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Abstract—The feasible set of power injections for the con-
strained power flow equations is nonconvex when practical
transmission capacity and bus voltage limits are imposed. The
projection onto the space of active power injections may be “close”
to convex, but this is not sufficient to guarantee revenue adequacy
for the settlement of financial transmission rights.

Index Terms—Convexity, financial transmission rights (FTRs),
optimization methods, power flow analysis, power system
economics.

I. INTRODUCTION

HE ISSUE OF convexity of power flow solutions arises on

occasion, particularly in relation to optimization problems
such as economic dispatch [1], [2]. Sometimes convexity is dis-
cussed and used to justify results that lead to policy decisions,
such as the establishment of “revenue adequacy” for congestion
revenues in an electricity market [3], [4]. (Revenue adequacy
ensures that the ISO will collect enough money in congestion
rents to pay financial transmission rights.) Unfortunately, as we
will constructively show, this set of power flow injections is typ-
ically nonconvex.

Analysis of the power flow equations is the most fundamental
task in power system engineering. These equations represent, in
a very quantitative sense, the physical capability of a network
to transfer energy from injection points to end use (treated as
negative injections). These equations apply to almost every type
of problem that involves use of the electric power grid. In this
paper, we are motivated by problems with roots in optimiza-
tion in which a large set of possible injection profiles needs to
be considered. This includes such problems as optimal dispatch
to serve specified load at least cost and the operation of certain
electricity-related financial markets such as the auction and set-
tlement of financial transmission rights (FTRs).

In the well-known optimal dispatch problem, the injected
powers at the loads are specified, as well as operational limits
on line flow capacities, generator active and reactive power
supply, and voltage magnitudes. The dispatch cost function that
is to be minimized may or may not be convex. Detailed models
of thermal generators tend not to have convex operating cost
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functions [5], and researchers continue to develop techniques
for optimizing dispatch of these units [6]. However, in the
electricity market setting in which suppliers submit strictly
increasing offers, the costs functions are convex. If the set
of feasible power injections is convex, efficient optimization
algorithms can exploit these convex properties.

A related problem, and the main subject of this paper, is in the
market of FTRs in which financial rights to congestion revenues
for transferring quantities of active power from user-specified
points of injection (POIs) to points of withdrawal (POWs) are
auctioned. In an ideal setting, the auction maximizes income
(from the auction) subject to a simultaneous feasibility test to
ensure that the accepted FTRs satisfy the power flow equations.
Since users can specify any POI and POW they choose, the en-
tire set of feasible injections needs to be considered, at least
in theory. There is the distinction in this case that the auction
only considers active power, so we need to consider a restricted
problem involving the projection of the feasible set of active
powers, reactive powers, and voltage magnitudes and phase an-
gles onto active powers, effectively ignoring convexity/noncon-
vexity in reactive power and voltage. Also, from a practical point
of view, the auction should ideally mimic the actual system, so
the POWs will generally correspond to load buses and the POIs
to generator buses.

This issue of convexity has been discussed some in the litera-
ture. It is clear from the nonlinear form of the power flow equa-
tions in terms of voltage magnitudes and angles (polar coordi-
nates) that the feasible set expressed in active power, reactive
power, voltage magnitude, and angle cannot be convex. This is
immediately obvious from the 27-periodicity of the equations
in terms of angles. Less obvious is whether the equations are
nonconvex when voltages are expressed in rectangular coordi-
nates, and moreover, we are primarily interested in power in-
jections and do not necessarily require convexity in the voltage
variables. In [7], Jarjis and Galiana conjectured that the set of
active and reactive power injections is convex, based on uncon-
strained power flow equations expressed in rectangular coordi-
nates. They make no claim to convexity when the network is
constrained.! In his work on contract networks, Hogan recog-
nized that the entire feasible set in power and voltages needs
not be convex to prove revenue adequacy. Convexity in injected
powers is sufficient and he conjectured that this set is convex [3,
pp- 73-74]. Chao and Peck [4] proved that in the restricted case
of constant voltages and small angle differences that the active
power flows are convex functions of the angle differences and

ITheir work was directed toward finding the closest feasibility boundary to
an operating point and did not consider the types of transmission capacity and
voltage constraints that may be important for transmission congestion.
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that the optimal dispatch problem is also convex under these
conditions.

