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Nonlinear Dynamic Model Evaluation From
Disturbance Measurements

Ian A. Hiskens, Senior Member, IEEE

Abstract—The nonlinear nonsmooth nature of power system
dynamics complicates the process of validating system models
from disturbance measurements. This paper uses a Gauss–Newton
method to compute a set of model parameters that provide the
best fit between measurements and model response. Trajectory
sensitivities are used to identify parameters that can be reliably
estimated from available measurements. An overview of trajectory
sensitivity analysis is provided. An example based on the Nordel
system is used throughout the paper to illustrate the various
concepts. This example exhibits both soft and hard nonlinearities.

Index Terms—Identifiability, nonlinear least-squares, param-
eter estimation, power system dynamics, trajectory sensitivity.

I. INTRODUCTION

SYSTEM-WIDE measurements of power system distur-
bances are frequently used in event reconstruction to gain a

better understanding of system behavior [1]–[3]. In undertaking
such studies, measurements are compared with the behavior
predicted by a model. Differences are used to tune the model,
i.e., adjust parameters, to obtain the best match between the
model and the measurements.

An example of the model tuning procedure, and the impor-
tance of correct modeling, is provided in [3]. In that case, the
power system lost stability following a large disturbance. Event
reconstruction was undertaken to explore the nature of the insta-
bility. It was found that by using the “standard” set of parame-
ters, the model did not replicate the unstable behavior. However,
an exhaustive investigation showed that correct behavior could
be predicted by altering a load parameter by a small amount.

This example illustrates the need for a systematic approach
to,

1) identifying which parameters can be estimated reliably
from the available measurements, and

2) obtaining a best estimate for those parameters.
The difficulty is that power system behavior is nonlinear.
Models must therefore also be nonlinear, and in fact frequently
contain hard nonlinearities, i.e., discontinuities. Parameter
estimation techniques are well established for linear models
[4]. However, parameter estimation for nonlinear systems is a
relatively open field.

This paper initially explores the usefulness of trajectory sen-
sitivities for identifying parameters that make good candidates
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for reliable estimation. The results are compared with the ap-
proach proposed in [5] for determiningwell-conditionedparam-
eters. Exact agreement is obtained. The link with the concept of
identifiability [4] is also presented. The paper proceeds to de-
velop a Gauss–Newton iterative technique for determining pa-
rameter values that provide the best match between measured
large disturbance system behavior and the model response.

The general parameter estimation concepts presented in this
paper are not new [6]. In the power systems context, similar
ideas have been used for estimating parameters of generators
and AVRs/exciters [5], [7]–[9]. However, the number of pa-
rameters that could be estimated using those earlier ideas was
limited, because trajectory sensitivities were generated numeri-
cally [8], [9]. A computationally efficient method of calculating
trajectory sensitivities for nonlinear nonsmooth systems has re-
cently been presented in [10]. This paper exploits that extension
to consider many system-wide parameters, whilst accounting
for switching action in an analytically correct manner.

A brief review of modeling is given in Section II. Trajec-
tory sensitivity concepts are presented in Section III, along with
their use in determining well-conditioned parameters. Those
ideas are used in Section IV to develop the desired parameter
estimation algorithm. Identifiability is considered. Conclusions
are presented in Section V. Concepts are illustrated throughout
using actual measurements from a disturbance on the Nordel
system [11].

II. M ODEL AND EXAMPLE

A. Model

Power systems frequently exhibit a mix of continuous time
dynamics, discrete-time and discrete-event dynamics, switching
action and jump phenomena. It is shown in [12], [13] that such
systems, known generically ashybrid systems, can be modeled
by a set of differential-algebraic equations, adapted to incorpo-
rate impulsive (state reset) action and switching of the algebraic
equations. ThisDA Impulsive Switched(DAIS) model can be
written in the form,

(1)

(2)

(3)

(4)

where

• includes continuous dynamic states, for example gen-
erator angles, velocities and fluxes; discrete dynamic
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states, such as transformer tap positions and protection
relay logic states; and parameterssuch as generator
reactances, controller gains and switching times.1

• are algebraic states, e.g., load bus voltage magnitudes
and angles.

