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Abstract—The use of Nash equilibria as strategic bidding so-
lutions for players competing in a centralized electricity market
has been explored in the literature. In addition, the existence of
multiple market equilibria, both in pure and in mixed strategies,
when system constraints are taken into account in the market so-
lution, has been shown for particular test cases. This paper ad-
dresses the difficult problem, due to its exponential order, of finding
multiple equilibria in centralized electricity markets. A systematic
procedure which allows the analysis of multimachine systems is
employed. Moreover, some conclusions concerning the existence
of multiple market equilibria in real networks are made possible
by the method presented here. The paper carefully explains the
models and market assumptions under discussion and details the
algorithmic procedure for the search method. The IEEE 30-bus
and 57-bus systems are used as test cases.

Index Terms—Game theory, market equilibria, pure and mixed
strategies, search algorithms.

I. INTRODUCTION

SINCE competitive bulk power markets were established in
various jurisdictions around the world, a key concern has

been the study of market outcomes or solutions, given specific
market rules. This study is justified from the standpoints of both
the regulatory entities and the market participants. The former
have the responsibility of designing and monitoring the markets
to ensure true competitiveness, and hence, social efficiency. The
latter have invested interest in the markets, and therefore, desire
their investments be recovered at maximum return. By under-
standing market rules and how these rules are used and explored,
participants and regulators have the opportunity to carry into ef-
fect their respective roles.

The strategic equilibria (Nash equilibria [1]) framework has
been used as a tool for finding rational solutions for bidding
strategies in centralized (Poolco) electricity markets-PJM In-
terconnection is a specific example of this market model im-
plementation. It has been shown that there may be multiple
strategic solutions for a single market period [2]–[4]. The model
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we consider assumes that market participants are rational and
attempt to maximize their individual profits by untruthfully re-
vealing their costs in their offer curves. They are assumed to play
a static, noncooperative, continuous-kernel game under com-
plete information. The solutions prescribed by this game are
Nash equilibria. Further, a method to find multiple equilibria
in pure (but not in mixed) strategies under this model has been
considered [6].

The main problem addressed in this paper is that of finding
those multiple equilibria, if they exist, in centralized electricity
markets. Although their existence for special, small systems has
been shown in [6], their existence in more realistic networks has
yet to be established. This has been so because of the lack of a
systematic and workable procedure to tackle the problem, which
is of nonpolynomial order. The method for finding those mul-
tiple equilibria and the conclusions that we may derive from its
application to multimachine systems, constitutes the core con-
tribution of this paper.

The remainder of the paper is organized as follows. In Sec-
tion II, we revisit the individual welfare maximization (IWM)
algorithm, while formalizing the mathematical framework and
providing a game theoretic perspective. Moreover, we extend
the IWM algorithm to the problem of finding an equilibrium in
mixed strategies. The procedure for searching for multiple equi-
libria is detailed in Section III, and its application is exemplified
with multimachine systems in Section IV. Some conclusions are
provided in Section V. Appendix B gives an example of an equi-
librium in mixed strategies.

II. I NDIVIDUAL WELFARE MAXIMIZATION ALGORITHM

A. Pure Strategies

The IWM algorithm assumes that the independent grid op-
erator (IGO) runs a centralized economic dispatch subject to
system constraints (OPF) [2], [4]. This OPF, which uses bids
and offers freely submitted by the participants, sets the nodal
prices (Lagrangian multipliers) that are used to charge consump-
tion and/or pay generation on every node of the grid. Under this
model, the participants may game the system by untruthfully
revealing their costs/benefits on their offer/bid curves or sched-
ules and they may do so by continuously changing one or more
parameters of the marginal cost/benefit curves that they submit
to the IGO. We assume that the players have reasonable esti-
mates about all participant’s true costs/benefits and we also as-
sume that these estimates constitute common knowledge among
players. Although we explore the complete information model
in this paper, this is not necessary since the model can accom-
modate uncertainty [5]. The rational behavior of all players con-
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stitutes common knowledge as well. The schedules submitted
by the players are valid for one time period of the market, typ-
ically 1 h. Therefore, they need to optimize their bid/offer for
a specific time period, which is viewed as a snapshot in time.
For equilibria in mixed strategies, defined later in the paper, it is
implicitly assumed that the conditions of a particular snapshot
will repeat in time.