We comment that the general issue of conditions under
which the set of active power injections allowed by the power
flow equations is convex remains unresolved. Neither Jarjis and
Galiana nor Hogan proved their conjectures, although they are
based on appealing arguments. The conditions for which Chao
and Peck establish convexity (constant nominal voltage, small
angle differences) are generally not applicable when congestion
management is important.2 Furthermore, the range of angle
differences for which their result holds (provably) depends on
the ratio of line conductances to susceptances, reducing to zero
for lossless systems.

In their overview of FTR mechanisms [8], Alsac et al. point
out that revenue adequacy can be proved for the linear dc net-
work model, but “no such proof is available for loss-compen-
sated and/or nonlinear network models.” In this paper, we show
that revenue adequacy cannot be proven for the general non-
linear ac power flow model. The set of feasible power injec-
tions and voltage variables is not generally convex, nor is its
projection onto the space of active power injections. Our paper
builds on [9] and [10], where Hiskens and Davy used contin-
uation methods to explore the boundary of the set of solutions
to the power flow equations. Using a three-bus example, they
showed that the set of feasible reactive power injections may
contain holes and, hence, is nonconvex. It was also shown that
line losses distort the set of feasible active power injections and
are capable of introducing nonconvexity. We will explore these
results further in this paper, showing nonconvexity in the set
of feasible active power injections for the lossless case. Fur-
thermore, by imposing transmission capacity and voltage con-
straints, we discuss the importance of nonconvexity in the con-
text of transmission congestion and revenue adequacy.

In Section II, we present some mathematical background and
provide an elementary example involving current injections into
a linear network with line capacity and voltage limits. With the
intuition gained from the current injection model, we proceed
to examine the power injection model (power flow equations) in
Section III. In both cases, we prove that the set of feasible injec-
tions is not convex. Section IV discusses the issue of convexity
in terms of subsets that correspond to analyzes of practical in-
terest. In Section V, we demonstrate that approximate convexity
is not sufficient to support revenue adequacy. Conclusions are
presented in Section VI.

II. BACKGROUND
A. FTRs

When congestion occurs in a centrally dispatched, market-
based system, the LMPs separate across the network, and con-
sequently, in net, charges to loads for energy exceed payments to
generators for supply. This congestion revenue in part or whole
is intended to be disbursed to certain holders of FTRs.

FTRs are financial tools that allow market participants to
manage their exposure to congestion costs. The details of FTRs

2When congestion occurs due to line or voltage constraints, the power flows
and angle differences approach their allowable maxima, and/or the voltages de-
viate from nominal values by the maximum tolerable amount.
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depend on the market, but typically the right takes the form of
a quantity of power flow between two points in the network: a
POI and a POW.? The right is valued at market clearing as the
product of the flow quantity and the price difference between
the two points. Ideally, a load that is charged a premium for
energy due to congestion can recoup its congestion charges
by receiving payments from FTRs it may possess. The initial
allocation of FTRs differs among ISOs. In the New York ISO,
the FTRs are auctioned, and the proceeds of the auctions are
distributed to the transmission owners. These funds count as
part of the transmission owner’s regulated profits and are thus,
arguably, indirectly returned to the loads. In PJM, the loads
have a right to request FTRs up to an amount equal to the
load’s peak demand. Any remaining FTRs, and FTRs the loads
choose to sell, are distributed using an auction. The final FTR
allocation is required to satisfy a “Simultaneous Feasibility
Test” in which the specified power injections at POIs and POWs
are feasible over the physical electrical network. (See [12, p.
78] for an example.)

An important issue for the ISO, which collects congestion
revenues and pays out FTRs, is whether the congestion revenues
will be sufficient to cover the FTR allocations. This is called rev-
enue adequacy. An important theoretical result suggests that an
auction-based FTR allocation that maximizes the income from
the auction (and subject to a simultaneous feasibility test) will
satisfy revenue adequacy provided the feasible set of power in-
jections is convex [3]. Convexity is assured for the so-called dc
power flow network representation, but it must be assumed to be
true for the more accurate ac power flow network representation.

B. Convexity

Convexity is a mathematical property of a set that states that
if one constructs a line between any two points in the set, all the
points on the line will also belong to the set. The word convexity
also describes a property of certain functions. A function g(z)
is said to be convex if for all 1 and x5 contained in a convex
set, 9((1 = p)w1 + pae) < (1= p)g(@1) + pg(x2) (see [13,
pp.- 82-83]). These important properties have been exploited in
different ways to establish other properties (such as “revenue
adequacy” mentioned above) and to develop efficient optimiza-
tion routines.

