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Nonlinear Dynamic Model Evaluation From
Disturbance Measurements

lan A. Hiskens Senior Member, IEEE

Abstract—The nonlinear nonsmooth nature of power system for reliable estimation. The results are compared with the ap-
dynamlcs complicates the process of validating system modeISproaCh proposed in [5] for determinimgell-conditionegparam-
from disturbance measurements. This paper uses a Gauss—Newtongeg Exact agreement is obtained. The link with the concept of

method to compute a set of model parameters that provide the . A, .
best fit betweerFl) measurements andpmodel responsep. Trajectory'dem'f""‘bIIIty [4] is also presented. The paper proceeds to de-

sensitivities are used to identify parameters that can be reliably Velop & Gauss—Newton iterative technique for determining pa-
estimated from available measurements. An overview of trajectory rameter values that provide the best match between measured

sensitivity analysis is provided. An example based on the Nordel |arge disturbance system behavior and the model response.
system is used throughout the paper to illustrate the various e general parameter estimation concepts presented in this
concepts. This example exhibits both soft and hard nonlinearities. L
o _ paper are not new [6]. In the power systems context, similar
tlnde>tg Tetr_ms—ldentlﬂablthty, 30”“”‘?” Itea_st-;squares, _f,’""_ram' ideas have been used for estimating parameters of generators
eter estimation, power system dynamics, trajectory sensitivity. and AVRs/exciters [5], [7]-[9]. However, the number of pa-
rameters that could be estimated using those earlier ideas was
I. INTRODUCTION limited, because trajectory sensitivities were generated numeri-
YSTEM-WIDE measurements of power system disturc—al.Iy (8], [9].A(_:(_)mputat|onally efficient method of calculating
.tr{agectory sensitivities for nonlinear nonsmooth systems has re-

ances are frequently used in event reconstruction to gai . . . X
q y 9 ently been presented in [10]. This paper exploits that extension

better understanding of system behavior [1]-[3]. In undertakirt? onsider manv svstem-wide parameters. whilst accountin
such studies, measurements are compared with the behfﬁgo? ! y sy wide p » WA unting

predicted by a model. Differences are used to tune the mo ESWII,Chmg gcnon 'nan a'nal){t|ca'lly cqrrect manner.
A brief review of modeling is given in Section Il. Trajec-

e, adjust parameters, to obtain the best match between ttgre sensitivity concepts are presented in Section Ill, along with
model and the measurements. y y P P ' 9

An example of the model tuning procedure, and the impo.tlhe" use in determining well-conditioned parameters. Those

tance of correct modeling, is provided in [3]. In that case, tngas are used in Section IV to develop the desired parameter

. . : timation algorithm. Identifiability is considered. Conclusions
ower system lost stability following a large disturbance. Evefit . . .
P Y Y 9 g re presented in Section V. Concepts are illustrated throughout

reconstruction was undertaken to explore the nature of the inStas .
bility. It was found that by using the “standard” set of parameu-s'ng actual measurements from a disturbance on the Nordel
ters, the model did not replicate the unstable behavior. Howev%¥,5tem [11].
an exhaustive investigation showed that correct behavior could
be predicted by altering a load parameter by a small amount.

This example illustrates the need for a systematic approath Model

to,

Il. MODEL AND EXAMPLE

Power systems frequently exhibit a mix of continuous time

1) identifying which parameters can be estimated reliablynamics, discrete-time and discrete-event dynamics, switching

from the available measurements, and action and jump phenomena. It is shown in [12], [13] that such
2) obtaining a best estimate for those parameters. systems, known generically Agbrid systemscan be modeled
The difficulty is that power system behavior is nonlineaby a set of differential-algebraic equations, adapted to incorpo-
Models must therefore also be nonlinear, and in fact frequentiyte impulsive (state reset) action and switching of the algebraic
contain hard nonlinearities, i.e., discontinuities. Parameteguations. ThiDA Impulsive @itched(DAIS) model can be
estimation techniques are well established for linear modeigitten in the form,
[4]. However, parameter estimation for nonlinear systems is a

relatively open field. &= f(z, y) 1)
This paper initially explores the usefulness of trajectory sen- 0 :g(o)(:p’ ) 2
sitivities for identifying parameters that make good candidates (i-)
9Nz, y) wai <O :
0= (z+) ? 'L:].,...,d (3)
9", y) yaqi >0
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states, such as transformer tap positions and protect
relay logic states; and parametexssuch as generator
reactances, controller gains and switching tirmes.

