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Dynamic Performance Assessment: Grazing
and Related Phenomena

Vaibhav Donde, Member, IEEE, and Ian A. Hiskens, Senior Member, IEEE

Abstract—Performance specifications place restrictions on the
dynamic response of many systems, including power systems.
Quantitative assessment of performance requires knowledge of
the bounding conditions under which specifications are only just
satisfied. In many cases, this limiting behavior can be related to
grazing phenomena, where the system trajectory makes tangential
contact with a performance constraint. Other limiting behavior
can be related to time-driven event triggering. In all cases, pivotal
limiting conditions can be formulated as boundary value prob-
lems. Numerical shooting methods provide efficient solution of
such problems. Dynamic performance assessment is illustrated
in the paper using examples drawn from protection operation,
transient voltage overshoot, and induction motor stalling.

Index Terms—Boundary value problems, dynamic performance
assessment, grazing phenomena, nonlinear nonsmooth system dy-
namics, shooting methods.

I. INTRODUCTION

POWER system dynamic behavior is subject to performance
constraints that seek to ensure appropriate post-distur-

bance response. Such constraints (bounds) are designed to limit
transient excursions. Otherwise excessive swings may trigger
protection relays, outaging items of equipment, and possibly
leading to cascading system failure [1]. Bounding cases, where
the system trajectory just encounters a performance constraint,
separate regions of desirable and undesirable behavior. Knowl-
edge of the conditions associated with such bounding cases
enables assessment of system vulnerability.

Consider for example a disturbance that causes the system
trajectory to pass close to (but not encounter) a protection trig-
gering characteristic [2], [3]. Fig. 1 shows the impedance plane
view of distance protection operating characteristics, along
with typical system responses. For a particular loading level,
the system may follow the path from (pre-fault stable equi-
librium), to – (fault-on), to and beyond (post-fault). As
the post-fault trajectory does not encounter the relay operating
characteristic, protection does not operate, no equipment is
tripped, and the system recovers. However, it requires only a
small increase in load for protection to operate (trajectory
– – ). At this slightly higher loading level, the post-fault
trajectory encounters the impedance circle and tripping may
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Fig. 1. Power system trajectories in the impedance plane of a distance relay.

occur. (The consequences of such tripping are not shown in the
figure.)

Somewhere between the two loading levels of Fig. 1, the tra-
jectory just touches (grazes) the protection operating character-
istic. Under those conditions, the system becomes vulnerable
to protection operation. Such situations are important in the as-
sessment of dynamic performance. It is shown in the paper that
grazing points can be formulated as a boundary value problem.
Solution using a process that couples Newton’s method with nu-
merical integration, known as a shooting method [4], gives the
parameter values that induce such grazing phenomena.

Continuing this illustration, typically zone 2 protection, cor-
responding to the outer circle of Fig. 1, does not trip instanta-
neously. Rather, the trajectory must remain inside the circle for
a pre-specified period for tripping to occur. The paper shows
that such time-difference event triggers1 can also be formulated
as boundary value problems.

Fig. 2 enables further explanation of grazing concepts. For a
certain value of parameter , the system trajectory encounters
a performance constraint (possibly a protection operating char-
acteristic) at a point . An event occurs, and the trajectory
continues accordingly. For a small change in parameter value,
to , the trajectory misses (at least locally) the constraint and
subsequently exhibits a completely different form of response.
At a parameter value , lying between and , the tra-
jectory tangentially encounters (grazes) the constraint. Behavior
beyond the grazing point is generally unpredictable. Without
further knowledge of the system, it is impossible to determine

1The contrast is with instantaneous event triggers that are associated with
grazing.
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Fig. 2. Grazing phenomenon.

whether or not an event triggers. This bounding case is closely
related to grazing bifurcations [5]–[7], with referring to the
pivotal value of the bifurcation parameter. The bifurcation in-
terpretation is more appropriate for periodic behavior though.
In power systems, grazing is generally a transient phenomenon,
so it is not strictly a bifurcation.

Vulnerability to event triggering (and hence some form of un-
desirable behavior) can be assessed by comparing given (nom-
inal) parameter values with values that induce grazing. If the
actual and grazing values differ by a sufficient margin, taking
account of parameter and model uncertainty, then appropriate
dynamic performance is guaranteed. Crucial to this assessment
is the ability to determine grazing values.