The model can capture complex behavior such as hysteresis,
nonwindup limits and rule-based systems [12].

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

(5)

(6)

where is composed of together with appropriate choices
of or , depending on the signs of the corresponding
elements of . At switching events (3), some component equa-
tions of change. To satisfy the new equation, algebraic
variables may undergo a step change. Reset events (4) force
a discrete change in elements ofthat correspond to discrete
states. Algebraic variables may again step to ensure is
always satisfied.

The flowsof and are defined as

(7)

(8)

where and satisfy (1)–(4), along with initial
conditions,

(9)

(10)

B. Example

Initial testing of the model evaluation process used “mea-
surements” obtained by adding noise to simulation results [14].
However credibility of the process is best demonstrated using
real measurements of an actual disturbance. Such measure-
ments are difficult to obtain. Limited recordings were available
though of a disturbance on the Nordel system [11]. That case
was therefore chosen for illustrating the various concepts
presented throughout the paper.2 A simplified model of the
Nordel system is shown in Fig. 1.

A full description of the disturbance sequence is given in [11].
To summarize, the major influences on system behavior were:

• a three-phase fault occurred on bus 27, with all connected
lines tripped at 60 ms;

• line 3–16 tripped around 4 s later due to overloading;
• 150MVAr reactor switched in at bus 12 approximately 6 s

after the initial fault was cleared; and
• the units comprising generator G2 tripped after about 8 s.

1Incorporating parameters� into the statex allows a convenient development
of trajectory sensitivities. To ensure that parameters remain fixed at their initial
values, the corresponding differential equations (1) are defined as_� = 0.

2The actual results (parameter estimates) are of little interestper se. The value
of the example lies in the application of the model evaluation process to a real
system with real (though limited) measurements.

Fig. 1. Nordel system model.

(a)

(b)

Fig. 2. Disturbance recordings. (a) Voltage recording. (b) Frequency
recording.

The available disturbance recordings are provided in Fig. 2.
They show bus voltage magnitude and frequency deviation at
bus 12. The measurements can be separated into two phases,
1) up to 8 s, during which time the system was subjected to the
above event sequence, and 2) the recovery phase beyond 8 s.
The system underwent a significant frequency deviation during
the latter phase, in response to the loss of generator G2. Poorly
damped oscillations are clearly evident during that period.

The 27 bus, 10 generator system of Fig. 1 provides a rea-
sonably accurate (though certainly approximate) model of the
Nordel 400 kV system. The initial power flow was developed
using data recorded by the SCADA system just prior to the
disturbance. Generators were represented by a fourth order
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machine model [15], a simplified excitation system consisting
of a first-order regulator and a transient gain reduction block,
and a simple first-order governor/turbine model. No PSSs were
modeled. This model consisted of 148 dynamics states and 494
algebraic states. Model parameters were based on [16], though
the level of aggregation and simplification introduced approx-
imations. No load model information was available, so all
loads were modeled as constant admittance. That assumption is
considered further in Section III-C.

This example provides a useful test case, for the following
reasons:

• the disturbance was complex,
• the system was on the verge of instability,
• limited measurements were available, and
• model parameters were not known accurately.

It will be shown that even under these adverse conditions, it was
possible to obtain a very good match between measurements
and model response.

The example will focus on the first 10 s of the disturbance
recording, i.e., the period during which the event sequence
occurred, where behavior was highly nonlinear. Beyond that
time, the simple model is no longer appropriate. To adequately
capture the influence of the sizeable frequency deviation,
more extensive governor/turbine and load models are required.
Also, the poorly damped oscillations are indicative of PSSs
that are not well tuned for the unusual post-disturbance power
flow pattern. PSSs would be required in the model in order to
match the observed damping ratio. (Note that the oscillations
beyond 10 s could be analyzed using standard linear estimation
techniques; see [17] for example.)