Each player in the market may find the equilibrium points
through his or her own choice of the parameters of the reported
schedule and by mimicking the other players’ choices. This is
possible from the common knowledge on rationality and infor-
mation. Hence, the equilibria found by each player alone will
match those found by the other players. This constitutes the
main strength of the Nash equilibrium concept.

The IWM problem is cast as a nested optimization problem.
The inner problem is the OPF, and the outer problem is the opti-
mization of the individuals’ utility functions subject to the OPF
solutions. Moreover, each playercontrols a vector of re-
ported variables , where is the decision space for
player . The outer problem objective function may be called the
players’ decision rule [7], [8]. To facilitate the following defini-
tions, we define and denote as with

removed. Also, denotes with
removed.

Definition 1: A decision rulefor player
is a correspondence from to , which associates
the vector of multistrategies (or multidecision vector)

of players with the strategy (or decision) vector
, which may be played by when all

other players are playing .
Definition 2: A multidecision vector , which satisfies

the static equilibrium condition , , is called
a set of consistent multistrategies.

The set of consistent multistrategies may be empty when the
decision rules do not cross. On the other hand, it may be a
large or a reduced number of multistrategies. It is dependent on
the decision rules adopted by the players. This paper addresses,
among other issues, the problem of finding multiple points of
consistent multistrategies, given a specific decision rule. The
decision rule adopted in the games developed here is profit max-
imization, as established by the IWM algorithm described later
in (1). The vector of multistrategies represents all the control
variables reported by all players to the bid-based OPF run by
the IGO. These are the variables that affect the trading solution
and consequently the players’ revenues.

In terms of the IWM algorithm, the vector of generation con-
trolled by player is denoted by . The nodal prices applied
to the generation controlled by playerare a byproduct of the
OPF and appear as . The cost of each generator is, in the IWM
model, represented by a quadratic function

where represents the set of generators. If the loads are elastic,
they are represented by quadratic benefit functions

where represents the set of elastic loads. These quadratic
cost and benefit functions correspond to having piecewise linear
price and value functions with only one segment.

Unlike the original IWM algorithm, we consider the case in
which only the generators game. That is the situation faced by
present-day electricity markets, where loads are still modeled
as fixed forecast quantities whose consumers have no ability
to game. For completeness though, Section IV gives examples
with elastic load.

The game is played assuming that the players use supply-
function competition [9], as opposed to Bertrand or Cournot
competition, and need only to game with one of the parameters
of their offer functions. For example, gaming may be achieved
by replacing the true cost variable by a decision variable
in the reported price schedule. Furthermore, we associate each
element of the vector of multistrategieswith an element of the
vector of cost parameters .

The individual welfare maximization problem, where only
generators game and load is considered elastic, may be thus de-
scribed as

are determined by

s.t.

(1)

where the equality and inequality constraints of the OPF are
represented by and , respectively, denotes the vector
of all generated power, denotes the vector of all loads, and
represents the vector of state variables.

If the demand were to be considered fixed, then the benefit
function would vanish and the vector of all load variables

would be substituted by a vector of fixed quantities .
It is assumed in game theory that the players set their pref-

erences according to some ordering function. We will call such
a function theloss function of player such that is
preferred to if and only if . The loss
function is the profit function negated . In (1),
the loss function of each playeris given by the sum of costs
minus payments for his or her controlled generators. This may
be written as

(2)

where the fixed components have been dropped. The quadratic
parameters are represented in matrix and the linear
parameters appear in vector . The set of generators con-
trolled by player is denoted by .

Note that the cost function in the inner OPF loop uses the
(untruthfully revealed) decision variables, whereas the loss
function uses the true cost parameters.
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The existence of a consistent set of multistrategies is a
so-called fixed-point problem. We may denote the collection
of decision rules as . Therefore,

provides a mapping of into itself. A consistent set
of multistrategies may be written . Kakutani’s
fixed-point theorem addresses this existence issue [7].

Theorem 1: Suppose that the strategy sets are convex,
compact subsets (of ) and that the decision rules are
upper semicontinuous with nonempty, convex, closed values.
Then there exists a consistent multistrategy.

In real electricity markets, system constraints, such as trans-
mission line limits, often influence operations. Therefore, the
convexity of decision rules required by Theorem 1 is unlikely.
However a way of proceeding is to divide the decision space
into subsets (orregions), with the boundaries of these regions
composed of points where constraints change status. Therefore,
no constraint status changes occur within regions, only between
regions.