Consider an optimization problem cast in the following way:

mgn C(P) (H

subject to

f(P)<0 2

where P is a vector of variables, C(P) is a scalar cost function
expressed in terms of P, and f(P) is a vector of constraints
imposed on P that limits the values P may take. If C(P) is a
convex function and the feasible set Q@ = {P : f(P) < 0} is
also convex, then efficient algorithms exist to find an optimal
solution, and the solution is guaranteed to be either unique or to

3In this paper, we consider point-to-point obligation FTRs as they are most
commonly used. ERCOT employs a different flowgate FTR method, and other
hybrid option/obligation, point-to-point/flowgate methods have been proposed
but are not currently used. See [11] for an example.
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belong to a continuous set of adjacent (feasible) minimal cost
solutions. If either the cost function or the feasible set is not
convex, then practical algorithms are not generally available to
find the globally optimal solution. Only locally optimal solu-
tions can be guaranteed. (It is shown in [14] that misapplication
of sophisticated algorithms such as Lagrangian relaxation can
result in suboptimal or infeasible answers, when the problem
should exhibit a unique globally optimal answer.)

In this paper, we focus on the feasible set. In practice, it is
implicitly defined by the more general constraints

f(P.Q.V)<0 3)

where P, Q, and V, respectively, represent active power, re-
active power, and voltage phasor. The voltage phasor may be
represented in polar or rectangular coordinates. Given the non-
linear form of equality and inequality constraints contained in
(3), it should not be expected that this optimization problem
should be convex [15]. Since many typical and practical opti-
mization problems focus only on active power, we can theoret-
ically examine the projection of the set described by (3) onto
active powers P to obtain (2). This resulting feasible set is a
best-case representation since it may appear convex while the
underlying representation with more variables may not be. If
the feasible set described by (3) is not convex, then optimization
algorithms may exhibit computational problems, as mentioned
earlier. Nevertheless, if the projected feasible set described by
(2) is convex, regardless of (3), one can establish useful theoret-
ical properties. In this paper, we pursue the “revenue adequacy”
result, which ensures that congestion revenues will be greater
than or equal to FTR payments, an important property for the
settlement of electricity markets. In [3], Hogan makes the point
that the entire feasibility set in terms of power and voltages need
not be convex to ensure revenue adequacy; convexity in injected
power is sufficient.

C. Current Injection Example

Before we analyze the power flow problem, it is illustrative
to first consider the current-injection network model from which
the power flow model is ultimately derived.

In a simple form, neglecting complexities, including phase-
shifting transformers, LTCs, and the like, the injected currents
are related to bus voltages through a complex admittance matrix

L Y11 Yin Vi

= : 4)
I N YN1 YNN VN
or compactly I = YV, where I and V represent current and
voltage complex phasors, respectively.4 Kirchhoff’s current law,
a physical constraint that all the currents injected into the net-
work must sum to zero, is implicitly included in this equation.

4A tedious but important point: The complex current phasor variables are
treated in rectangular coordinates and not polar coordinates. While this is not
particularly meaningful with respect to current injections, when we extend the
example to power injections, we will naturally need to use rectangular coordi-
nates to distinguish between active and reactive power.
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If the network does not include any shunt elements, the admit-
tance matrix will be singular. It is worth noting a physical in-
terpretation for this singularity. The zero eigenvector of all ones
indicates that any profile of identical voltages will result in zero
current injections.

The set of feasible currents that satisfy (4) is convex (and in-
finite). This is easily confirmed by examining the current injec-
tions that form a line between two feasible solutions /4 and Ip

I,=YVy

Ip=YVp
I() =1 =w)YVa+pYVp =YV(p), 0<p<1
where V(u) = (1 — u)Va + uVp explicitly describes the volt-
ages related to these injected currents. No constraints are vio-
lated as p varies between 0 and 1, so all points I(u) are fea-
sible. Of course, since this is a linear relation, we expect it to be
convex. When we add certain constraints, this will not be true.

First, if we limit the magnitude of injected currents |I;| <
Inax, the set of feasible injections remains convex. To see this,
consider any two feasible current injections |14, |Ig| < Imax.
and I(p) = (1 — p)I4 + plp. Then because 0 < p < 1

()| <1 = p)[La] + p|I5| norm property
< (1 - /L)Imax + /LImax = Imax

implying convexity.

