − (0.9)
2
y000+

y020 + y002. Thus, Ly {g} converts a polynomial g (ξ) to a

linear function of y.

1This technical condition is satisfied when the decision variables are
bounded and is therefore not restrictive for the OPF problem.

2See [19] for a discussion of atypical cases with multiple global optima.
3The ability to select an angle reference in the OPF problem enables

specification of one arbitrarily chosen variable. We choose Vq1 = 0.



For the order-γ relaxation, define a vector xγ consisting of

all monomials of the voltage components up to order γ:

xγ :=
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]⊺

. (3)

The relaxations are composed of positive semidefinite con-

straints on moment and localizing matrices. The symmetric

moment matrix Mγ is composed of entries yα corresponding

to all monomials ξα up to order 2γ:

Mγ {y} := Ly

{

xγx
⊺

γ

}

. (4)

Symmetric localizing matrices are defined for each con-

straint of (1). For a polynomial constraint g (ξ) > 0 of degree

2η, the localizing matrix is:

Mγ−η {gy} := Ly

{

gxγ−ηx
⊺

γ−η

}

. (5)

See (8a) and (9a) for example moment and localizing matrices

for MSOS2-R applied to a two-bus OPF problem.

Separating real and imaginary parts Vk = Vdk+jVqk, define

fPk, fQk, and fV k for the active power injection, reactive

power injection, and squared voltage magnitudes at bus k
using (1b), (1c), and (1d), respectively, as functions of the

real variables Vd and Vq . Likewise, define fSlm for the squared

apparent power flow on the line from bus l to bus m using (1e)

and fCk as the quadratic cost function for the generator at

bus k using (1a) as functions of the real variables Vd and Vq .

The order-γ relaxation MSOSγ-R is:

min
y
Ly

{

∑

k∈G

fCk

}

subject to (6a)

Mγ−1

{(

fPk − Pmin
k

)

y
}

< 0 ∀k ∈ N (6b)

Mγ−1

{(

Pmax
k − fPk

)

y
}

< 0 ∀k ∈ N (6c)

Mγ−1

{(

fQk −Qmin
k

)

y
}

< 0 ∀k ∈ N (6d)

Mγ−1

{(

Qmax
k − fQk

)

y
}

< 0 ∀k ∈ N (6e)

Mγ−1

{(

fV k −
(

V min
k

)2
)

y
}

< 0 ∀k ∈ N (6f)

Mγ−1

{(

(V max
k )

2 − fV k

)

y
}

< 0 ∀k ∈ N (6g)

Mγ−2

{(

(Smax
lm )

2 − fSlm

)

y
}

< 0 ∀ (l,m) ∈ L (6h)

Mγ {y} < 0 (6i)

y00...0 = 1 (6j)

y⋆⋆...⋆ρ⋆...⋆ = 0 ρ = 1, . . . , 2γ. (6k)

where < 0 indicates that the corresponding matrix is positive

semidefinite and ⋆ represents any integer in [0, 2γ − 1]. The

constraint (6j) enforces the fact that x0 = 1. The con-

straint (6k) corresponds to the angle reference Vq1 = 0; the ρ
in (6k) is in the index n+1, which corresponds to the variable

Vq1. Note that the angle reference can alternatively be used to

eliminate all terms corresponding to Vq1 to reduce the size of

the semidefinite program.

A dual form of the “moment” relaxation presented here is

a sum-of-squares program, thus leading to the nomenclature

MSOSγ-R [11]. There is zero duality gap between the moment

and sum-of-squares formulations for the OPF problem [24].

The order-γ relaxation yields a single global solution if

rank (Mγ {y}) = 1. The global solution V ∗ to the OPF

problem (1) is then determined by a spectral decomposition

of the diagonal block of the moment matrix corresponding

to the second-order monomials (i.e., |α| = 2, where | · |
indicates the one-norm). Specifically, let η be a unit-length

eigenvector corresponding to the non-zero eigenvalue λ of

x2 =
[

1 Vd1 Vd2 Vq2 V 2

d1 Vd1Vd2 Vd1Vq2 V 2

d2 Vd2Vq2 V 2

q2

]

⊺

(7a)

z2 =
[

1 V1 V2 V 2

1 V1V2 V 2

2

]