 y are algebraic states, e.g., load bus voltage magnituc

@ g_f@
ST
and angles. _,:@
The model can capture complex behavior such as hystere@ 27 o 17
(o2~ 1

nonwindup limits and rule-based systems [12].
Away from events, system dynamics evolve smoothl
according to the familiar differential-algebraic model

& =f(z, y) ®)
0=g(z, y) (6) | |

whereg is composed of(®) together with appropriate choice G10 I |
of =) or ¢t*+), depending on the signs of the correspondin
elements ofy,. At switching events (3), some component equz | 20
tions of g change. To satisfy the neyv= 0 equation, algebraic

variablesy may undergo a step change. Reset events (4) foi

[\
—
—
—

a discrete change in elementsaothat correspond to discrete &4
states. Algebraic variables may again step to engute 0 is 8
always satisfied.
Theflowsof = andy are defined as Fig. 1. Nordel system model.
z(t) = ¢u(wo, t) (7 : ' : : f ' '
y(t) = dy(wo, 1) (8)

where z(¢) and y(¢) satisfy (1)—(4), along with initial
conditions,

B400 (kV )

¢a(0, to) =0 )
g (w0, ¢y(wo, to)) =0. (10)

B. Example ~
Initial testing of the model evaluation process used “meafa_o_z

surements” obtained by adding noise to simulation results [1&

However credibility of the process is best demonstrated usi* -04

real measurements of an actual disturbance. Such meas s

ments are difficult to obtain. Limited recordings were availabl -1 ° ° L rmew ” ® b

though of a disturbance on the Nordel system [11]. That case ®)

was therefore chosen for illustrating the various concepts _ _ ,

presented throughout the papeA simplified model of the Fig. 2. Disturbance recordings. (a) Voltage recording. (b) Frequency

. . . recording.
Nordel system is shown in Fig. 1.
A full description of the disturbance sequence is givenin [11].
P a g [ he available disturbance recordings are provided in Fig. 2.

To summarize, the major influences on system behavior wer ; L
. They show bus voltage magnitude and frequency deviation at
: e.lthree.—phase fault occurred on bus 27, with all connectS s 12. The measurements can be separated into two phases
. :!nesstnlppr[aq at SO ms, d4s later due t loading: 1) up to 8 s, during which time the system was subjected to the
. ig?)M:/A rlppte aerr;] d's at%r ulez 0 overloa Itn? 6above event sequence, and 2) the recovery phase beyond 8 s.
fter th d rt_et_a(‘] ?r si;N' che | n ad' us d approximately © $,q system underwent a significant frequency deviation during
. ?h er 'te initial fautt was ceatlre GST d after ab t8the latter phase, in response to the loss of generator G2. Poorly
€ units comprising generator ripped after abou &amped oscillations are clearly evident during that period.
Yncorporating parametessinto the state: allows a convenient development  The 27 bus, 10 generator system of Fig. 1 provides a rea-
of trajectory sensitivities. To ensure that parameters remain fixed at their ini@d)nably accurate (though certainly approximate) model of the
values, the corresponding differential equations (1) are defined-ad). Nordel 400 kV system. The initial power flow was developed
N . o .
The actual results (parameter estimates) are of little intpezste The value éléiﬂg data recorded by the SCADA system just prior to the

of the example lies in the application of the model evaluation process to a rea
system with real (though limited) measurements. disturbance. Generators were represented by a fourth order
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machine model [15], a simplified excitation system consistir **’ ' ‘ ’ ' ' '

of a first-order regulator and a transient gain reduction bloc
and a simple first-order governor/turbine model. No PSSs we
modeled. This model consisted of 148 dynamics states and ¢
algebraic states. Model parameters were based on [16], tho!
the level of aggregation and simplification introduced appros
imations. No load model information was available, so a
loads were modeled as constant admittance. That assumpticg
considered further in Section IlI-C.
This example provides a useful test case, for the followirg
reasons: 850

* the disturbance was complex,

« the system was on the verge of instability,

« limited measurements were available, and

« model parameters were not known accurately.