Second, we may impose capacity limits on lines in the net-
work. The relation between the line current flows and the bus
voltages is similar in form to (4)

Iline = YlineV (5)

and following identical logic, the set of current injections that
satisfy both maximum injection limits and maximum line ca-
pacity limits is convex.

Based on these observations, and recognizing that the power
flow equations are simply a weighted version of the current
equations (weighted by voltages, and the voltage magnitudes
are nearly constant), intuitively it would seem that the set of
feasible injections that satisfy the power flow equations should
be convex. But the placement of constraints on the voltages un-
dermines this—even in the linear current injection formulation.

Voltage constraints are only meaningful when the admittance
matrix Y is nonsingular. As discussed earlier, singular Y im-
plies that the voltage profile has translational symmetry along
the zero eigenvector. In other words, the voltage profile can be
arbitrarily shifted by adding the scaled zero eigenvector. Min-
imum voltage constraints can always be satisfied by raising the
whole profile. Therefore, nonsingular Y will be assumed in this
discussion. This assumption is consistent with realistic power
systems, where m-models of transmission lines introduce shunt
capacitance.

By placing lower and upper limits on voltage magnitude, it
is easy to demonstrate that the set of feasible current injections
cannot be convex. Consider two nonzero feasible solutions 1 4
and Ip = —I4. The line I(p) = (1 — )14 + 1l connecting
these two injections will pass through zero at i = 0.5. It follows
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from (4) and nonsingularity of Y that V' = 0 at this center point.
This violates any nonzero minimum voltage magnitude limit
we impose. Thus, with minimum voltage constraints, the set of
injected currents that satisfy the network equations is decidedly
nonconvex. The linear model represents a convex function of
voltages, but the set of voltages when thus constrained is not
convex. This leads to nonconvexity of the corresponding set of
current injections.

Now, if lessons are to be learned from the linear current flow
model, one might expect that the set of feasible power flow in-
jections will suffer similar limitations. This is indeed the case
and can be shown through a variant of the argument used above.

III. NONCONVEX SET OF INJECTED POWERS

Let us turn to the power flow equations. These are constructed
directly from the current injection equations by multiplying cur-
rents and voltages to obtain power

P+ 50 Vi Y7 Yi'y
Py +3jQnN Vvl | Y Yan
Vl*
x| (6)
Vy
or for each bus
N
Pi+jQi=Vi Y YiVy. ™
k=1

To demonstrate that the set of power injections that satisfy (6)
is not convex when minimum and maximum voltage constraints
are imposed, we consider an elementary two-bus system and
show that the set of feasible injections is not convex. We argue
that this is sufficient to demonstrate problems with convexity
for general power systems, because we can choose feasible op-
erating conditions on a general system that allow it to be reduced
to an equivalent two-bus system.

To this end, consider the two-bus system shown in Fig. 1. The
two buses are connected through a lossless transmission line
with reactance X . We neglect losses, but the reader will observe
that the fundamental results that follow do not change with the
addition of losses. The relevant power flow equations for this
system are

Pi+jQu =1 (= V5) ®)
- I.V * *
Py+jQy =2 (V7 = V7). ©

X

Now we need to specify two specific feasible solutions to con-
sider. Analogous to the current injection example of the previous
section in which we reversed the current flow, here we choose
feasible operating points that reverse the active power flow while
keeping the reactive power constant. Let us define V;,, to be the
greater of the two minimum voltage limits for the two buses.
The two cases we propose here are as follows.
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Vi | £]

Two-bus system.

Pr+jQ:>
Fig. 1.

Feasible Point A: V; =
Vned™? = jV,,, giving

Vel = V,, and Vo =

Vo Vo
Py = — X Qa1 = ~
V2 V2
Py — —m Ty
a2 =~ Qa2 X

Feasible Point B: V; = V,,e’% = V,, and V, =
V€372 = — 5V, giving

2 V2
Pri = —m —'m
B1 = @B1 X
V2 V2
Ppy = — - _ Y
B2 X QB2 X

From (8) and (9), candidate injections at bus 1 along the line
connecting feasible points A and B are given by

Pi(p) +3Q1(p) = (1 — p)Par + pPpy
+4[(1 = 1)Qa1 + uQp1]

-2 1) ()
W e - vy o)
Likewise for bus 2 injections, we obtain
Py(p) +7Q2(p) = (1 — p)Pas + uPpo
+[(1 - /;)Q.m + NQB2]2
SR R )