⊺

(7b)

M2 {y} = Ly {x2
x
⊺

2
} = (8a)





























y000 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004





























M̂2 {ŷ} = L̂ŷ

{

z2z
H
2

}

= (8b)














ŷ00,00 ŷ00,10 ŷ00,01 ŷ00,20 ŷ00,11 ŷ00,02
ŷ10,00 ŷ10,10 ŷ10,01 ŷ10,20 ŷ10,11 ŷ10,02
ŷ01,00 ŷ01,10 ŷ01,01 ŷ01,20 ŷ01,11 ŷ01,02
ŷ20,00 ŷ20,10 ŷ20,01 ŷ20,20 ŷ20,11 ŷ20,02
ŷ11,00 ŷ11,10 ŷ11,01 ŷ11,20 ŷ11,11 ŷ11,02
ŷ02,00 ŷ02,10 ŷ02,01 ŷ02,20 ŷ02,11 ŷ02,02















M1 {(fV 2 − 0.81) y} =







y020 + y002 − 0.81y000 y120 + y102 − 0.81y100 y030 + y012 − 0.81y010 y021 + y003 − 0.81y001
y120 + y102 − 0.81y100 y220 + y202 − 0.81y200 y130 + y112 − 0.81y110 y121 + y103 − 0.81y101
y030 + y012 − 0.81y010 y130 + y112 − 0.81y110 y040 + y022 − 0.81y020 y031 + y013 − 0.81y011
y021 + y003 − 0.81y001 y121 + y103 − 0.81y101 y031 + y013 − 0.81y011 y022 + y004 − 0.81y002







(9a)

M̂1

{(

f̂V 2 − 0.81
)

ŷ
}

=





ŷ01,01 − 0.81ŷ00,00 ŷ01,11 − 0.81ŷ00,10 ŷ01,02 − 0.81ŷ00,01
ŷ11,01 − 0.81ŷ10,00 ŷ11,11 − 0.81ŷ10,10 ŷ11,02 − 0.81ŷ10,01
ŷ02,01 − 0.81ŷ01,00 ŷ02,11 − 0.81ŷ01,10 ŷ02,02 − 0.81ŷ01,01



 (9b)



[M1{y}](2:k,2:k), where k = 2n + 1 and subscripts indicate

the vector entries in MATLAB notation.4 Then the vector

V ∗ =
√
λ
(

η1:n + jη(n+1):2n

)

is the globally optimal voltage

phasor vector.

Note that the order γ of the relaxation must be greater

than or equal to half of the degree of any polynomial in

the OPF problem (1). Although direct implementation of (1)

requires γ > 2 due to the fourth-order polynomials in the cost

function (1a) and apparent-power line-flow constraints (1e),

these can be rewritten using a Schur complement [6] to allow

γ > 1. Experience suggests that implementing (1a) and (1e)

both directly and with a Schur complement formulation gives

superior results for γ > 2.

B. Hierarchy for Complex Polynomial Optimization Problems

Rather than first separating the decision variables into real

and imaginary parts Vd and Vq , a hierarchy of relaxations,

denoted as MSOSγ-C, built directly from (1) in complex

variables has computational advantages for many OPF prob-

lems [12]. Presentation of the complex hierarchy MSOSγ-C

mirrors the development of MSOSγ-R in Section III-A.

We again begin with several definitions. Define the

vector of complex decision variables ζ ∈ Cn as

ζ :=
[

V1 V2 . . . Vn
]⊺

. A complex monomial is de-

fined using two vectors of exponents α, β ∈ N
n:

ζαζ
β

:= V α1

1 · · ·V αn
n V1

β1 · · ·Vn
βn

. A polynomial g (ζ) :=
∑

α,β∈Nn gα,βζ
αζ

β
, where gα,β is the complex scalar coeffi-

cient corresponding to the monomial ζαζ
β

. Since g (ζ) outputs

a real value, gα,β = gβ,α.

Define a linear functional L̂ŷ (g) which replaces the mono-

mials in a polynomial g (ζ) with complex scalar variables ŷ:

L̂ŷ {g} :=
∑

α,β∈Nn

gα,β ŷα,β . (10)

For a matrix g (ζ), L̂ŷ {g} is applied componentwise.