The paper is organized as follows. Section II presents a mod-
eling formulation that takes account of the hybrid nature of
power system dynamics. Trajectory sensitivity concepts are in-
troduced. Conditions governing grazing phenomena are devel-
oped in Section III. Illustrations based on protection and tran-
sient voltage overshoot are provided. Section IV discusses time-
difference events, with illustrations drawn from protection and
induction motor stalling. Conclusions are provided in Section V.

II. MODEL

A. Hybrid System Representation

In response to large disturbances, power systems typically
exhibit periods of smooth behavior, interspersed with discrete
events. Smooth behavior is driven by devices such as genera-
tors that are well described analytically by differential-algebraic
models. Discrete events, arising for example from operation of
protection devices or enforcement of controller hard limits, are
not so easy to describe analytically. Systems that exhibit in-
trinsic interactions between continuous dynamics and discrete
events have become known generically as hybrid systems [8],
[9] or piecewise smooth dynamical systems [10].

Numerous formal models exist for rigorously describing hy-
brid system dynamics. Examples include petri nets [11] and hy-
brid automata [8]. However, those representations are not imme-
diately amenable to numerical implementation. A useful, non-
restrictive model formulation should be

• capable of capturing the full range of continuous/discrete
hybrid system dynamics;

• computationally efficient;
• consistent with the development of shooting methods.

It is shown in [12] and [13] that these specifications can be
met completely by a model that consists of a set of differen-
tial-algebraic equations, adapted to incorporate impulsive (state
reset) action and switching of the algebraic equations. This DA
Impulsive Switched (DAIS) model has its genesis in the familiar
DAE model

(1)

(2)

where are dynamic states, are algebraic states,
, and .

Events such as line tripping can be incorporated into the
model by allowing algebraic equations (2) to switch between
sets of equations that describe the different system conditions.
Other events, such as transformer tapping or protection timer
resetting [14], are best modeled by impulsive action that intro-
duces discrete jumps into the -states. Such behavior has the
form of a reset equation

(3)

where . The notation denotes the value of
just after the reset event, while and refer to the values

of and just prior to the event.
Full details of the DAIS model can be found in [12] and [15].

It should be emphasized that the DAIS model is nothing more
than a formalization of simulation models that are used for prac-
tical power system simulation. The formalization, however, al-
lows trajectory sensitivities to be clearly defined [13].

Dynamic behavior, generated by simulation, can be described
analytically by the flow

(4)

together with algebraic constraints

(5)

where takes account of switching events. Initial conditions
imply

(6)

A compact development of boundary value problems results
from incorporating parameters into the dynamic states .
(Numerical implementation is also simplified.) This is achieved
by introducing trivial differential equations

(7)

into (1) and results in the natural partitioning

(8)

where are the true dynamic states, and are parameters.

B. Trajectory Sensitivities

Shooting method algorithms, which form the basis for solving
boundary value problems, require the sensitivity of a trajectory
(flow) to perturbations in parameters and/or initial conditions



DONDE AND HISKENS: DYNAMIC PERFORMANCE ASSESSMENT: GRAZING AND RELATED PHENOMENA 1969

[4]. To obtain the sensitivity of the flow to initial conditions
, the Taylor series expansion of (4) is formed. Neglecting

higher order terms gives

(9)

where is the sensitivity transition matrix, or trajectory sensi-
tivities, associated with the flow [16]. Equation (9) describes
the change in a trajectory, at time along the trajec-
tory, for a given (small) change in initial conditions

.
Space limitations preclude the inclusion of the variational

equations describing the evolution of . Full details are given in
[12] and [13]. It should be emphasized that does not require
smoothness of the underlying flow . Trajectory sensitivities are
well defined for the nonsmooth and/or discontinuous flows as-
sociated with realistic power systems.

Furthermore, the computational burden of generating is
minimal. It is shown in [13], [17], and [18] that when an implicit
numerical integration technique such as trapezoidal integration
is used, trajectory sensitivities can be obtained as a by-product
of computing the underlying trajectory.

III. GRAZING

A. Context

Grazing phenomena have been widely investigated recently,
particularly with reference to periodic systems [5], [19], [20]. In
that context, grazing is closely related to border-collision bifur-
cations [6], [21], [22], which are also known as C-bifurcations
[23]. Transient grazing was considered in [24] and [25], where
switching-time bifurcations were analyzed. These previous in-
vestigations focused largely on classifying the (local) conse-
quences of bifurcations through normal form analysis, particu-
larly for periodic systems. Computation of actual grazing points
has received less attention, with ad hoc approaches prevailing.
This paper addresses that deficiency by establishing a shooting
method that is applicable for general nonlinear hybrid systems,
such as power systems.