400

12 volt

oo Neasured

Initial model parameters

A . . 300

It will be shown that even under these adverse conditions, itw =~ © 1 2 3 “LD o 6 7 8 9 10
possible to obtain a very good match between measurements

and model response. Fig. 3. Comparison of voltage recording with initial model behavior.

The example will focus on the first 10 s of the disturbance
recording, i.e., the period during which the event sequeng@rameter variations, the Taylor series expansions of (7) and
occurred, where behavior was highly nonlinear. Beyond thgd) are formed. Neglecting higher order terms gives
time, the simple model is no longer appropriate. To adequately du(t)
X

capture the influence of the sizeable frequency deviation, Az(t) = =2 Azo = x4, (t) Ao (11)
more extensive governor/turbine and load models are required. dxo

Also, the poorly damped oscillations are indicative of PSSs Ay(t) B

that are not well tuned for the unusual post-disturbance power Ay(t) = Bz Ao = Yo () Ao. 12)

flow pattern. PSSs would be required in the model in order to. . . )

match the observed damping ratio. (Note that the oscillatioldS Important to keep in mind that, incorporates parameters

beyond 10 s could be analyzed using standard linear estimatibrsC Sensitivity tare includes sensitivity to\. Equations (11)

techniques; see [17] for example.) and (12) describe the changf&s(¢) and Ay(¢) in a trajectory,
The simplified system model does not provide bus frequen ,tim_?t along the trajgctory, for_ a given_(small_) ch_ange in initial

soitis not possible to directly compare model response with th@NditionsAxo. The time-varying partial derivatives,, and

frequency recording. Consequently only the voltage recordige 2'€ Known asrajectory sensitivitiesAn overview of the

of Fig. 2(a) will be used for parameter estimation HoweveY riational equations describing the evolution of these sensitiv-

the frequency measured at bus 12, shown in Fig. 2(b), will lat&S iS provided in Appendix A.

be compared with the simulated frequency of generator G5 toAI(_)r_]g_ _smooth sections O_f the trajecf[ory, th_e traject_ory
ensure model reasonability. sensitivities evolve according to a linear time-varying
A comparison of the measured voltage response with tififférential-algebraic system (19) and (20). For large power

predicted by the model, using the initial guess for parame@FStems’ .these eq“a“F’”S .hiave high d|me_nS|o_n._ Howevgr the
values, is given in Fig. 3. There is clearly scope for improvin omputational burden is minimal when an implicit numerical
the propinquity. integration technique such as trapezoidal integration [15] is

used to generate the trajectdrn overview of this result is
provided in Appendix B.

More complete details of both Appendices A and B can be
A. Background found in [10].

In event reconstruction, an initial mismatch between meg—T Selecting Well-Conditioned P t
surements and model response, such as in Fig. 3, iscommon. To elecling VWell-Londitioned Farameters

reduce the mismatch, some parameters should be altered. UrAs indicated earlier, trajectory sensitivities can be used to
fortunately the choice of which parameters is seldom obviouguide the search for well-conditioned parameters, i.e., param-
Trajectory sensitivities can be used to guide that chdice. eters that are good candidates for reliable estimation. If a pa-
Trajectory sensitivities provide a way of quantifying théameter exerts a large influence on the trajectory of a particular
variation of a trajectory resulting from (small) changes to pstate, then the corresponding trajectory sensitivity will be large.
rameters and/or initial conditions [6]. To obtain the sensitivitifor example, referring to (11) and (12), if the parameter corre-
of the flows ¢, and ¢, to initial conditionszo, and hence to sponding to thgth element ofzo has a sizeable influence on the
trajectory of statey;, then the trajectory sensitivity,., ¢, ;(t)