The simplified system model does not provide bus frequency,
so it is not possible to directly compare model response with the
frequency recording. Consequently only the voltage recording
of Fig. 2(a) will be used for parameter estimation. However,
the frequency measured at bus 12, shown in Fig. 2(b), will later
be compared with the simulated frequency of generator G5 to
ensure model reasonability.

A comparison of the measured voltage response with that
predicted by the model, using the initial guess for parameter
values, is given in Fig. 3. There is clearly scope for improving
the propinquity.

III. T RAJECTORYSENSITIVITIES

A. Background

In event reconstruction, an initial mismatch between mea-
surements and model response, such as in Fig. 3, is common. To
reduce the mismatch, some parameters should be altered. Un-
fortunately the choice of which parameters is seldom obvious.
Trajectory sensitivities can be used to guide that choice.3

Trajectory sensitivities provide a way of quantifying the
variation of a trajectory resulting from (small) changes to pa-
rameters and/or initial conditions [6]. To obtain the sensitivity
of the flows and to initial conditions , and hence to

3Applications of trajectory sensitivities extend well beyond parameter esti-
mation, and include optimal control [18] and boundary value problems [19].

Fig. 3. Comparison of voltage recording with initial model behavior.

parameter variations, the Taylor series expansions of (7) and
(8) are formed. Neglecting higher order terms gives

(11)

(12)

It is important to keep in mind that incorporates parameters
, so sensitivity to includes sensitivity to . Equations (11)

and (12) describe the changes and in a trajectory,
at time along the trajectory, for a given (small) change in initial
conditions . The time-varying partial derivatives and

are known astrajectory sensitivities. An overview of the
variational equations describing the evolution of these sensitiv-
ities is provided in Appendix A.

Along smooth sections of the trajectory, the trajectory
sensitivities evolve according to a linear time-varying
differential-algebraic system (19) and (20). For large power
systems, these equations have high dimension. However the
computational burden is minimal when an implicit numerical
integration technique such as trapezoidal integration [15] is
used to generate the trajectory.4 An overview of this result is
provided in Appendix B.

More complete details of both Appendices A and B can be
found in [10].

B. Selecting Well-Conditioned Parameters

As indicated earlier, trajectory sensitivities can be used to
guide the search for well-conditioned parameters, i.e., param-
eters that are good candidates for reliable estimation. If a pa-
rameter exerts a large influence on the trajectory of a particular
state, then the corresponding trajectory sensitivity will be large.
For example, referring to (11) and (12), if the parameter corre-
sponding to theth element of has a sizeable influence on the
trajectory of state , then the trajectory sensitivity

4Commercial simulation packages should use implicit numerical integration,
as numerical stability of explicit methods cannot be guaranteed. Such packages
are therefore amenable to efficient computation of trajectory sensitivities.
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will take on sizeable values over time. Note that the same pa-
rameter may exert negligible influence on some other state, say

, in which case the trajectory sensitivity would
be small for all time. It is common for parameters to influence
some states but not others. The corresponding trajectory sensi-
tivities would be large for the former states and small for the
latter.

Large trajectory sensitivities are important because they
imply the corresponding parameters have leverage in altering
the model trajectory to better match the measured response.
Small trajectory sensitivities, on the other hand, imply that
large changes in parameter values would be required to
significantly alter the trajectory. Parameters in the former
category are well-conditioned, whereas the latter parameters
are ill-conditioned. These intuitive concepts are formalized in
Section IV-C.

Note that only parameters which influence measured states
can be identified. A parameter may have a significant influence
on system behavior, but if that influence is not observable in the
measured states, then the parameter is not identifiable.

C. Example (Continued)

As indicated in Section II-B, the recording of the voltage at
bus 12 is to be used to evaluate model parameters. Therefore,
we are primarily interested in the sensitivity of that voltage state

to parameter variations. All parameters could be considered.
However for the sake of the example, we shall restrict attention
to the following diverse groups of parameters:5

• generator inertia and damping constants, Fig. 4(a),
• generator AVR setpoints, Fig. 4(b),
• real and reactive load indices, Fig. 4(c), and
• tripping times6 for line 3–16 and generator G2, Fig. 4(d).