Consider, for example, the vector ζ =
[

V1 V2
]⊺

cor-

responding to the complex voltage phasors of a two-bus

system and the polynomial g (ζ) = − (0.9)
2
+ V2V2. (The

constraint g (ζ) > 0 forces the voltage magnitude at bus 2

to be greater than or equal to 0.9 per unit.) Then L̂ŷ {g} =
− (0.9)

2
ŷ00,00 + ŷ01,01. Thus, L̂ŷ {g} converts a polynomial

g (ζ) to a linear function of ŷ.

For the order-γ relaxation, define a vector zγ consisting of

all monomials of the voltages up to order γ without complex

conjugate terms (i.e., β = 00 · · ·0):

zγ :=
[

1 V1 . . . Vn V 2
1 V1V2 . . .

. . . V 2
n V 3

1 V 2
1 V2 . . . V γ

n

]⊺

. (11)

For the complex hierarchy, the symmetric moment matrix

M̂γ is composed of entries yα,β corresponding to all mono-

mials ζαζ
β

such that |α|+ |β| 6 2γ:

M̂γ {ŷ} := L̂ŷ

{

zγz
H
γ

}

. (12)

4For the example (7a), (8a), the angle reference was established by
eliminating Vq1. Therefore, k = 2n for this case.

Symmetric localizing matrices are defined for each con-

straint of (1). For a polynomial constraint g (ζ) > 0 with

largest degree |α+ β| among all monomials equal to 2η,5 the

localizing matrix is:

M̂γ−η {gŷ} := L̂ŷ

{

gzγ−ηz
H
γ−η

}

. (13)

See (8b) and (9b) for example moment and localizing matrices

for MSOS2-C applied to a two-bus OPF problem.

Define f̂Pk, f̂Qk, and f̂V k for the active power injection,

reactive power injection, and squared voltage magnitudes at

bus k using (1b), (1c), and (1d), respectively, as functions of

complex variables V . Likewise, define f̂Slm for the squared

apparent power flow on the line from bus l to bus m using (1e)

and f̂Ck as the quadratic cost function for the generator at

bus k using (1a) as functions of the complex variables V .

The order-γ relaxation MSOSγ-C is

min
ŷ
L̂ŷ

{

∑

k∈G

f̂Ck

}

subject to (14a)

M̂γ−1

{(

f̂Pk − Pmin
k

)

ŷ
}

< 0 ∀k ∈ N (14b)

M̂γ−1

{(

Pmax
k − f̂Pk

)

ŷ
}

< 0 ∀k ∈ N (14c)

M̂γ−1

{(

f̂Qk −Qmin
k

)

ŷ
}

< 0 ∀k ∈ N (14d)

M̂γ−1

{(

Qmax
k − f̂Qk

)

ŷ
}

< 0 ∀k ∈ N (14e)

M̂γ−1

{(

f̂V k −
(

V min
k

)2
)

ŷ
}

< 0 ∀k ∈ N (14f)

M̂γ−1

{(

(V max
k )

2 − f̂V k

)

ŷ
}

< 0 ∀k ∈ N (14g)

M̂γ−2

{(

(Smax
lm )

2 − f̂Slm

)

ŷ
}

< 0 ∀ (l,m) ∈ L (14h)

M̂γ{ŷ} < 0 (14i)

ŷ0...0,0...0 = 1. (14j)

Rather than explicitly setting an angle reference, we rotate the

solution to (14) in order to satisfy (1f). Note that a Schur

complement formulation for (1a) and (1e) enables solution

of (14) with γ = 1 [6].

Similar to the real hierarchy, MSOSγ-C yields a single

global solution if rank
(

M̂γ{ŷ}
)

= 1. The global solution V ∗

is calculated using a spectral decomposition of the diagonal

block of the moment matrix corresponding to the second-order

monomials (i.e., |α| = |β| = 1). Let η̂ be a unit-length

eigenvector corresponding to the non-zero eigenvalue λ̂ of
[

M̂1{ŷ}
]

(2:n+1,2:n+1)
. Then the vector V ∗ =

√

λ̂η̂, rotated to

match the angle reference, gives the globally optimal voltages.