I1l. TRAJECTORY SENSITIVITIES

4Commercial simulation packages should use implicit numerical integration,
3Applications of trajectory sensitivities extend well beyond parameter estis numerical stability of explicit methods cannot be guaranteed. Such packages
mation, and include optimal control [18] and boundary value problems [19]. are therefore amenable to efficient computation of trajectory sensitivities.
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will take on sizeable values over time. Note that the same p _ ; f ! '
rameter may exert negligible influence on some other state, sz osp i
z, in which case the trajectory sensitivity,, . ;)(t) would 3

be small for all time. It is common for parameters to influenc: ;g_o | |

some states but not others. The corresponding trajectory ser § : : :

tivities would be large for the former states and small for th § [~ : ; : |

latter. ) 1 2 2 . s s 7 3 s 10
Large trajectory sensitivities are important because the, Time (<)

imply the corresponding parameters have leverage in altering (@

the model trajectory to better match the measured respon-
Small trajectory sensitivities, on the other hand, imply the
large changes in parameter values would be required
significantly alter the trajectory. Parameters in the forme
category are well-conditioned, whereas the latter paramet
are ill-conditioned. These intuitive concepts are formalized i
Section IV-C.

Note that only parameters which influence measured stal
can be identified. A parameter may have a significant influence
on system behavior, but if that influence is not observable in the (0)
measured states, then the parameter is not identifiable. 015
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C. Example (Continued)

o load indices (pu)
e
o
w
T

As indicated in Section II-B, the recording of the voltage a_* — - S
bus 12 is to be used to evaluate model parameters. Therefc_’;’;_0
we are primarily interested in the sensitivity of that voltage statz
V1. to parameter variations. All parameters could be considere” ™o 1 2 3 a8
However for the sake of the example, we shall restrict attention e
to the following diverse groups of parametérs: ©

 generator inertia and damping constants, Fig. 4(a), _
 generator AVR setpoints, Fig. 4(b), Ll /“{3‘16 /\ Gen G2
« real and reactive load indices, Fig. 4(c), and 0
* tripping times for line 3—-16 and generator G2, Fig. 4(d). _so1r - - \/
Considering the different scales used for sensitivity irz—
Fig. 4(a)—(d), it is clear that some parameters exert quite ez oer

.05 -

o o o
=~ N W
T
L

to tripping time (pu)

f V.

influence on thé/, trajectory, and hence are well-conditioned,” o 1 2 3 AL 7 8 ° 10
whilst other parameters have negligible influence and so are @
ill-conditioned.

; ; ; +Fig. 4. Trajectory sensitivities for various parameters. (a) Generator inertia and
Fig. 4(a) shows that of all the generator inertia and damp”ﬁ mping constants. (b) Generator AVR setpoints. (c) Load indices. (d) Tripping

constants, only those of G2 have any significant influence @mes.
Vio. This influence of G2 is no doubt due to the major role it
plays in the disturbance. . . . . . .

It can be seen from Fig. 4(b) that thé, trajectory is very _potentlally extremel_y |nf_Iuent|aI, they will not be considered
sensitive to AVR setpoint values. This is due to the direct in? the parameter estimation proces_s.
fluence of AVR’s on system voltages and hencelgn. The ~ Two load index cases were considered:
size of the sensitivities is surprising though, with gains up to 1) each individual load was modeled by a pair of real and
10, i.e., a setpoint change would be amplified/in by up to a reactive power indices, and
factor of 10. Interestingly, the G2 sensitivity is out of phase with 2) all loads were modeled by a single common pair of
the others, again reflecting the unique involvement of G2 inthe  indices.

disturbance. The AVR setpoints were initialized from rehabIErom Fig. 4(c), itis clear that individual load indices have very

SCADA information. Therefore even though the setpoints afifile influence on theVy, trajectory. Even in the second case,

where the parameters affect all loads jointly, their influence is

SThese 49 trajectory sensitivities were generated from a single simulati(%:”te small. (In faCF the eﬁ_eCt Qf th(_e_reaptlve power index Can_nOt

using the approach described in Appendix B. even be seen.) This provides justification for initially assuming
6Tripping times are not exogenous inputs, but rather outputs of protectiG@nstant admittance loads; it seems load modeling is quite unim-

devices. The example does not model protection, so tripping times revert to Wsrtant in this case. That's certainly not a generic result though.
known parameters. In a more complete system representation that included pro

tection, parameters of the protection model could be considered as candid ad modeling was crucial in the disturbances reported in [3],
for estimation. [20], [21].
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It is interesting to consider the influence of line and genewhere
ator switching times on th&, trajectory. Clearly a switching