=10 1 ) vy ()

Some algebra yields the necessary voltage profile along the
path of injections

(11)

Vi(u) =V(n) (12)
V() =V (p)e?® (13)
where
Vin
Vi) = 7 (2p-1)2+1 (14)
2(2p —1
6(p) = — arctan <#> . (15)

Note that § varies from 7/2 to 37/2 by a path that passes
through 7 at © = 0.5. The minimum voltage magnitude along
this path occurs at x = 0.5

Vin

V2
Clearly at this point along the path of candidate injections, the
minimum voltage constraint at one of the buses is violated. In

fact, all of the injections along the path violate that minimum
voltage constraint, except the endpoints. Therefore, the set of

V2(0.5) = — (16)
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Fig. 2. Positive active and reactive power injections at bus 1 for the two-bus
example.

feasible power injections for this two-bus system is not convex.
More complex power systems can be thought of as composed
of two-bus subsystems. Therefore, the nonconvex result applies
to a very large class of power system models.

We should comment on the choice of the two initial feasible
points chosen for this proof. One observes that bus 2 supplies ac-
tive power to the network at Point A and absorbs active power
from the network at Point B. Historically, two such operating
points for the same system may not have been considered rea-
sonable. These days, when generators are commonly sited at
industrial plants, universities, and other distributed locations, it
is indeed possible that the plant may be supplying power to the
grid at some times and drawing power at other times. The two
points chosen are not extreme. However, in practice, one may
wish to limit the set of injections and enquire whether a partic-
ular subset is convex.

To conclude this section, we present a sample feasibility
region for the two-bus example presented here. We stipulate
minimum and maximum voltages limits to be 0.9 and 1.1 p.u.,
respectively, for both buses. The line impedance was set to
0.1 p.u., and the reactive power injection at bus 2 fixed at
8.1 p.u. A homotopy (continuation) method [9], [16] was used
to determine the set of active and reactive power injections at
bus 1 that satisfy the voltage constraints and the reactive power
constraint at bus 2. This produced two disjoint sets: one with
positive active power injections at bus 1 and a symmetric reflec-
tion of this with negative power injections at bus 1. Obviously,
two disjoint sets cannot form a single convex set. Fig. 2 shows
only the positive power injection portion. It is clear that even
this half of the complete set is not convex.

IV. SUBSETS, SUBSPACES, AND PROJECTIONS

We know from our proof above that the entire set of fea-
sible injections is not convex, but a subset might be. It is not
difficult to specify constraints that will result in a convex set
of injections—one can generally specify a small enough region
around a feasible injection profile to construct a small feasible
convex set. In [4], Chao and Peck show convexity in terms of
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Fig. 3. Five-bus system with zero active power injections at buses 4 and 5 and
all bus voltages equal to 1.0 p.u.

small angle differences and constant voltage. In [17], Sari¢ and
Stankovi¢ suggest that the set of constant power factor injections
in a range around a feasible operating point is convex. There is
no point in trying to prove that a convex set will not exist for
any possible constraint combination. Rather, we examine a par-
ticular case to consider some of the constraint issues that arise
in practice. It should be alarming then to consider that the most
elementary power flow problems that are encountered in an in-
troductory power system course are nonconvex.

When we first learn or teach the power flow equations, we
do not consider the entire space of possible injections. Rather
we specify exactly enough binding constraints to ensure that
the number of unknowns equals the number of equations. In an
introductory power course, we learn to specify load bus con-
straints in terms of active and reactive power injections, gener-
ator buses in terms of injected active power and voltage magni-
tude, and we include a “slack bus” at which we specify an angle
reference and voltage magnitude. Given these constraints, we
attempt to find meaningful solutions in terms of reactive power
injections and angles at generator buses, voltage magnitudes and
angles at load buses, and active and reactive power at the slack
bus. In terms of power injections, we consider a subspace of pos-
sible injections for the generator reactive powers and the slack
bus active and reactive power. [Recall that load active and reac-
tive powers are fixed, along with generator (except slack) active
powers.] It is well known that the number of distinct solutions
to this problem is finite [18]. Therefore, it is impossible for the
set of feasible injections to be convex for this very constrained
case (except for very rare cases when there is a unique solution).
The (infinite) number of points comprising a line connecting
two feasible injections cannot belong to a finite set.