We next summarize theoretical developments for MSOSγ-C

applied to the OPF problem.6 These developments, which are

proven in [12], relate to duality, convergence, and comparison

to the real hierarchy. See [11] for similar results for MSOSγ-R.

5For OPF problems, all constraint and cost-function polynomials (other
than the reference angle (1f), which is discussed later) have even degree.

6These statements do not hold for all polynomial optimization problems.



1) Analogous to the real hierarchy, MSOSγ-C can be

interpreted in a dual sum-of-squares form. There is zero

duality gap between the primal (14) and dual forms.

2) The relaxations MSOS1-R and MSOS1-C, and the re-

laxation in [6] all give the same optimal objective values.

3) Augmenting the OPF problem with a sphere constraint

n
∑

i=1

(

ViVi
)

+ ψψ =

n
∑

i=1

(V max
i )

2
, (15)

where ψ is a slack variable, guarantees convergence of

MSOSγ-C to the global optimum with increasing γ.

Observe that the sphere constraint is redundant due to

the upper voltage magnitude limits (1d) and therefore

does not impair the applicability of MSOSγ-C.

4) For MSOSγ-C with the sphere constraint (15) and

MSOSγ-R of the same order γ:

a) The optimal objective value from MSOSγ-R is at

least as large as that from MSOSγ-C.

b) There exist optimization problems for which

MSOSγ-R gives strictly superior objective values.

c) Numerical results support the conjecture (formal-

ized in [12]) that MSOSγ-C yields the same op-

timal objective value as MSOSγ-R when applied

to complex polynomial optimization problems that

exhibit rotational symmetry, such as OPF prob-

lems.

5) For an n-bus system, the size of the moment ma-

trices (6i) and (14i) for MSOSγ-R (using the angle

reference (6k) to eliminate Vq1) and MSOSγ-C (con-

verted to real representation for input to the solver [25,

Example 4.42]) are (2n− 1 + γ)!/ ((2n− 1)!γ!) and

2 ((n+ γ)!) / (n!γ!), respectively. For example, n = 10
and γ = 3 correspond to matrices of size 1,540× 1,540
and 572 × 572 for the real and complex hierarchies,

respectively. Thus, the complex hierarchy is significantly

more computationally tractable than the real hierarchy.

C. Exploiting Network Sparsity

Although MSOSγ-C is computationally superior to

MSOSγ-R, matrices for both hierarchies grow quickly with the

relaxation order γ. Practical evaluation of both hierarchies for

large problems requires low relaxation order. Fortunately, low-

order relaxations often yield high-quality lower bounds and,

in many cases, the global optima for practical OPF problems.

However, for n & 10, the “dense” formulations (6) and (14)

are intractable even for γ = 2. Exploiting network sparsity

enables the application of the hierarchies to many large

problems. First proposed for the OPF problem in [16], a

“chordal sparsity” technique enables solution of the first-order

relaxation for systems with thousands of buses [17]. The

approach in [18] extends these chordal sparsity techniques

to higher relaxation orders of the real hierarchy and can

be readily applied to the complex hierarchy. Each positive

semidefinite matrix constraint is replaced by a set of positive

semidefinite matrix constraints on certain submatrices. These

Algorithm 1 Iterative Solution for Sparse Relaxations

1: Initialize γi := 1, i = 1, . . . , n
2: repeat

3: Solve relaxation with order γ
4: Calculate mismatches Smis

i , i = 1, . . . , n using (16)

5: Increase entries of γ according to mismatch heuristic

6: until
∣

∣Smis
i

∣

∣

∞
< ǫ

7: Extract solution V ∗

submatrices are defined by the maximal cliques of a specif-

ically constructed chordal extension of the network graph.

See [12], [19] for a detailed description of this approach.

When the relaxation order γ = 1, the “sparse” versions of

the moment/sum-of-squares hierarchies give equivalent solu-

tions to their dense counterparts. However, this is not the case

for γ > 1: the sparse hierarchies are generally not as tight

as the dense hierarchies [11]. Nevertheless, low-order sparse

hierarchies globally solve many practical problems.