Experience shows that (1) is generally well behaved. If the
inner optimization problem uses a dc power flow formulation
and linear constraints, then this inner problem is convex with
respect to , for fixed , and is also convex with respect to,
for fixed . But it is not convex overall. In addition, the outer
objective function has a bilinear term , which makes
it neither convex nor concave. Notwithstanding, the searching
method presented in Sections III and IV assumes good behavior
(convexity) inside each of the multiple regions.

If the multistrategies of all players are chosen according to
canonical decision rules, also known asreaction curves,

such that

, then the definition of a Nash equilibrium arises nat-
urally.

Definition 3: A decision vector is called anonco-
operative equilibrium in pure strategiesor Nash equilibrium in
pure strategiesif

A Nash equilibrium (or noncooperative equilibrium) is a so-
lution that is an individual’s best response to strategies actually
played by his or her opponents. In other words, it has individual
stability. Sufficient conditions for the existence of a Nash equi-
librium are given by the following theorem.

Theorem 2: (Nash) Suppose the sets are convex and com-
pact and the loss functions are continuous and convex,

. Then there exists a noncooperative equilibrium.
So in order to determine an equilibrium in pure strategies,

assuming the conditions of theorem 2 , each player runs the op-
timization problem as cast in (1). It is run for his or her own
strategy vector and for his or her opponents as well, by mim-
icking their optimization of their multistrategies. This is made
possible by the common knowledge assumption. A stationary

solution may be reached by all players independently, by itera-
tive readjustment of using Newton’s method

(3)

If a stationary point is found, then it is stable with respect to the
selected readjustment scheme and it constitutes, by definition, a
Nash equilibrium.

B. Mixed Strategies

Sometimes, in the context of the IWM problem, inconsistent
sets of strategies may be found. This is due to power system con-
straints, which give rise to discontinuities in the reaction curves
[4]. As a consequence, the reaction curves might not cross. Even
though equilibria in pure strategies do not exist, it may be pos-
sible to identify mixed strategies that cause the IWM algorithm
to cycle back and forth across a given constraint (or set of con-
straints). This cyclical behavior describes an equilibrium state
for a mixed strategy scenario.

Consider the compact subsets (regions) of the decision space
bounded by the discontinuities. These regions, denoted by

, are assumed to be convex. Equilibria in mixed
strategies can be located by convexifying the strategy set by
associating with each region a probability of playing a particular
strategy in that region. In other words, each set of strategies

is associated with
the simplex of

where denotes the probability with which player plays
strategy . If the regions are compact and convex, then their
convex combination is also compact and convex. Moreover, as-
suming the loss functions are continuous and convex, then
their convex combination in each region is also continuous and
convex.

Definition 4: A set of decision vectors
associated with is called anoncoop-

erative equilibrium in mixed strategiesor Nash equilibrium in
mixed strategiesif

(4)
where denotes all combinations of , and de-

notes with removed. [An example illustrating (4) is given
in Appendix A.]

A solution for an equilibrium in mixed strategies is, there-
fore, one that maximizes the expected profit of all players by
associating optimal strategies, and probabilities of playing those
strategies, with each region.

It is important to note that the use of equilibria in mixed strate-
gies is a departure from the static game. Since the definition in-
volves the use of probabilistic (random) strategies, it is implicit
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that the game will be repeated. Therefore, when oscillations of
the algorithm (1) across system constraints indicate the pres-
ence of an equilibrium in mixed strategies, the convex combi-
nation is substituted for . As a consequence, the IWM
problem assumes the form

s.t. are determined by

s.t.

(5)

where and are, respec-
tively, the matrices of generated power and nodal prices for all
regions spanned by the (mixed strategy) equilibrium. An equi-
librium in mixed strategies is found using Newton’s method,
substituting for in (3).

A continuation process is generally required to locate the de-
sired mixed strategy equilibrium . The continuation al-
gorithm gradually varies the value of a line limit from an initial
(high) value chosen to ensure the existence of a pure strategy
equilibrium. In other words, at initialization, the line limit has
no influence on market behavior. As the line limit is reduced
from that initial value to its final true value (where the constraint
induces mixed strategy behavior), the solution of (5) evolves
smoothly along the continuation path to the desired solution

.
The rationale for such a method is the fact that the loss func-

tions in mixed strategies must have continuous first-deriva-
tives and can be assumed convex only inside a small decision
subspace where the constraints do not cause discontinuities. The
high sensitivity of the loss functions with respect to the offer pa-
rameters and probabilities makes it extremely difficult to guess
an initial solution inside that convex region. Appendix B pro-
vides a simple example to illustrate this continuation process.