Considering the different scales used for sensitivity in
Fig. 4(a)–(d), it is clear that some parameters exert quite an
influence on the trajectory, and hence are well-conditioned,
whilst other parameters have negligible influence and so are
ill-conditioned.

Fig. 4(a) shows that of all the generator inertia and damping
constants, only those of G2 have any significant influence on

. This influence of G2 is no doubt due to the major role it
plays in the disturbance.

It can be seen from Fig. 4(b) that the trajectory is very
sensitive to AVR setpoint values. This is due to the direct in-
fluence of AVR’s on system voltages and hence on. The
size of the sensitivities is surprising though, with gains up to
10, i.e., a setpoint change would be amplified in by up to a
factor of 10. Interestingly, the G2 sensitivity is out of phase with
the others, again reflecting the unique involvement of G2 in the
disturbance. The AVR setpoints were initialized from reliable
SCADA information. Therefore even though the setpoints are

5These 49 trajectory sensitivities were generated from a single simulation,
using the approach described in Appendix B.

6Tripping times are not exogenous inputs, but rather outputs of protection
devices. The example does not model protection, so tripping times revert to un-
known parameters. In a more complete system representation that included pro-
tection, parameters of the protection model could be considered as candidates
for estimation.

(a)

(b)

(c)

(d)

Fig. 4. Trajectory sensitivities for various parameters. (a) Generator inertia and
damping constants. (b) Generator AVR setpoints. (c) Load indices. (d) Tripping
times.

*potentially extremely influential, they will not be considered
in the parameter estimation process.

Two load index cases were considered:

1) each individual load was modeled by a pair of real and
reactive power indices, and

2) all loads were modeled by a single common pair of
indices.

From Fig. 4(c), it is clear that individual load indices have very
little influence on the trajectory. Even in the second case,
where the parameters affect all loads jointly, their influence is
quite small. (In fact the effect of the reactive power index cannot
even be seen.) This provides justification for initially assuming
constant admittance loads; it seems load modeling is quite unim-
portant in this case. That’s certainly not a generic result though.
Load modeling was crucial in the disturbances reported in [3],
[20], [21].
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It is interesting to consider the influence of line and gener-
ator switching times on the trajectory. Clearly a switching
time parameter cannot influence the trajectory before the actual
switching event. It can be seen from Fig. 4(d) that the time at
which line 3–16 trips has a reasonable influence on thetra-
jectory. Because generator G2 doesn’t trip until 8.2 s, it’s trip-
ping time has limited influence over the 10 s period of interest.

To summarize, it appears from the trajectory sensitivities that
the well-conditioned parameters (apart from the AVR setpoints)
are: generator G2 inertia and damping constants ( ), line
3–16 tripping time ( – ), and possibly the system-wide real
power load index ( ). These parameters will be considered fur-
ther in Section IV-D.

IV. PARAMETER ESTIMATION

A. Background

Measurements of power system dynamic behavior are typi-
cally obtained using data acquisition systems (DASs) [2] that
provide sequences of sampled system
quantities. The aim of parameter estimation is to find the set
of model parameters that results in the best fit between the mea-
surement samples and model predictions.

Usually a DAS provides measurement sequences for many
different quantities. However for clarity the parameter estima-
tion algorithm will initially be developed assuming a single
measurement sequence. The more general case is presented in
Section IV-E.

The development of the parameter estimation algorithm as-
sumes that measurements correspond to algebraic states. This
does not restrict the application of the algorithm though, as it
is always possible to add extra algebraic equations to generate
“outputs” that match the measurements. These new functions
augment the original algebraic constraints.

B. Parameter Estimation From a Single Measurement

The algebraic state corresponding to measurement sequence
will be denoted . The estimation process involves varying

a subset of parametersto obtain the best match between the
sequence and the flow predicted by the model (8). A
Gauss–Newton method is used.