time parameter cannot influence the trajectory before the actual co(0) Yo(6) Mo
switching event. It can be seen from Fig. 4(d) that the time at e1(0) 91(0) m
which line 3—16 trips has a reasonable influence orithera- c¢(@)=| . |, @@ =" "|, m=
jectory. Because generator G2 doesn't trip until 8.2 s, it's trip- : :

ping time has limited influence over the 10 s period of interest. eq(0) Uq(0) my

To summarize, it appears from the trajectory sensitivities that
the well-conditioned parameters (apart from the AVR setpoint§he desired value af minimizes the least-squares cost
are: generator G2 inertia and damping constahis, (D), line
3-16 tripping time {3—), and possibly the system-wide real V(o) =
power load index:{p). These parameters will be considered fur-
ther in Section IV-D.

[

q
D len(®) = 5 lle®)]3. (14)
k=0

The problem has been reduced to a nonlinear least-squares for-
mulation that can be solved using the Gauss—Newton method
IV. PARAMETER ESTIMATION [22]. This is an iterative approach which is based on linearizing

6 dth ing?,
A. Background ¢(9) around the poin

Measurements of power system dynamic behavior are typi- &6, 67) = e(67) + de(6”) (60— 6%). (15)
cally obtained using data acquisition systems (DASSs) [2] that a6
provide sequencesy, my, ma, ..., m, of sampled system From (13) it follows that
guantities. The aim of parameter estimation is to find the set
of model parameters that results in the best fit between the mea- Ta (67, to)

surement samples and model predictions. i oo (609, 1)
Usually a DAS provides measurement sequences for many de(67) _ 9u(6’) _ _’ ' = S(6) (16)

different quantities. However for clarity the parameter estima- a0 o :

tion algorithm will initially be developed assuming a single o

measurement sequence. The more general case is presented in o (0", tq)

Section IV-E. o _ wheregj, is composed of the columns of trajectory sensitivities
The development of the parameter estimation algorithm ~ that correspond to the subset of parameteBecause (67)

sumes that measurements correspond to algebraic states. jthismed fromyje, evaluated attime steps, t1, . .., £,, itshall

does not restrict the application of the algorithm though, asyk referred to as theensitivity matrixSubstitution ofS (6 ) into
is always possible to add extra algebraic equations to gener@tg gives

“outputs”y; that match the measurements. These new functions
augment the original algebraic constraints. &0, 67) = e(67) + S(67)(6 — ¢7).

B. Parameter Estimation From a Single Measurement The value of¢ obtained at thej + 1)th iteration minimizes

, . l'éé(e’ 69)|13, i.e.,
The algebraic state corresponding to measurement sequehce

m will be denotedy. The estimation process involves varying 07+ — arg mm{; EC 9]’)”2}'

a subset of parametefisto obtain the best match between the ) 2 ’ 2

sequencer and the flowy(t) predicted by the model (8). A , ,

Gauss—Newton method is used. AssumingS(6?)tS(#?) is invertible, this minimization results
The model provides the flow(6, ¢) for all ¢ > #,. But the N the iterative scheme

samples in the sequengeare measured at certain time instants. INE Gl iy A aitL — araint i

Therefore the model is sampled at each time instant = S(67)°S(67) A" = S(67)"¢(67)

0,1, ..., q resulting in the sequendg(6), . (8), .. ., 7,(6), =5(6")" (5(6") — m) (17)
wherey,(6) = (0, ti). The aim is to determine the value of gitl —gi _ it Agit] (18)
6 that minimizes the discrepancy between the model response
1(#) and the measured samples. over allk. wherea/*! is a scalar that determines the step giZée invert-
Let the mismatch between the measured value and the ma@éity of S*S relates directly to identifiability, and is considered
output at each sample time be further in Section IV-C.
An estimate of which (locally) minimizes the cost function
en(@) =) —my  k=0,1,...,¢ V(6) is obtained whem\¢’+1! is close to zero. Note that this
procedure will only give local minima though, as it is based
or in vector form on a first-order approximation of(). However if the initial