B. Mathematical Description

Grazing is characterized by a trajectory (flow) of the system
touching a performance constraint (for example a protection
triggering hypersurface) tangentially. Let that target hypersur-
face be described by

(10)

where . Vectors that are normal to are given by
, and the tangent hyperplane

is spanned by vectors that satisfy

(11)

The vector is directed tangentially along the flow.
To achieve tangential contact between the flow and the target hy-
persurface, it must satisfy (11) at a grazing point. Furthermore,
differentiating (2) and substituting (1) gives

(12)

(13)

where for notational convenience replaces .
A single degree of freedom is available for varying parame-

ters to find a grazing point. Recall from (8) that parameters are
incorporated into the initial conditions . Therefore, the single
degree of freedom can be achieved by parameterization ,
where is a scalar.

Grazing points are described by combining together the flow
definition (4) (appropriately parameterized by ), algebraic
equations (2), target hypersurface (10), and tangency conditions
(11), (13) to give

(14)

(15)

(16)

(17)

where the partial derivatives in (17) are evaluated at the grazing
point , . The grazing point occurs at time along the tra-
jectory. This set of equations may be written compactly as

(18)

where , and
. Solution of (18) can be achieved using a shooting

method, as discussed in the following section.

C. Shooting Method

1) Algorithm: Numerical solution of (18) using Newton’s
method amounts to iterating on the standard update formula

(19)

where is the Jacobian matrix given by (20), shown at the
bottom of the next page, with

. . .
. . .

(21)

...
...

(22)

...
...

(23)
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The matrices , , , and are usually extremely
sparse. It has been found that often the error introduced into

by ignoring them has a negligible effect on convergence.
However, situations can arise where these terms are vital for
reliable convergence. This is the case, for example, when the
trajectory has multiple turning points (peaks and troughs) in the
vicinity of the target hypersurface. Two approaches have been
used to obtain the second derivative terms.

1) Numerical differencing. Many simulators provide direct
computation of and , as these quantities are required
for implicit numerical integration. Numerical differencing
of and is straightforward but not particularly effi-
cient for high dimensional systems.

2) Direct computation. By utilizing an object oriented
modeling structure [15], second derivative terms occur
only within components. There are no terms introduced
by inter-component dependencies. Explicit formulae
for second derivative terms can be established for each
separate component model. The sparse matrices can then
be efficiently constructed.

Care must be taken in evaluating the terms of (14)–(17)
and (20) that relate to trajectory solution. The flow term

in (14) evaluates, via numerical integration, to
the value of at time along the trajectory that has initial
value . Likewise, the terms and in the first row of

should also be evaluated at time along that trajectory.
All other terms in should be evaluated at , .

2) Initialization of Variables: As with all iterative proce-
dures, solution of (19) requires a reasonable initial guess .
In terms of the original system variables, initial (approximate)
grazing point values of , , , , and are required. These
can be obtained from regular simulation.

Referring to Fig. 2, parameter values that are near the pivotal
value result in trajectories that either encounter the target hyper-
surface or just miss the hypersurface. The trajectory induced by
parameter should be monitored for the following:

1) a point where , i.e., an intersection with the
target hypersurface; or

2) an appropriate local minimum of , i.e., a point
where the trajectory passes close by the target hypersur-
face. Such a point is given by .
It follows from the discussion underlying the tangency
condition (17) that

(24)

This can be solved sparsely for as the trajectory
is traversed. (In fact, if an implicit numerical integration

Fig. 3. Modified IEEE 14-bus system.

technique is used, the factors of are already available
from computing the trajectory point.) A zero crossing in-
dicates the desired initialization point.

In both cases, the identified point directly provides initial values
for , , and . The corresponding value of is given as a
by-product of (24) in case 2) or by sparsely solving

for case 1).
3) Computational Effort: The computational effort involved

in solving (19) is primarily associated with repeated simula-
tions. As previously mentioned, the trajectory sensitivities re-
quired in the construction of the Jacobian (20) can be computed
as a by-product of simulation. Even though (20) has high di-
mension, it is extremely sparse and can be efficiently factored.