The model provides the flow for all . But the
samples in the sequenceare measured at certain time instants.
Therefore the model is sampled at each time instant

, resulting in the sequence ,
where . The aim is to determine the value of

that minimizes the discrepancy between the model response
and the measured samples over all .

Let the mismatch between the measured value and the model
output at each sample time be

or in vector form

(13)

where

...
...

...

The desired value of minimizes the least-squares cost

(14)

The problem has been reduced to a nonlinear least-squares for-
mulation that can be solved using the Gauss–Newton method
[22]. This is an iterative approach which is based on linearizing

around the point ,

(15)

From (13) it follows that

...
(16)

where is composed of the columns of trajectory sensitivities
that correspond to the subset of parameters. Because

is formed from , evaluated at time steps , it shall
be referred to as thesensitivity matrix. Substitution of into
(15) gives

The value of obtained at the th iteration minimizes
, i.e.,

Assuming is invertible, this minimization results
in the iterative scheme

(17)

(18)

where is a scalar that determines the step size.7 The invert-
ibility of relates directly to identifiability, and is considered
further in Section IV-C.

An estimate of which (locally) minimizes the cost function
is obtained when is close to zero. Note that this

procedure will only give local minima though, as it is based
on a first-order approximation of . However if the initial

7Equation (17) could be solved by directly invertingS S. However faster and
more numerically robust algorithms are available [23].
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guess for is good, which is generally the case in power system
studies, then a local minimum is sufficient.

C. Identifiability

The parameter estimation process (17) and (18) breaks down
if the sensitivity matrix does not have full rank, i.e., if
is singular. It is informative to explore the connection between
this observation and the concept of identifiability [4]. This dis-
cussion summarizes a more complete presentation in [24].

Rather than formally defining the concept of a model ,
it is sufficient to think of as having the form (1)–(4), with
unknown parameters. Associated with each model is
the flow

Model equality can be defined as if
. The concept of local

identifiability can then be defined.
Definition (Local Identifiability): A model is locally

identifiable at if implies that .
In terms of flows, this definition states that the model is

locally identifiable if

implies that

Equations (7) and (8), and (11) and (12) provide the (local) con-
nection between and in terms of trajectory sensitivities,

These relationships form the basis for the following theorem.
Theorem (Identifiability From Measurements:A model

is locally identifiable at from measurements iff has full
rank.

It follows from the theorem that the trajectory sensitivities
which form must be nonzero, and linearly independent.

However from a practical perspective, nonsingularity of is
not sufficient to guarantee reliable convergence of the param-
eter estimation process. Convergence will be unreliable if
is nearly singular, i.e., if its smallest eigenvalue is very small
relative to its largest eigenvalue. In such an ill-conditioned case,
inversion of effectively results in dividing by a very small
number, leading to large entries in .

Ill-conditioning of can result from a column of having
very small entries, i.e., negligible sensitivity of the trajectory
to a particular parameter. This corroborates the more intuitive
discussion of Section III-B. Ill-conditioning can also be due to
the columns of being nearly linearly dependent. This situation
is more difficult to identify from inspection of the trajectory
sensitivities.

TABLE I
PARAMETER ESTIMATION RESULTS

An algorithm proposed in [5] provides a reliable approach
to identifying a subset of parameters that ensures is well-
conditioned. The algorithm consists of the following steps:

• Given a set of potentially identifiable parameters,
form and compute its eigen-decomposition

.
• Determine such that the largesteigenvalues of are

much larger than the remaining .
• Partition with containing the first

columns of .
• Determine a permutation matrix by constructing a

decomposition with column-pivoting [23] for ,

where is an orthogonal matrix, and the firstcolumns
of form an upper triangular matrix.

• Reorder the parameter vector according to .
• The well-conditioned parametersare the first elements

of .
The results of this algorithm are compared with the observations
of Section III-C in the following section.