7Equation (17) could be solved by directly invertifgS. However faster and
e(d) =y(0) —m (13)  more numerically robust algorithms are available [23].
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guess fo# is good, which is generally the case in power system TABLE |
studies, then a local minimum is sufficient. PARAMETER ESTIMATION RESULTS
c Values It
C. |dent|f|abl|lty ase M, (pu) D, (pu) ta.16 (S) er.
The parameter estimation process (17) and (18) breaks down %2’32 ; i'ggg '(()) ‘01;: 4'52 ‘71
if the sensitivity matrixS does not have full rank, i.e., §*S 2 22,316 - ' -
(Initial values) | 1.146 | 0.0 4.0

is singular. It is informative to explore the connection between
this observation and the concept of identifiability [4]. This dis-

cussion summarizes a more complete presentation in [24].  aAp algorithm proposed in [5] provides a reliable approach
Rather than formally defining the concept of a modél6), o identifying a subset of parameters that ensufes is well-

itis sufficient to think ofAM(6) as having the form (1)—(4), with conditioned. The algorithm consists of the following steps:

unknown parameter&. Associated with each modéi(9) is . Given a set of potentially identifiable parametefs

the fiow form S(6)tS(6) and compute its eigen-decomposition

P6,t) = { o } .  Determinep such that the largegteigenvalues of*S are
¢y (6 1) much larger than the remaining— p.

* PartitionU = [U, U,_,] with U, containing the firsp
columns oflJ.

« Determine a permutation matrik by constructing &Q R
decomposition with column-pivoting [23] fdr?,

Model equality can be defined a&1,(6,) = My(62) if
P1(01,t) = ¢2(b2,t), Vit > to. The concept of local
identifiability can then be defined.

Definition (Local Identifiability): A model M is locally

identifiable at?* if M(6) = M(6*) implies that§ = 6*. UP =QR
In terms of flows, this definition states that the modefl is
locally identifiable if where( is an orthogonal matrix, and the firstcolumns
of it form an upper triangular matrix.
B0, t) — p(O*, t) = Ag(t) = 0, Vi >to « Reorder the parameter vector according te P’6.

* The well-conditioned parameteftsre the firsip elements

implies that of 6.
The results of this algorithm are compared with the observations
00" =Afd =0 of Section 11I-C in the following section.

Equations (7) and (8), and (11) and (12) provide the (local) coPF Example (Continued)

nection betweer\¢ andAd in terms of trajectory sensitivities, The observations of Section IlI-C indicated that the
well-conditioned parameters consist of: generator G2 inertia
and damping constantg4,, D5), switching time for line 3—-16

} Af. (ts—16), and possibly the system-wide real power load index
(np). For comparison, the algorithm from the previous section

These relationships form the basis for the following theoremWas applied to a set of 24 parameters, consisting of the inertia
Theorem (Identifiability From Measurement# model M and o_Iampmg constants for all generators, sy_stem_-W|de real_ and
is locally identifiable aB* from measurementgiff S has full reactive power load indices, and the switching times for line

.Ig(t)

Alt) = [ye(t)

rank. 3-16 and generator G2. It was found that the eigenvalues of
1
It follows from the theorem that the trajectory sensitivitieS = Were
/s which form S must be nonzero, and linearly independent. 13.51, 1.21, 0.11, 0.07, 0.04, 0.02, ..., 9.7 x 10~ 2.

However from a practical perspective, nonsingularitys6§ is
not sufficient to guarantee reliable convergence of the paraffwo eigenvalues are large, implying that two parameters (at
eter estimation process. Convergence will be unreliabf $ least) are well-conditioned. The algorithm selecldd, D, as
is nearly singular, i.e., if its smallest eigenvalue is very smate best candidates for estimation. This is consistent with the
relative to its largest eigenvalue. In such an ill-conditioned caseajectory sensitivities of Fig. 4. The algorithm was also used to
inversion ofS*S effectively results in dividing by a very small extend the selection to the four most well-conditioned parame-
number, leading to large entriesdxpi+!. ters. The selected parameters in this case Wéye Ds, t3—6
lll-conditioning of $*.S can result from a column & having andnp. This was again exactly consistent with the observations
very small entries, i.e., negligible sensitivify, of the trajectory of Section IlI-C.
to a particular parametéy. This corroborates the more intuitive  The results of estimatind/, and D, are given in Table |
discussion of Section IlI-B. lll-conditioning can also be due tand shown in Fig. 5. The fit is very good, especially given the
the columns ofs being nearly linearly dependent. This situatiotevel of modeling approximation. Certainly the fitis much better
is more difficult to identify from inspection of the trajectorythan with the original parameter values, shown in Fig. 3. The
sensitivities. estimation algorithm converged to a parameter update tolerance