But perhaps we should not be too concerned with the con-
straints imposed in the pedagogical model, because they do not
reflect some of the most important uses in practice. That model
does not include practical limits on voltages at load buses, and
the generator powers are much more tightly constrained than in
optimal dispatch and similar applications.

To establish a model that resembles the type encountered in
practical optimization studies, and in particular the type that
may be encountered in the allocation and receipt of congestion
revenues, we specify some loads, all voltages, and examine the
projection onto active powers. Thus, we consider a subset of fea-
sible injections and examine the projection issue. The five-bus
network shown in Fig. 3 will be used for illustration. It is moti-
vated in part by the many three-bus systems studied in the power
system economics literature, where loop flow is of interest [3],
[4], [14], [19], [20, pp. 397-398]. Such effects cannot be repli-
cated in two-bus models. The five-bus system incorporates the
features required to study loop flows but adds additional buses
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that provide voltage support. We will show that when voltages
are constrained, the feasible set of active power injections is not
convex.’

In this system, the bus voltage magnitudes are all equal to
1.0 p.u. The voltage angle at bus 1 is arbitrarily set to 0.0 ra-
dians to provide the system angle reference. The active power
injections at buses 4 and 5 are set to zero, and we investigate the
entire set of possible active power injections at buses 1, 2, and 3.

The topology and transmission line reactances are chosen
to appropriately represent a spatially distributed system with
parallel paths (that allow “loop flows”). The line reactance of
0.4 p.u. connecting buses 1 and 2 is equal to the sum of the
four 0.1 p.u. reactances along the other path that connects these
buses. Evaluating the set of possible active power injections is
easily accomplished by varying #5 and 63 through all possible
combinations between 0 and 27. For each value of 63, there
are six possible values for 6, and 65 that satisfy the zero active
power injection constraint at these two buses. To derive these
values, note that the zero-power injection condition at bus 4 re-
quires sin(f; — 5) = sin(f3 — 64) and the zero-power injec-
tion condition at bus 5 requires sin(f5) = sin(f4 — 65 ). Each of
these can be expressed directly in terms of the angle variables.
Accounting for angular modularity of 27, each has two distinct
representations. For bus 4 these are

(94 — 05) = (93 — 04) + k2w or (17)
(94—95) =T — (93—94)—]6271’ (18)
while for bus 5 they are
(05) = (94 — 05) + m27 or (19)
(95) =T — (04 - 95) — m2m. (20)

Solving for 6, and 5 in terms of 3 using the four possible
combinations obtained from choosing one of either (17) or (18),
and one of (19) or (20), one obtains the following six possible
values:

2
0, = % and 05 = %3, or 2D
2 2 2
0, = w and 05 = (95’”;4”) or 22)
@:Mand%:wg;—%r)or (23)
fy =mand 05 = —65 or (24)
f, =mand 05 = 03 — 7 or (25)
04 :203 and 05 = 93 - (26)

with (21)—(23) coming from the (17) and (19) pair.

These different angle combinations correspond to different
possible reactive power injections that satisfy the zero active
power injection requirement at buses 4 and 5. We are primarily
concerned with the set of active power injections atbuses 1,2, and
3, and we initially consider all the angle possibilities (21)—(26).

SA three-bus system of the type that one finds in many papers on FTRs does
not suffice to demonstrate nonconvexity. The set of active power injections ap-
pears convex, excluding losses. The entire set of injections, including reactive
power, is not necessarily convex though. Reference [9] provides examples of
nonconvexity in reactive power and active power when losses are considered.
Our example here is lossless and ignores nonconvexity in reactive power and
voltage.
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Active Power Injection at Bus 2
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Active Power Injection at Bus 1

Fig. 4. Set of allowable active power injections at buses 1 and 2 for the system
shown in Fig. 3.

The set of possible active power injections for buses 1 and 2
is shown in Fig. 4. Since there are no losses, the active power
injection at bus 3 is the negative of the sum of active power
injections at buses 1 and 2. In an FTR auction context, the set
of injections shown in Fig. 4 can be interpreted as the possible
point-to-point FTRs from buses 1 and 2 to bus 3 that satisfy
a simultaneous feasibility test. This set is obviously nonconvex
but appears “close” to convex. (We discuss the import of “close”
to convex in Section V.) The manner in which the figure seems
to wrap around is due to the different values of reactive power
injections, which are not shown in this figure.