D. Example (Continued)

The observations of Section III-C indicated that the
well-conditioned parameters consist of: generator G2 inertia
and damping constants ( ), switching time for line 3–16
( – ), and possibly the system-wide real power load index
( ). For comparison, the algorithm from the previous section
was applied to a set of 24 parameters, consisting of the inertia
and damping constants for all generators, system-wide real and
reactive power load indices, and the switching times for line
3–16 and generator G2. It was found that the eigenvalues of

were

Two eigenvalues are large, implying that two parameters (at
least) are well-conditioned. The algorithm selected as
the best candidates for estimation. This is consistent with the
trajectory sensitivities of Fig. 4. The algorithm was also used to
extend the selection to the four most well-conditioned parame-
ters. The selected parameters in this case were –
and . This was again exactly consistent with the observations
of Section III-C.

The results of estimating and are given in Table I
and shown in Fig. 5. The fit is very good, especially given the
level of modeling approximation. Certainly the fit is much better
than with the original parameter values, shown in Fig. 3. The
estimation algorithm converged to a parameter update tolerance
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Fig. 5. Comparison of voltage recording with estimated model behavior.

of in 4 iterations, and a tolerance of in
6 iterations.

The estimation of the four parameters – and
was considered next. In this case convergence had still not been
obtained after 25 iterations. The first three parameters quickly
converged, but continued to wander. It was found that as
the first three parameters approached their optimal values, the
sensitivity of diminished. It became ill-conditioned, resulting
in the convergence difficulties.

Based on this experience, it was decided to estimate just the
three parameters and – . Results are given in Table I
and shown in Fig. 5. Again a very good fit was obtained. The
estimated values were close to those of the previous case, where

did not converge. This confirms that the initial guess of
did not bias the estimate.
Comparing the parameter estimates for the two successful

cases, it appears that fixing– biased the estimate of ,
though had much less influence on the estimate of. How-
ever Fig. 5 shows that the trajectories for the two cases are very
similar.

The estimation process did not make use of the bus frequency
recording given in Fig. 2(b). However that measurement was
used as a cross check of model validity. As explained earlier,
the simple system model did not provide bus frequency, so the
frequency of the closest generator (G5) was used for compar-
ison. Fig. 6 compares the measured (bus) frequency with the pre-
dicted (generator) frequency. The estimated values of
and – were used in this case. The smaller oscillations do
not match closely, which is not surprising given the difference
between bus and generator frequencies. However an important
indication of model validity is given by the agreement in the
large-scale deviation beyond 8 s.

It should be reiterated that the purpose of the example has
been to illustrate the model evaluation process. Usually event
reconstruction would have access to many more measurements,
and a more elaborate system model. However, there will
always be some discrepancy between measured and modeled
response, due to measurement errors and model inadequacy.

Fig. 6. Comparison of frequency recording with estimated model behavior.

Separating those effects can be challenging, and generally
involves exploring the influence of model structure (as against
parameter values) on the quality of the measurement/model fit.

E. Parameter Estimation From More Than One Measurement

Normally a DAS (or a number of DASs scattered around a
power system) will provide many measurements of a distur-
bance. Ideally all the available information should be used to
give the best estimate of the parameters.

Assume there are measurement sequences,
and the corresponding model flows are . A

sensitivity matrix corresponding to each can be defined as
in (16). We now define

...
...

and make corresponding changes in the definition of at
(13). The sensitivity matrices are arranged as

...

Again (17) and (18) can be used to obtain the (locally) optimal
value of . In this case, the optimalprovides an overall best fit
of the model toall the measurements.

Note that if some measurements are known more accurately
than others, then weighting factors can be used to weight the
relative importance of the measurements.

V. CONCLUSION

The process of evaluating nonlinear dynamic models
from measurements of disturbances involves, 1) identifying
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parameters that can be reliably estimated, and 2) obtaining
a best estimate for those parameters. Trajectory sensitiv-
ities provide information that is valuable for determining
well-conditioned parameters. The paper establishes a close link
between trajectory sensitivities and parameter identifiability.