708 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001
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Fig. 5. Comparison of voltage recording with estimated model behavior. Fig. 6. Comparison of frequency recording with estimated model behavior.
Separating those effects can be challenging, and generally

involves exploring the influence of model structure (as against
parameter values) on the quality of the measurement/model fit.

of |Af;| < 1072 in 4 iterations, and a tolerance o6~ in
6 iterations.
The estimation of the four parametévs, D, t3—16 andnp

was considered next. In this case convergence had still not beenp, .o meter Estimation From More Than One Measurement
obtained after 25 iterations. The first three parameters quickly

converged, butip continued to wander. It was found that as Normally @ DAS (or a number of DASs scattered around a

the first three parameters approached their optimal values, prwer system) will provid_e many meas_urements of a distur-
sensitivity ofnp diminished. It became ill-conditioned, resulting®@ce- Ideally all the available information should be used to
in the convergence difficulties give the best estimate of the parameters.
: 1 2
Based on this experience, it was decided to estimate just thé‘ssgntf there aré mdgasurerger:l seque;c?és,, m " A’
three parameter®l,, D- andts—;6. Results are given in Table | m- and the cor.resipon Ing model Hows ae g, ..., 7
and shown in Fig. 5. Again a very good fit was obtained. Th%ensmwty matrixS* corresponding to eagft can be defined as

estimated values were close to those of the previous case, wH@rgﬁ)' We now define

np did not converge. This confirms that the initial guessapf= it mt
2 did not bias the estimate. w2 9
. . Y m
Comparing the parameter estimates for the two successful #6) = ’ m =
cases, it appears that fixing—;¢ biased the estimate db,, :
though had much less influence on the estimaté/gf How- e mt
ever Fig. 5 shows that the trajectories for the two cases are very 4
similar. and make corresponding changes in the definitior (@) at
The estimation process did not make use of the bus frequert@). The sensitivity matrices are arranged as
recording given in Fig. 2(b). However that measurement was 1
. . . SH(8)
used as a cross check of model validity. As explained earlier, )
the simple system model did not provide bus frequency, so the 52(0)
frequency of the closest generator (G5) was used for compar- 5(0) = :
ison. Fig. 6 compares the measured (bus) frequency with the pre- .
dicted (generator) frequency. The estimated value®/ef D, S4(6)

andts—; were used in this case. The smaller oscillations d,&)gam (17) and (18) can be used to obtain the (locally) optimal

not match closely, which is not surprising given the difference . . . i

. . value off. In this case, the optima&lprovides an overall best fit

between bus and generator frequencies. However an import
of the model taall the measurements.

indication of model validity is given by the agreement in the .
. Note that if some measurements are known more accurately
large-scale deviation beyond 8 s. L X
. than others, then weighting factors can be used to weight the
It should be reiterated that the purpose of the example has_,. .
. . reTatNe importance of the measurements.
been to illustrate the model evaluation process. Usually even
reconstruction would have access to many more measurements,
and a more elaborate system model. However, there will
always be some discrepancy between measured and modele€the process of evaluating nonlinear dynamic models

response, due to measurement errors and model inadequitoym measurements of disturbances involves, 1) identifying