So far we have only imposed voltage constraints on the system.
It may be appropriate to impose transmission line capacity con-
straints and power injection limits. Next we impose line capacity
constraints that will allow maximum utilization of the lines to
transmit active power and the necessary supporting reactive
power but no active/reactive power combination beyond that:
The angles between buses are restricted to be less than or equal
to 90 degrees. We may also assume knowledge that buses 1 and 2
correspond to generator locations and bus 3 is aload location and
look at the set when the active power injections at the generators
are greater than or equal to zero. The set of feasible active power
injections is shown in Fig. 5. Like the set shown in Fig. 4, this
set is not convex (but may be considered “close” to convex).
We continue this example in Section V where we compare
congestion revenues with possible FTR obligations.

It might be argued that for almost all practical problems, the
set will be close enough to being convex to justify algorithms
and policies that assume a convex set. It should be understood,
however, that the sets may not be completely convex, and prob-
lems may arise under some circumstances.

There is a notable study [21] concerning power transfer distri-
bution factors (PTDFs) that suggests that the set of active powers
will be nearly convex. The curvature seen on the boundary of
the set of feasible injections in Fig. 5 is due in part to changes
in the relative power transfer capabilities of the different lines
in the network as the loading changes. Reference [21] shows
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Fig. 5. Set of feasible active power injections at buses 1 and 2 with
transmission line capacity limits.

that these relative power transfer capabilities (the PTDFs) are
approximately constant, which is consistent with the feasibility
region we find. Looking at Fig. 5, it can easily be seen that the
boundaries are nearly linear, with some slight curvature. It turns
out that this curvature, however slight, can cause the revenue
adequacy property to fail.

V. CONGESTION REVENUES, FTRS, AND CONVEXITY

It is illustrative to continue our example to demonstrate that
revenue adequacy is not guaranteed when the feasible set is not
convex, even though it may be close to convex.

Consider the case in which the generators at buses 1 and 2
offer substantially different bids in an energy market. With no
loss of generality, let us set the offer price at bus 1 to be a con-
stant $10/MWh and the offer price at bus 2 to be a constant
$20/MWh. (The reader may verify that similar results are ob-
tained by reversing the offer prices.) Now we examine how the
optimal dispatch and LMPs change as the active power load is
increased at bus 3. We refer to Fig. 5 for this discussion. Low
levels of load are supplied by the lower-cost generator at bus 1
and the LMPs are the same and equal to $10/MWh. In Fig. 5,
this dispatch corresponds to the horizontal axis between points
O and A. At a load of 8.21 MW, at point A, the capability of
the transmission network to deliver energy from bus 1 to bus
3 becomes constrained by the capacity limit of the line con-
necting buses 1 and 2. To meet demand greater than 8.21 MW
requires some supply from the higher-cost generator at bus 2.
The slope of the tangent line at point A, m = 3.54, graphically
illustrates the relative proportion of incremental supply that will
come from generators 1 and 2. This can be used to calculate the
locational marginal cost at bus 3:¢

. 3.54 % (1\&3\27311) 1+ (1\&3\17311)
354+ 1
_ $17.80
=~ MWh

60f course, this is typically computed from the optimization routine. We
present the graphical approach here to provide intuition for the result.
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The LMPs at buses 1 and 2 are equal to the generator offer
prices Ay = $10/MWh and Ao = $20/MWHh, respectively.
Using these energy prices, the payment for energy by the load at
bus 3 equals (8.21 MW) % (17.805/MWh) = $146.14/h, while
the payments received by the generators equals (8.21 MW) x
(10.00$/MWh) = $82.10/h. The premium charged to the load
due to congestion is the total congestion revenue and equals the
difference between the load payment and generators’ receipts:
$64.04/h.

We have shown earlier that the set of feasible power injections
is not necessarily convex. We complete the example by deter-
mining the effect this has on revenue adequacy. We will see that
“close” to convex does not suffice to ensure revenue adequacy.

In our example with the feasible set of power injections
shown in Fig. 5, an auction of FTRs will likely settle to one
of the extreme points labeled on the plot: A, B, or C. Without
loss of generality, we assume that to maximize income from
the FTR auction, it settles to quantities represented at point B:
11.16 MW for the bus 1 POI and bus 3 POW and 7.5 MW for
the bus 2 POI and bus 3 POW.” (Choosing point A or point
C instead would make little difference, as we discuss later.)
Evaluating the FTR payments for an operating point at A, with
the LMPs calculated earlier, the total FTR payments will be

(17.80-10.00)$

(11.16 MW) x
MWh
(17.80-20.00)$  $70.55
7.5 MW =
+ )* " Mwh h
which exceeds the collected congestion revenues of

$60.04/MWh by more than 10%. Revenue adequacy fails.