III. SEARCHING FORMULTIPLE EQUILIBRIA

The strategy sets for all players are convex but, as shown
earlier, the loss functions are generally not convex.
The functions are continuous and differentiable if the set of
system constraints does not change. When some system con-
straint changes status though, the first derivatives of the loss
functions suffer a discontinuity and the players’ reaction curves

may also exhibit a discontinuity. Nevertheless, we assume
that the loss functions are convex inside each of the regions
given by different combinations of system constraints. There-
fore, it is necessary only to look for a single equilibrium inside
each of those regions.

If we were only concerned with equilibria in pure strategies,
we could run the IWM algorithm for pure strategies for each
region of the bidding space by forcing the system to operate
in that particular region. We would only have to enforce the
system constraints defining that region. Those constraints would
be made equality constraints while the remaining ones would be
relaxed. If an equilibrium was found for this modified problem,

then the IWM algorithm for pure strategies would be run for
the original problem (1), using the constrained equilibrium as a
starting point, to check its feasibility.

A drawback of this procedure is the need to check all pos-
sible regions given by all combinations of system constraints.
The problem is of combinatorial nature and the number of pos-
sibilities may render a nonmanageable problem. In addition, by
extending (in the modified problem) each region beyond its true
boundaries, equilibria in mixed strategies are not detectable.

Consequently, any method of searching for multiple equi-
libria, both in pure and in mixed strategies, has to address two
problems. First, the number of regions to be tested for equilibria
must be dramatically reduced. Second, the algorithm should be
given the opportunity to start each search inside each of these
different regions without artificially enforcing or relaxing any
of the system constraints.

Reducing the number of regions may be viewed as a problem
of filtering power flow solutions to determine those that are fea-
sible for specified regions while subject to the OPF run by the
IGO.

A. Feasible Regions

The initial step in locating multiple equilibria is to search for
feasible power flow solutions that correspond to specified re-
gions. A feasible power flow inside a specified region, if it ex-
ists, may be found from a particular base case power flow via
a linear programming (LP) problem, when the power flows are
described by dc power flow equations. If regions are character-
ized by line constraints but not load limits, then for each region

, the problem has the form

s.t.

base

base

base

base

base

base

base (6)

where and represent the positive and negative
changes of active power generated by generator, and

are the positive and negative changes of active power
consumed by load (for fixed load this variation is zero),
denotes the row vector of sensitivities of the flow on linkto
changes in the controls, and and denote the vectors of
all active power generation and load, respectively.

We denote by the set of lines defining a particular re-
gion . Moreover, we associate each regionwith a case

, where denotes the state of constraintfor that
specific region. In this case, where we take into consideration
only the active power flow line limits will denote the number
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of lines in the system and represents the pos-
sible states of the active power flow on linefor region . Values
of 1 or indicate the line is congested with the active power
flow in the corresponding (forward or reverse) direction. A value
of indicates that .1 The bidirectional limit on ac-
tive power flow on line is given by , while the limits on
active power generation of generatorand active power con-
sumption of load are given by and . The base case
line flows, generation, and consumption are denoted by ,

and , respectively.
If a full power flow was substituted for the dc equations, a

sequential method could be used. In this case, matrixwould
be replaced by the sensitivities obtained from the Jacobian.

B. Feasible, Optimal Regions

The second step is the screening of the feasible power flow
solutions to determine feasible, optimal power flow solutions.
This further filters the number of regions that have to be tested
for equilibria and, in addition, provides the initial solutions
to be used in the IWM algorithm for the surviving regions. Be-
cause these initial solutions are inside specified regions, they are
appropriate for finding equilibria in mixed strategies.

A feasible, optimal power flow inside a region may be
found, if it exists, by means of a modified version of the IWM
algorithm

where
otherwise

s.t. is determined by

s.t.

(7)

where the IWM objective function is substituted by a penalty
function penalizing the active power flow on lines where limits
are violated. In this formulation, denotes with the re-
moval of all active power flow limits on lines.