Adoption of a trial-and-error strategy for solving (18) would
save formation and factorization of (20). However, the conver-
gence properties of such algorithms are generally inferior to
Newton’s method. The computational cost of extra simulations
far exceeds that of building and factoring (20).

D. Example: Protection

The IEEE 14-bus system of Fig. 3 will be used to illustrate a
grazing situation that involves the distance protection on trans-
mission line 2–4 at bus 2. Basic network data for this system
can be found in [26], with complete generator/AVR/PSS data
given in [27]. To achieve the desired illustration, the impedances

(20)
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Fig. 4. AVR/PSS standard models AC4A and PSS1A.

TABLE I
SHOOTING METHOD CONVERGENCE, PROTECTION GRAZING

of lines 1–5, 2–5, 2–4, and 2–3 have been increased beyond
their standard values, so as to force the system to behave as two
areas. This induces post-fault oscillations that lie near the zone
2 impedance circle of relay 24.

A three-phase fault was applied at the midpoint of line 2–5
and was cleared by removing the line from service at 0.1 s after
fault inception. Relay 24 monitors the apparent impedance seen
looking along line 2–4. For now it will be assumed that the relay
issues an instantaneous trip signal if that apparent impedance
passes into the operating circle. As mentioned earlier, actual
zone 2 behavior involves a time delay before tripping. That sit-
uation is considered in Section IV. Grazing is still a very useful
concept though, as it provides an indication of system vulnera-
bility.

A sixth-order model (two axes, with two windings on each
axis) [28] was used for each machine. All AVR/PSSs were rep-
resented by the standard models AC4A and PSS1A [29] shown
in Fig. 4. A static voltage-dependent representation was used for
all loads.

Referring back to Fig. 1, those two trajectories corresponded
to different values of real power demand at bus 4. (The differ-
ence in load was matched by adjustment of the output of gener-
ator 2.) The aim is to determine the increase in bus 4 load that
results in the apparent impedance trajectory grazing the protec-
tion operating characteristic. It is shown in [3] that this target
hypersurface has the form

(25)

where bus voltage magnitudes and angles are algebraic
states and for zone 2 relays.

The shooting method of Section III-C was used to find the
desired grazing point. Convergence was obtained in four itera-
tions, with progress reported in Table I. An increase in bus 4 load
of 50.7%, from its original value of , re-
sulted in grazing. The initial and grazing trajectories are shown
in Fig. 5.

Fig. 5. Impedance trajectories, initial, and grazing conditions.

Fig. 6. Single machine infinite bus system.

This example is revisited later, for the case where a tripping
time delay is considered.

E. Example: Transient Voltage Overshoot

Further illustration of grazing is provided by considering
transient excursions of generator terminal voltage. The single
machine infinite bus power system of Fig. 6 forms the basis for
this example. The generator was accurately represented by a
sixth-order machine model, and the generator excitation system
was modeled according to Fig. 4. Note that the output limits on
the field voltage are anti-wind-up limits, while the limits
on the stabilizer output are clipping limits [30]. Therefore,
even though this example utilizes a simple network structure, it
exhibits nonlinear, nonsmooth, hybrid system behavior. Larger
systems are no more challenging. A single phase fault was
applied at the generator terminal bus at 0.05 s. The fault was
cleared, without line tripping, at 0.28 s.

Generators are susceptible to over-voltage protection op-
eration if their terminal voltage rises too high. This may
occur during transients following a large disturbance. The
field voltage maximum limit has a large influence on
transient over-voltages. This example considers the maximum
value of that ensures the initial voltage overshoot
does not rise above a specified value of 1.2 p.u. The target
hypersurface in this case is therefore .

Results of the iterative solution process are given in Table II
and presented graphically in Figs. 7 and 8. Convergence of the
shooting method was achieved in four iterations. This is an en-
couraging result, as an onerous test condition was chosen. Refer-
ring to Fig. 7, it can be seen that the original voltage trajectory is
quite flat over the first extended peak. The grazing formulation
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TABLE II
SHOOTING METHOD CONVERGENCE, VOLTAGE CONSTRAINT GRAZING

Fig. 7. Terminal voltage V , initial and grazing conditions.