A complete analysis of this example shows that despite a
close to convex feasibility region, revenue adequacy fails at
every constrained operating point between points A and B and
most points between C and B. If the auction had settled to point
A instead, revenue adequacy would still fail for all operating
points between A and B. If the auction had settled to point C
(unlikely with the expected prices in this case), revenue ade-
quacy would fail for most points between C and B. “Close” to
convex is not a sufficient argument to declare revenue adequacy
as a property of a system. In our example, the feasible region is
arguably close to convex, but revenue adequacy almost always
fails.

VI. CONCLUSIONS

This paper has focused on the study of convexity of the space
of feasible power injections that satisfy the power flow equations
subject to a number of capacity and voltage constraints. We have
proven that in general, the feasibility region will not be convex
and have shown by example that the projection on the space of
active powers is also not guaranteed to be convex. We have ex-
amined the consequence of a nonconvex feasibility region on
revenue adequacy in FTR markets. Importantly, we note that
“close” to convex is not sufficient to provide revenue adequacy.
While the boundaries of the feasibility region may be nearly
linear, the curvature, however slight, will determine whether the

7In this case, it is possible that FTR auction participants will pay to obtain
FTRs from bus 1 to 3 but will be paid to take FTRs from bus 2 to bus 3.
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system will be revenue adequate. We have also provided detailed
small examples in which we demonstrate nonconvexity and rev-
enue inadequacy. It is clear that these same problems can arise in
large systems, and in our future work, we will investigate models
for such systems. Here we have focused on theory.

In practice, ISO markets have not proven to be revenue ade-
quate at all times. For example, the NYISO consistently reports
congestion revenue shortfalls during the summer [22], [23] and
annual shortfalls of $49M, $77M, and $126M in day-ahead con-
gestion rents in 2001, 2002, and 2003, respectively [24]. To cope
with these shortfalls, the NYISO implemented polices in 2003
and 2004 to assign financial coverage of shortages and benefit
of surpluses to transmission owners and to allow transmission
owners to reserve a small portion of transmission from TCC auc-
tions to try to avoid congestion revenue shortages [24].

The dominant cause for inadequacy has not been completely
studied, to the authors’ knowledge. In addition to a possibly non-
convex feasibility region, it is also the case that the actual net-
work (topology) may differ from that assumed in the simulta-
neous feasibility test. In their yearly report [22], NYISO asserts
that the day-ahead congestion revenue shortfalls are “largely
due to transmission outages that are reflected in the day-ahead
market but are not included in the TCC auction.” In [25], Liu
and Gross studied the effect of parameter uncertainties and line
outages on revenue adequacy using a convex, dc power flow ap-
proximation. They conclude that the effects are minor and that
“over a given period, it is reasonable to expect that there is rev-
enue adequacy.” We suggest here that the use of an ac power
flow (as is used by NYISO®) may accentuate the effect of un-
planned line outages to create congestion revenue shortfalls or
be the cause of such shortfalls.

In [14], Oren and Ross warned against a proposed policy
for congestion relief that suffered from a misapplication of a
Lagrangian relaxation technique that could, in some cases, re-
sult in a suboptimal or infeasible outcome. In this paper, we
express our concern that unproven assumptions about system
(convexity) properties may be used to assert other properties
(revenue adequacy) that are used to justify policy. Since com-
mencing operation of FTR markets, ISOs have appropriately
implemented policies to handle situations in which conges-
tion revenues fall short of FTR obligations. Electricity markets
are young and proposals for new FTR mechanisms are still
being proposed and examined. For example, in [11], a system
of obligations and options is proposed and revenue adequacy
is proven assuming a linear dc power flow model. To extend
the revenue adequacy result to an ac power flow model would
likely require an assumption about convexity of the feasible set
of power flow injections.

As market designs evolve and improve, it is reasonable to
expect that congestion management tools will tend to employ
the most accurate models possible, and dc power flows will give
way to more accurate ac power flow models. Unfortunately, as
these more detailed models gain wider acceptance, it will be
impossible to prove revenue adequacy or expect it in practice.
Adoption of new FTR mechanisms will need to be accompanied
by policies for accommodating congestion revenue shortfalls.

8The NYISO is presently the only ISO that uses a full ac power flow.
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