Applying the chordal sparsity approach enables solution of

OPF problems with n . 40. Extension to larger problems is

possible by recognizing that the computationally challenging

higher-order relaxations are only necessary for the constraints

associated with specific buses. In other words, rather than a

single relaxation order γ applied to all buses in the problem,

each bus i has an associated relaxation order γi. By both ex-

ploiting sparsity and selectively applying the computationally

intensive higher-order relaxation constraints, many large OPF

problems are computationally tractable.

Selectively applying the higher-order constraints requires a

method for determining γi for each bus. We use a heuristic

based on “power injection mismatches” to the closest rank-one

matrix [19]. Consider the application of the complex hierarchy

to an OPF problem with a single global optimum. (Application

of the real hierarchy proceeds analogously.) An “approximate”

solution zapprox to the OPF problem can be obtained from the

largest eigenvalue λ̂1 and associated unit-length eigenvector η̂1
of the matrix

[

M̂1{ŷ}
]

(2:n+1,2:n+1)
, so zapprox :=

√

λ̂1 η̂1. For

each bus i, define a power injection mismatch Smis
i between

the solution to the relaxation and zapprox:

Smis
i :=

∣

∣

∣

(

f̂Pi (z
approx)− L̂ŷ {fPi}

)

+ j
(

f̂Qi (z
approx)− L̂ŷ {fQi}

)∣

∣

∣
. (16)

We employ an iterative algorithm for determining relaxation

orders γi, i = 1, . . . , n. (See Algorithm 1.) Each iteration of

the algorithm solves the relaxation after increasing the relax-

ation orders γi in a manner that is dependent on the largest

associated Smis
i values. At each iteration of the algorithm,

calculate γmax := maxi {γi}.7 Each iteration increments γi
at up to h buses, where h is a specified parameter, that have

the largest mismatches Smis
i among all buses satisfying two

conditions: 1.) γi < γmax and 2.) Smis
i > ǫ, where ǫ is a

specified mismatch tolerance. If no buses satisfy both of these

7Note that γmax is not a specified maximum but can change at each iteration.



conditions, increment γi at up to h buses with the largest Smis
i

greater than the specified tolerance and increment γmax. That

is, in order to avoid unnecessarily increasing the size of the

positive semidefinite matrices, the heuristic avoids increment-

ing the maximum relaxation order γmax until γi = γmax at

all buses with mismatch Smis
i > ǫ. The algorithm terminates

when
∣

∣Smis
i

∣

∣

∞
6 ǫ, where | · |

∞
denotes the maximum abso-

lute value, which indicates satisfaction of the rank condition

for practical purposes. Thus, the relaxations are successively

tightened in a manner that preserves computational tractability.

IV. COMPUTATIONAL STUDY OF THE PARAMETER IN THE

SPARSITY-EXPLOITING ALGORITHM

There is a computational trade-off in choosing the value

of h. Larger values of h may result in fewer iterations of

the algorithm but each iteration is slower if more buses than

necessary have high-order relaxations. Smaller values of h
result in faster solution at each iteration, but may require more

iterations. Previous work [12], [19], [20] chose h = 2 based

on limited computational experience. This section presents a

more comprehensive study of the impact of this parameter.

In theory, the choice of h has no impact on the eventual

convergence of the hierarchies. With sufficiently small toler-

ance ǫ, Algorithm 1 eventually proceeds to build the complete

hierarchies. Thus, Algorithm 1 inherits the theoretical conver-

gence guarantees for MSOSγ-R and MSOSγ-C. In practice,

the choice of h significantly affects the computational require-

ments, and thus the practical capabilities of the hierarchies.

To study the impact of the parameter h on solution times,

we solved both MSOSγ-R and MSOSγ-C for large OPF

problems representing Poland (PL) [21] and other European

networks from the PEGASE project [22] for which the first-

order relaxation fails to yield the globally optimal decision

variables. The hierarchies as presented in this paper have

difficulty solving test cases that minimize generation costs, due

to the need for higher-order constraints at many buses.8 We

therefore chose to minimize active power losses; the relaxation

hierarchies globally solve these problems with higher-order

constraints at only a few buses.