(18) not only describes peaks but also troughs and points of in-
flection. It turns out that for this example, (18) actually has three
solutions in close proximity. Accordingly, the Jacobian is
quite ill-conditioned. It was found that if the second derivative
terms in (20) were ignored, the shooting method converged but
to the wrong solution. This occurred for initial conditions over
most of the extended peak. Clearly the directional information
provided by the second derivative terms is important in cases
such as this, where the encounter between the trajectory and the
border is not unimodal.

It is evident from Fig. 8 that this system exhibits quite
nonsmooth behavior. In fact, 15 events occur over the initial
2 s transient, primarily banging on maximum and min-
imum limits. Discrete events clearly exert a strong influence on
system dynamics. However, because the trajectory sensitivities,
and hence the Jacobian , take those events into account,
shooting method convergence is unaffected.

Notice in Fig. 7 that enforcing the performance specification
at the first peak has a detrimental effect on the second peak.
This reflects the fact that the grazing formulation (18) solves for
local encounters between the trajectory and the tangent hyper-
surface. To ensure absolute compliance with the specification,
the grazing trajectory should be monitored for later transgres-
sions. If the specification is exceeded elsewhere, the algorithm
should be reinitialized at that crossing point.

In this particular example, due to the unusual choice of
as the free parameter, there is no value that allows

both peaks to simultaneously satisfy the specification. How-
ever, such compliance could be achieved by freeing a second

Fig. 8. Generator field voltage E , initial and grazing conditions.

parameter and coupling together two sets of equations of the
form (14)–(17).

IV. TIME-DIFFERENCE EVENT TRIGGERS

Often events are not triggered instantaneously but rather re-
quire a condition to be satisfied for a specified time period .
For example, zone 2 and 3 distance relays do not trip instanta-
neously but issue a trip signal only after the apparent impedance
has remained within the zone characteristic for a preset time.
Tangential contact no longer plays a role, so the grazing formu-
lation (14)–(17) is now inappropriate. However, conditions that
just induce an event (analogous to grazing) can again be formu-
lated analytically.

A. Mathematical Formulation

Let a system trajectory encounter an enabling condition
at time and the disabling condition

at time . If the time difference is less than the time
required for triggering, then no event will occur. However, if

, then the event will occur. The pivotal condition
corresponds to . These conditions can be formulated
as

(26)

(27)

(28)

(29)

(30)

(31)

(32)

where and give the enabling and disabling
points, respectively. It takes and seconds, respectively, to
reach those points from the initial condition . This set of
equations may be written compactly as

(33)
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TABLE III
SHOOTING METHOD CONVERGENCE, TIME-DIFFERENCE

PROTECTION TRIGGERING

where and
. Solution of (26)–(32) can be obtained by a shooting

method, using an update formula similar to (19). In this case,
the Jacobian becomes

(34)

B. Initialization of Variables

Iterative solution of (26)–(32) again requires good initial
guesses for all variables. The techniques of Section III-C-II can
be adapted to provide appropriate values. Again the trajectory
induced by parameter should be monitored for intersections
with the enabling and disabling hypersurfaces.

1) If an intersection with the enabling surface exists, it pro-
vides . The trajectory should then be continued
until the disabling hypersurface is encountered, giving

. If that encounter does not occur around time
, then the latter point should be given by values

at .
2) If the trajectory does not intersect the enabling hyper-

surface at all, then the point where should
be identified, as in Section III-C-II. From that point, it
is often sufficient to take a time step along the trajec-
tory to . Other strategies may also be appropriate,
depending on the nature of and . For example, if

, then it may be more appropriate to take
a time step backward to give and forward
to give .

C. Example: Protection (Revisited)

The example of Section III-D will again be used, though in
this case the instantaneous trip of relay 24 has been replaced by
a delayed trip. The impedance trajectory must remain within the
circle characteristic for s for a trip to occur. Therefore,
in this case, the enabling and disabling hypersurfaces are both
given by the protection circle characteristic, so that .
Equations (26)–(32) were solved to determine the change in bus
4 load that would just induce a trip under these revised condi-
tions. As indicated in Table III, the shooting method converged

Fig. 9. Impedance trajectories, time-difference event triggering.

Fig. 10. Evaluation of b(x; y) along trajectories.

in four iterations and found that a 66.6% load increase was re-
quired. Fig. 9 shows this pivotal case, along with the original
trajectory.