The outer penalty function is consistent with determining
whether the players have the ability to drive solutions to
specified regions by changing their decision vector. If the
regions were imposed in the inner problem, through equality
constraints, then the IGO would be specifying the regions in
advance and the solutions could differ from those in the original
problem. In summary, the existence of a solution in the original
problem (1) implies the existence of a solution in the modified
problem (7) but the converse is not true.

1The line l may or may not be congested, as determined by the associated
inequalities of (6).

Fig. 1. Procedure for equilibria search.

Problem (7) is solved using diagonally scaled steepest de-
scent with stepsize selection using the golden section method
[10]. One crucial point while searching iteratively for a deci-
sion vector that makes the system operate inside a specific
region is to keep all the generators controllable. For this reason,
every time a generator hits its active power generation limit, the
corresponding control variable must be kept at the kink. In
other words, the control variable is updated such that the gen-
eration is as close as possible to the limit, but not at the limit.
The reason for doing this is to keep every generator from prema-
turely “giving up” contributing for a feasible, optimal solution
inside a specified region during the steepest descent method.

The IWM algorithm will, in the end, be run for only the fea-
sible, optimal regions that correspond to a database of feasible,
optimal cases. Fig. 1 summarizes the entire procedure, from the
base case to obtaining a database of equilibria. Because of the re-
gion-based initial solutions provided by the filtering procedure,
the IWM algorithm (1) will be given the opportunity to search in
every feasible, optimal region for an equilibrium either in pure
or in mixed strategies. For the former, the algorithm will provide
a specific solution, whereas for the latter it will exhibit oscilla-
tions implying that the algorithm in (5) must be employed.

C. Propagation and Pruning

The algorithm described in Sections III-A and B is of non-
polynomial order, being of order if only the line con-
straints are taken into account. Therefore, it is impossible to
manage any real life example in the absence of a method for
carefully propagating and pruning the cases. Fortunately, the
two-step filtering process, together with careful propagation and
pruning, allow the elimination of a substantial number of cases.
The tree of Fig. 2 illustrates the sequence in which the cases
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Fig. 2. Propagation of cases.

must be generated in order to maximize pruning.2 Every new
child case is generated from the parent cases that survive the
feasibility and optimality tests of the previous level. They are
formed by including more congested lines further to the right,
until the last represented line is reached. This order of genera-
tion avoids repetition or formation of cases that have no parents
on the previous level.

On each level, every case represents an equal number of con-
straints; one for level one, two for level two, and so on. The ad-
dition of new congested lines from left to right (it could be from
right to left) requires the existence of all necessary parents in the
previous level. If any of the parents are not present, the new case
is not generated. The rationale is that if there is no solution for a
specific set of constraints then there is no solution for that same
set of constraints with additional constraints added. Checking
the existence of parents is achieved using a binary search on the
set of feasible, optimal cases of the previous level. The binary
search must be able to compute the correct order of cases on
each level, as shown from left to right in Fig. 2. This simple
procedure avoids repetition of cases.

For real systems where players have the ability to congest
a reduced number of lines, this method proves very efficient.
Moreover, the method may be implemented with high paral-
lelism given the fact that cases within one level are independent.
Besides, this search has to be performed only once for a given
load profile. Once the feasible, optimal regions are known for
that load profile, it is possible to try a different number of players
and/or different cost parameters.

IV. EXAMPLE

We chose a version of the IEEE 30-bus, six-generator test
system and a version of the IEEE 57-bus, seven-generator test
system for our examples [11]. These systems yield a sufficiently
high number of possible regions to make them interesting.

The two systems were run for both fixed load and elastic load,
served entirely by the players. For the experiments with elastic
loads, we considered no upper limits for these loads. Further-
more, two scenarios of generator ownership were considered;
one where each generator belonged to a different player, another

2Fig. 2 showsC for each case, with entriesc determining line congestion
status.

TABLE I
FEASIBLE, OPTIMAL REGIONS ANDEQUILIBRIA

where the ownership was divided among three players. The line
limits were fixed close to the flows established by the solution
for fixed load, maximum number of players, and truthful revela-
tion of costs. However, the line limits were not chosen too close
to those flows, so the generators were given some room to game
the system. The power flows on lines were determined using dc
power flow equations.

The results for eight different experiments are summarized
in Table I. The number of feasible, optimal regions found for
each test system is shown in parenthesis, along with the number
of equilibria for that particular experiment.3 Naturally, these re-
sults could vary for changes in the line limits, costs, and benefits.