The low-impedance line preprocessing method in [20] with

a threshold of 1 × 10−3 per unit for the Polish systems and

3 × 10−3 per unit for the PEGASE systems was used to

improve numerical convergence. To further improve numerical

convergence and computational speed, we did not enforce the

sphere constraint for MSOSγ-C. Low-order relaxations from

the complex hierarchy converged for the test cases considered

here despite the lack of a convergence guarantee in the absence

of the sphere constraint [12]. Bounds on the lifted variables y
and ŷ derived from the voltage magnitude limits (1d) are also

enforced to improve numeric convergence.

The relaxations were implemented using MATLAB 2013a,

YALMIP 2015.06.26 [26], and Mosek 7.1.0.28 and were

solved using a computer with a quad-core 2.70 GHz processor

8For problems that minimize generation cost, see [20] for a related approach
that finds feasible points with objective values near the global optimum.
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Figure 2. Number of Iterations vs. h

and 16 GB of RAM. The results do not include the typically

small formulation times. We used a tolerance ǫ = 1 MVA.

Figure 1 shows a plot of the solver times for the large test

cases vs. h. In order to match previous results [12], [19], [20],

the values in Figure 1 are normalized such that a value of one

represents the solution time for the real hierarchy with h = 2.9

The solver times for the real hierarchy with h = 2 are 571,

2610, 261, 339, 351, and 806 seconds for the systems in the

order shown in the legend of Figure 1. Figure 2 shows a plot

of the number of iterations of Algorithm 1 vs. h.

These results demonstrate that the complex hierarchy is

generally faster than the real hierarchy for a range of values

of h despite sometimes requiring more iterations. This is

expected due to the smaller matrices in the complex hierarchy.

9A maximum solver time of two hours was enforced. Any convergence
failures (e.g., insufficient memory) are assigned this maximum solver time.
Solver times are reported as the mean time from three MOSEK solves.



Averaged over all test cases and choices of h, the complex

hierarchy was a factor of 9.2 faster than the real hierarchy.

The computational challenges of MSOSγ-R are most appar-

ent when Algorithm 1 increases γi for buses that are contained

within large cliques, which correspond to large matrices. For

instance, PEGASE-1354 with h = 7 results in second-order

relaxation constraints for a clique with ten buses and a solver

time of 4112 seconds for this iteration of Algorithm 1. This

motivates future work in developing a more sophisticated algo-

rithm that considers the size of the corresponding matrix rather

than just the power injection mismatch when determining how

to increment γi. This example also demonstrates the significant

advantages of the complex hierarchy, for which global solution

with the same set of higher-order buses only requires 89

seconds. With smaller matrices associated with the higher-

order constraints, the complex hierarchy is also generally less

sensitive to the parameter h than the real hierarchy.

Figure 2 numerically demonstrates the expected trade-off

related to h: with more higher-order constraints added each

iteration, there are generally fewer iterations required but more

time per iteration. The number of iterations quickly decreases

but flattens out when h ≈ 4. This flattening indicates a

saturation in the benefit associated with adding more higher-

order constraints at each iteration. For the loss minimization

test cases, the average solver time results suggest that good

values of h are 7 for MSOSγ-C and 4 for MSOSγ-R.

The results may be sensitive to the test cases and im-

plementation details. Future work includes studying re-

lated hierarchies (e.g., alternatives to Algorithm 1, the

“moment+penalization” approach in [20], and the mixed

SDP/SOCP hierarchy in [27]) as well as other means of

tightening the relaxations (e.g., the valid inequalities in [8]).

Leveraging efforts in test case development [28], future work

also includes extending this study using additional test cases.

V. CONCLUSION

This paper presented two hierarchies of convex relax-

ations for globally solving OPF problems. The real hierar-

chy MSOSγ-R has been successfully applied to OPF prob-

lems in several previous works, while the complex hierarchy

MSOSγ-C has only recently been introduced. After summariz-

ing and comparing these hierarchies, we discussed an iterative

method for exploiting sparsity and selectively applying com-

putationally intensive higher-order relaxation constraints using

a “power injection mismatch” approach to identify problematic

buses. This approach requires a single parameter h defining

the maximum number of buses that are assigned higher-order

constraints at each iteration of the algorithm. We presented

numerical experiments using several large OPF problems to

identify the impact of different choices for h.
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