A nonlinear least-squares algorithm has been proposed
for estimating power system parameters from measure-
ments of system disturbances. The algorithm is based on
the Gauss–Newton iterative method. Trajectory sensitivities
provide gradient information at each iteration. The algorithm is
reliable, even when measurements are corrupted by significant
noise.

The model evaluation process has been discussed in terms of
system-wide event reconstruction. However the process is di-
rectly applicable to the development/refinement of component
models, where measurements are obtained from a sequence of
tests. In fact, identifiability analysis can be used to design tests
that enhance parameter estimation reliability and accuracy. The
refined component models form the starting point for recon-
struction of more widespread system disturbances.

The estimation algorithm can be easily adapted for model re-
duction purposes [25]. The “measurements” in this case are re-
placed by trajectories of the full model. The estimated (reduced
model) parameters achieve a best fit between the full and re-
duced models over scenarios of interest. Controller tuning can
also be achieved through a conceptually similar extension. In
this application, the optimal parameters result in the best fit
between the system response and a pre-specified reference be-
havior. These and otherinverse problemsare considered in [13].
In all cases, trajectory sensitivities provide gradient information
that underlies iterative algorithms.

APPENDIX A
TRAJECTORYSENSITIVITY EQUATIONS

Away from events, where system dynamics evolve smoothly,
the sensitivities and are obtained by differentiating (5)
and (6) with respect to . This gives

(19)

(20)

where , and likewise for the other Jacobian ma-
trices. Note that , , , are evaluated along the trajectory,
and hence are time varying matrices. It is shown in Appendix
B that the solution of this (potentially high order) time-varying
DAE system can be obtained as a by-product of solving the orig-
inal DAE system (5) and (6).

Initial conditions for are obtained from (9) as

where is the identity matrix. Initial conditions for follow
directly from (20),

Equations (19) and (20) describe the evolution of the sensi-
tivities and between events. However at an event, the
sensitivities are generally discontinuous. It is necessary to cal-
culatejump conditionsdescribing the step change in and

. For clarity, consider a single switching/reset event, so the
model (1)–(4) reduces to the form

(21)

(22)

(23)

Let be the point where the trajectory encounters
the hypersurface , i.e., the point where an event is
triggered. This point is called thejunction pointand is the
junction time. Assume that the trajectory encounters the trig-
gering hypersurface transversally.

Just prior to event triggering, at time , we have

where

Similarly, are defined for time , just after the event
has occurred. It is shown in [10] that the jump conditions for the
sensitivities are given by

(24)

where

The sensitivities immediately after the event are given by

Following the event, i.e., for , calculation of the sensi-
tivities proceeds according to (19) and (20), until the next event
is encountered. The jump conditions provide the initial condi-
tions for the post-event calculations.

APPENDIX B
EFFICIENT TRAJECTORYSENSITIVITY COMPUTATION

Consider the DAE system (5) and (6) which describes
behavior over the periods between events. The trapezoidal
approach to numerical integration approximates the differential
equations (5) by a set of algebraic difference equations. These
algebraic equations are coupled with the original algebraic
equations (6) giving

(25)

(26)

where the superscripts index the time instants
respectively, and is the integration time step.
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Equations (25) and (26) describe the evolution of the states
from time instant to the next time instant .

Notice that (25) and (26) form a set of implicit nonlinear alge-
braic equations. To solve for given requires
the use of a nonlinear equation solver. Newton-based iterative
techniques are commonly used. The solution process involves
forming and factorizing the Jacobian

(27)

Now consider the sensitivity equations (19) and (20). Using
trapezoidal integration, they are approximated by

Rearranging gives

(28)

Therefore, and are obtained as the solution of a linear
matrix equation. But notice that the matrix to be inverted in
solving (28) is exactly the Jacobian (27) used in solving for
and . Because that matrix has already been built and fac-
torized to calculate and , the solution of (28) involves
little extra computation.

To improve simulation speed, (25) and (26) are often solved
using a quasi-Newton method. As a result, the factors ofmay
not be available for solving (28) directly. However a number
of computationally efficient techniques have been proposed in
[26]–[28].
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