V. CONCLUSION
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parameters that can be reliably estimated, and 2) obtainipg . For clarity, consider a single switching/reset event, so the
a best estimate for those parameters. Trajectory sensitivedel (1)—(4) reduces to the form
ities provide information that is valuable for determining

well-conditioned parameters. The paper establishes a close link z= f(xv_y) (21)
between trajectory sensitivities and parameter identifiability. ]9 (z,y) s(z,y)<0
. X 0= (22)
A nonlinear least-squares algorithm has been proposed gt(z,y) s(z,y)>0
for estimating power system parameters from measure- et =hiz",y) sz, y)=0. (23)

ments of system disturbances. The algorithm is based on
the Gauss—Newton iterative method. Trajectory sensitivitié€t (x(7), y(7)) be the point where the trajectory encounters
provide gradient information at each iteration. The algorithm t§€ hypersurface(z, y) = 0, i.e., the point where an event is
reliable, even when measurements are corrupted by significifigered. This point is called thenction pointand 7 is the
noise. junction time Assume that the trajectory encounters the trig-

The model evaluation process has been discussed in term8&ing hypersurface transversally.
system-wide event reconstruction. However the process is diJust prior to event triggering, at time", we have
rectly applicable to the development/refinement of component
models, where measurements are obtained from a sequence of
tests. In fact, identifiability analysis can be used to design tests Yy~ =y (77) = ¢y(wo, 77)
that enhance parameter estimation reliability and accuracy. Thgere
refined component models form the starting point for recon-
struction of more widespread system disturbances. g (z7,y")=0.

The estimation algorithm can be easily adapted for model re-
duction purposes [25]. The “measurements” in this case are fmilarly, z+, y* are defined for time-*, just after the event
placed by trajectories of the full model. The estimated (reduc8as occurred. Itis shown in [10] that the jump conditions for the
model) parameters achieve a best fit between the full and E&nsitivitiesz.,, are given by
duced models over scenarios of interest. Controller tuning can N gk - + . o
also be achieved through a conceptually similar extension. In Ta (77 =W (77) = (ST =W ) ey (24)
this application, the optimal parameters result in the best fithere
between the system response and a pre-specified reference be- ) I
havior. These and oth@wverse problemare considered in [13]. hy = (h-r = hy(9,)" 9z ) |T—
In all cases, trajectory sensitivities provide gradient information (8 s (g’_)_1g_)| oy (77)
that underlies iterative algorithms. Tpy = — MY TRl T

(s0 = sylgy)tgz) |, [~

APPENDIX A fm=f (a?(’rf), yf(’rf))

TRAJECTORY SENSITIVITY EQUATIONS
. fr=f(a(m®), ().
Away from events, where system dynamics evolve smoothly,
the sensitivitiess,;,, andy,,, are obtained by differentiating (5) The sensitivities;.., immediately after the event are given by
and (6) with respect ta@q. This gives 1
Yoo (T7) = = (957 (7)) 92 (7 ), (7).

Ty = fo() 2, o (E) Y 19
825 Etix ’ I;yétiz ’ 2203 ' Following the event, i.g., for> 77, calculation.of the sensi-

AT T YR/ ST tivities proceeds according to (19) and (20), until the next event
where f,, = 9f/0x, and likewise for the other Jacobian mais encountered. The jump conditions provide the initial condi-
trices. Note thaf;, f,, g, g, are evaluated along the trajectorytions for the post-event calculations.
and hence are time varying matrices. It is shown in Appendix
B that the solution of this (potentially high order) time-varying APPENDIX B
DAE system can be obtained as a by-product of solving the orig-  EFFICIENT TRAJECTORY SENSITIVITY COMPUTATION

inal D.AE syst_e_m (5) and (6). . Consider the DAE system (5) and (6) which describes
Initial conditions forz,, are obtained from (9) as behavior over the periods between events. The trapezoidal
Ty (to) =1 approach to numerical integration approximates the differential
] ) ) _ N - equations (5) by a set of algebraic difference equations. These
wherel is the identity matrix. Initial conditions fog,,, follow algebraic equations are coupled with the original algebraic

a” =a(r7) = dalwo, 77)

directly from (20), equations (6) giving
0 = go(to) + gy(t0)yz, (to)- okl k7 (F@*, o%) + F*FL yF1)  (25)
2 ) )
Equations (19) and (20) describe the evolution of the sensi- 0 = g(xM+L, ) (26)

tivities z,,, andy,, between events. However at an event, the
sensitivities are generally discontinuous. It is necessary to cakere the superscripts & + 1 index the time instants,, ¢x11
culatejump conditionsdescribing the step change i, and respectively, and; = t;41 — t; IS the integration time step.
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