Fig. 10 compares time-domain trajectories of for the
three cases of interest, viz., nominal load at bus 4, load corre-
sponding to grazing (instantaneous tripping), and the final case
when tripping occurred after 0.3 s. Notice that the nominal tra-
jectory does not dip below the threshold, so no trip-
ping is initiated. The grazing trajectory makes tangential con-
tact with the axis, while the time-difference case
lies below the axis for exactly the specified s.

D. Example: Induction Motor Stalling

Time-difference events can be further illustrated by consid-
ering fault-induced induction motor stalling. The simple system
of Fig. 11, consisting of a load bus connected to the Thévenin
equivalent of the supply system, is sufficient for examining this
phenomenon. An induction motor and static var compensator
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Fig. 11. Induction motor supply system.

Fig. 12. Static var compensator model.

Fig. 13. Voltage response to a fault, various SVC maximum limits.

(SVC) are connected at the load bus. For this example, the in-
duction motor has been represented by a third-order model [31],
while the SVC model is shown in Fig. 12.

A fault near the load bus will cause the induction motor slip to
increase. If the slip advances too far during the fault, the motor
will stall. Even if stalling does not occur, a near-stall condition
will prolong the post-fault voltage recovery. This is shown in
Fig. 13. Protection is usually set to trip the motor in response to
prolonged low-voltage conditions.

An SVC can be used to improve fault recovery by supporting
the load bus voltage [32]. The level of support depends upon the
SVC’s capacitive limit , as illustrated in Fig. 13. Support
increases with , but so does the SVC cost. It is useful to
determine the smallest that prevents motor tripping. This
fits a time-difference event formulation.

For this example, a fault was applied at the load bus at 0.05 s
and cleared at 0.4 s. The motor protection was set to operate if
the voltage remained below 0.85 p.u. for longer than 1 s. These
specifications have the form of a time-difference event, with
fault initiation providing the enabling condition, voltage rising
above 0.85 p.u. establishing the disabling condition, and time
difference s. In this case though, the fault occurs at a

TABLE IV
SHOOTING METHOD CONVERGENCE, INDUCTION MOTOR TRIPPING

Fig. 14. Voltage response to a fault, various fault-on times.

user-specified time of s, with the system in pre-fault
steady state, so are immediately known. Furthermore,
(32) can be solved directly to obtain s. The time-dif-
ference formulation (26)–(32) reduces to

(35)

(36)

(37)

where , and . The
shooting method was used to solve (35)–(37), with convergence
progress given in Table IV. The pivotal trajectory, corresponding
to p.u., is shown in Fig. 13. Notice that this
voltage trajectory passes through p.u. at exactly 1.05
s. Incrementally slower recovery would result in motor tripping.

Rather than installing an SVC at the load bus, it may be more
cost effective to reduce the fault-clearing time. To explore this
option, the SVC was removed from the system, and the example
was reworked accordingly. As shown in Fig. 14, pivotal con-
ditions were achieved by reducing the fault-on time from 0.35
to 0.3287 s. This result was achieved in four iterations and fur-
ther illustrates the versatility of the analysis approach suggested
throughout the paper.

V. CONCLUSIONS

Performance specifications place restrictions on the dynamic
behavior of systems. Such specifications dictate regions of pa-
rameter space where operation is acceptable. Parameter values
on the boundary of those regions result in dynamic behavior that
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only just meets specifications.2 In defining such borderline be-
havior, two cases must be considered:

1) an encounter with a performance constraint has instanta-
neous consequences; or

2) a triggering condition must be satisfied for a certain time
period.

In the first case, bounding (parameter space) conditions give
rise to grazing phenomena (in state space), where the system
trajectory tangentially encounters (grazes) the performance con-
straint. The second case replaces tangential contact by a require-
ment that the time difference between enabling and disabling
conditions exactly matches a specified trigger time.

Both sets of pivotal conditions can be formulated as boundary
value problems. Newton’s method robustly solves the corre-
sponding nonlinear algebraic equations. Each iteration requires
numerical integration of the system trajectory, so the solution
process has the form of a shooting method. The associated
Jacobian incorporates trajectory sensitivities, which can be
efficiently computed along with the trajectory. The shooting
method is therefore practical for arbitrarily large power
systems.

Applications of this approach to assessing dynamic perfor-
mance are extensive. The paper considers a diverse array of
examples, drawn from distance protection operation (both in-
stantaneous and delayed), transient over-voltages, and induction
motor stalling.
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