In these experiments, all cases resulted in equilibria in
pure strategies without binding line constraints. No general
conclusions can be drawn from that observation though. One of
the cases, the IEEE 57-bus system with seven players and fixed
load, produced a second equilibrium in pure strategies with
one binding line constraint. This second equilibrium dominates
strategically the first equilibrium, which makes it the only
relevant equilibrium in terms of the players’ strategic game.
From a strategic point of view, equilibria that are dominated
may be ignored or eliminated, because none of the players will
gain anything by playing it.

Definition 5: In the game , let and
be strategies for player. Strategy is strictly dominated

by strategy if, for all vectors of multistrategies , ’s
loss from playing is strictly less than ’s loss from playing

. That is, , .
An example of a possible variation of the experiments

presented here would be to decrease some line limits to the
point where there is no equilibrium without binding constraints.
One could then possibly see the appearance of an equilibrium
in mixed strategies spanning two regions. However, this again
would most certainly be either a unique equilibrium, or one of
very few equilibria for that system.

V. CONCLUSION

This paper addresses the problem of finding multiple market
equilibria for multimachine systems that potentially yield an un-
manageable number of search regions. The method proposed
eliminates the majority of those regions through successive fil-
tering from power flow solutions to feasible, optimal power flow
solutions.

Although the existence of multiple equilibria in realistic net-
works is possible, both in theory and in practice, they are not to

3A maximum of 50 iterations were allowed before assuming nonconvergence.



CORREIAet al.: SEARCHING FOR NONCOOPERATIVE EQUILIBRIA IN CENTRALIZED ELECTRICITY MARKETS 1423

TABLE II
PRICE SCHEDULE PARAMETERS

TABLE III
VALUE SCHEDULE PARAMETERS

be expected in large numbers. This is illustrated by the examples
in the paper. Even if the realistic parameters used were changed,
we expect similar results in terms of the number of equilibria at-
tained.

In addition, this paper formally defines equilibria in multiple
strategies in the context of power systems and in the presence of
system constraints. It shows, through a simple example, how to
find these equilibria by means of a continuation method. Once
the spanned regions are known, this method establishes a path
from an initial solution to the desired equilibrium.

APPENDIX A

ILLUSTRATION OF IN DEFINITION 4

Consider a situation where there are three players and two
regions. Then , , and

with and following a similar pattern. Because there are
only two regions in this case, .

APPENDIX B

TWO-BUS EXAMPLE

The IWM algorithm was run for a two-bus, one-line system
with two generators and one load, as speci-

fied in Tables II and III. Choosing a sufficiently high line flow
limit resulted in convergence to the equilibrium in pure strate-
gies given by . Fig. 3 shows the
reaction curves for the two players for a line limit of

. The equilibrium corresponds to the intersection of the
reaction curves and .

However, upon lowering the line limit to ,
the reaction curves of the two players no longer intersect. This is
shown in Fig. 4. Instead of intersecting, the end-points of each

Fig. 3. Reaction curves forP = 115 MW.

Fig. 4. Reaction curvesP = 80 MW.

section of the discontinuous reaction curve touch the
continuous reaction curve .4 As a consequence, the pure
strategy algorithm cycled between the congested and noncon-
gested regions, instead of converging to an equilibrium solution.

For this small system, the expressions for the expected loss
(5), when the two regions spanned by the discontinuity are con-
sidered, become

This has a simplified form because only player 2 encounters
multiple regions, and hence, presents a discontinuity in his or
her reaction curve . In fact, player 1 exhibits a contin-
uous reaction curve , implying that his or her strategy is
independent of regions. This is implemented by setting ,
giving , and so forcing player 1 to always play the same
strategy.

The continuation algorithm proposed in Section II was used
to obtain the mixed strategy equilibrium for the situation de-
picted in Fig. 4. An initial value of was
chosen, and the line limit was subsequently decreased in steps of
0.01 MW. Initial values for the optimization (strategy and prob-
ability) variables , and were obtained as follows.
The value for was chosen to equal 1 since this corresponds
to an equilibrium in pure strategies in the absence of the line
constraint. Therefore, the values for and were also set to

4The right section ofS was obtained by initializing the IWM algorithm in
the noncongested region, whilst the left section corresponds to the congested
region.
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Fig. 5. Offer parameters in the continuation algorithm.

Fig. 6. Player 2’s strategies in the continuation algorithm.

Fig. 7. Player 1’s expected gains in mixed strategies.

their values at the equilibrium in pure strategies. Only the initial
value for deserved some care. This variable has meaning only
after the pure strategy equilibrium disappears. Its value under
those conditions must be predicted. By running a binary search,
it was discovered that the equilibrium disappears at a line limit
of and the reaction of player 2 at that point
was .

The values for the optimization variables along the continu-
ation path are shown in Figs. 5 and 6. The leftmost points on
the curves give the solution for the desired line limit

, .
The nonsmoothness of the function representing the expected

gains for player 1, given a fixed strategy by player 2, may be
appreciated by observing Fig. 7. The shape of this cost function

highlights the potential difficulties of attempting direct solution,
and justifies the use of a continuation process.

REFERENCES

[1] J. Nash, “Non-cooperative games,”Ann. Math., vol. 54, no. 2, pp.
286–295, Sept. 1951.

[2] J. D. Weber and T. J. Overbye, “A two-level optimization problem for
analysis of market bidding strategies,” inProc. IEEE Power Eng. Soc.
Summer Meeting, 1999, pp. 682–687.

[3] B. F. Hobbs, “Strategic gaming analysis for electric power systems: An
MPEC approach,”IEEE Trans. Power Syst., vol. 15, pp. 638–643, May
2000.

[4] J. D. Weber, “An individual welfare maximization algorithm for elec-
tricity markets,”IEEE Trans. Power Syst., vol. 17, pp. 590–596, Aug.
2002.

[5] P. F. Correia, “The use of Noncooperative Games to Determine Strategic
Bidding in Centralized Electricity Markets,” Ph.D. dissertation, Univ.
Illinois at Urbana—Champaign, Dept. Electrical Comput. Eng., 2002.

[6] P. F. Correia, J. D. Weber, T. J. Overbye, and I. A. Hiskens, “Strategic
equilibria in centralized electricity markets,” inProc. IEEE Power Tech.,
vol. 1, Porto, Portugal, Sept. 10–13, 2001.

[7] J.-P Aubin, “Optima and equilibria,” inGraduate Texts in Mathematics,
2nd ed. Norwell, MA: Springer, 1998.

[8] T. Basar and G. J. Olsder, “Dynamic noncooperative game theory,” in
SIAM’s Classics in Applied Mathematics, 2nd ed. Philadelphia, PA:
SIAM, 1999.

[9] P. D. Klemperer and M. A. Meyer, “Supply function equilibria in oli-
gopoly under uncertainty,”Econometrica, vol. 57, no. 6, pp. 1243–1277,
Nov. 1989.

[10] D. P. Bertsekas,Nonlinear Programming. Belmont, MA: Athena Sci-
entific, 1995.

[11] Test Case Archive. [Online]. Available: http://www.ee.washington.edu/
research/pstca

Pedro F. Correia (M’02) received the Licenciado and Mestre degrees
in electrical and computer engineering from the University of Illinois at
Urbana–Champaign, in 1993 and 1996, respectively, and the Ph.D. degree in
electrical engineering from the University of Illinois at Urbana–Champaign in
2002.

Currently, he is an Assistant Professor in the Department of Electrical and
Computer Engineering at the I.S.T., Technical University of Lisbon. His areas
of interest are power system analysis, competitive electricity markets, and power
system relaying.

Thomas J. Overbye(M’84–SM’95) received the B.S., M.S., and Ph.D. degrees
in electrical engineering from the University of Wisconsin–Madison in 1983,
1988, and 1991, respectively.

Currently, he is an Associate Professor of Electrical and Computer Engi-
neering at the University of Illinois at Urbana–Champaign.

Ian A. Hiskens (S’77–M’80–SM’96) received the B.Eng. (Elec.) and B.AppSc.
(Math) degrees from the Capricornia Institute of Advanced Education, Rock-
hampton, Australia, in 1980 and 1983, respectively, and the Ph.D. degree from
the University of Newcastle, Australia, in 1991.

Currently, he is an Associate Professor of Electrical and Computer Engi-
neering at the University of Wisconsin–Madison. He has held prior appoint-
ments with the Queensland Electricity Supply Industry, Australia, from 1980
to 1992, the University of Newcastle from 1992 to 1999, and the University of
Illinois at Urbana–Champaign from 1999 to 2002. His major research interests
include power system analysis, in particular system dynamics, security, and nu-
merical techniques.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


