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Exploring the Power Flow Solution Space Boundary
Ian A. Hiskens, Senior Memberand Robert J. Davy

Abstract—A knowledge of the structure of the boundary of
solutions of the power flow problem is important when analyzing
the robustness of operating points. This paper proposes a pre-
dictor–corrector technique to assist in exploring that structure.
Points on the solution boundary satisfy the power flow equations
together with an equation which forces the power flow Jacobian
to be singular. Curves of such points result from freeing two
parameters of the system. The proposed technique follows those
curves. A simple example is used to illustrate the complex nature
of the power flow solution space.

Index Terms—Continuation methods, Jacobian singularity,
maximum loadability, power flow, solution space boundary.

I. INTRODUCTION

POWER system operation is constrained by loadability
limits that closely match the boundedness of the power

flow solution space [1]. Operation near the solution space
boundary often results in undesirable system behavior that can
be associated with reduced stability margins.1 Quantifying the
boundary is therefore an important aspect of assessing system
security.

In an electricity market environment, loadability restrictions
can cause congestion, thereby influencing energy trading
arrangements and distorting locational energy prices. A clearer
understanding of the restrictions placed by power flow bound-
edness would therefore assist operators and traders in their
decision-making, with a consequent improvement in power
system security and price stability.

Unfortunately, the structure of the solution space boundary
has not been clearly established. Indications are that it can
display quite complicated behavior [3]. An hypothesis in [4]
suggested that the solution space is convex, though a counter-
example is provided later in our paper. (The solution space
shown in Fig. 10 has a hole through it.)

Techniques for exploring the power flow solution space
boundary therefore have an important role to play in the analysis
of power systems. This paper describes a continuation method
that generates nomograms of the solution space boundary.
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1As an operating point moves closer to the solution boundary, so to does a
corresponding unstable low-voltage solution. The stability boundary is tied to
this low-voltage solution. Therefore as the two solution points merge, the sta-
bility boundary approaches the operating point, and the stability region shrinks
[2].

Fig. 1. Power flow solution curves.

The boundedness of power flow solutions is illustrated in
Fig. 1. Each curve (or contour) is obtained by freeing a single
parameter and monitoring a state. The family of curves
is obtained by generating contours for a range of values of a
second parameter . Notice that along each individual curve,

reaches a maximum value at a turning point. Those extreme
points lie on the boundary of the solution space, and have been
referred to as “points of maximum loadability.” Fig. 1 also
shows a dashed curve that joins the extreme points. That curve
describes the solution space boundary in terms of parameters

and . It could be obtained by interpolating between the
turning points of each contour. However a more systematic
approach is described in this paper.

For a single free parameter, as illustrated by the individual
curves of Fig. 1, numerous techniques are available for deter-
mining a point on the solution space boundary. They include
direct methods [5]–[8], optimization methods [9], and continu-
ation (homotopy) methods [10]–[15]. The continuation methods
are of most interest in this paper, as they form the basis for gener-
ating curves that lie on the solution space boundary. A summary
of one such method, the Euler homotopy approach, is provided
in Section III.

A number of continuation techniques for determining solu-
tion boundary curves have been proposed [16], [17]. In this
paper we describe the implementation of one of those tech-
niques, and its use in exploring the power flow solution space
boundary.

The paper is organized as follows. Section II provides an ana-
lytical description of solution boundary curves. An overview of
continuation methods is provided in Section III. Section IV de-
scribes the implementation of a continuation method for finding
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solution boundary curves. A number of examples are given in
Section V. The influence of reactive power limits is considered
in Section VI, and conclusions are presented in Section VII.

II. SOLUTION BOUNDARY CURVES

The standard power flow problem can be expressed as the set
of equations,

(1)

where , and . If a single param-
eter is free to vary, then , and the problem becomes one
of equations in unknowns, i.e., the system is undercon-
strained. Solutions are curves, not points. Each curve of Fig. 1 is
an example. If , i.e., two free parameters, then (1) defines
a surface. The collection of curves in Fig. 1 provides contours
of such a surface.

For a point to lie on the solution space boundary, it must firstly
be a solution of the power flow, i.e., it must satisfy (1). However
an additional requirement is that the power flow Jacobian must
be singular, i.e.,

(2)

where refers to the Jacobian . (We shall use this no-
tation throughout the paper.) This places an extra constraint on
boundary points.

Consider the case of a single free parameter, so that the
number of unknowns is . Boundary solutions must satisfy
the equations of (1) together with the extra equation (2), a
total of equations. Because the number of unknowns
equals the number of equations, the solution boundary in this
case is composed of points. Fig. 1 illustrates this. The solution
boundary for each individual curve is given by an isolated
turning point.

In general, if there are free parameters, then the system will
have unknowns and equations. So the solution
boundary in general is a -manifold. Consider the surface,
corresponding to , described by the collection of curves
in Fig. 1. It can be seen that the solution boundary is composed
of the union of the boundary points of the contour curves. The
boundary is the 1-manifold (dashed curve) shown in that figure.

In actually calculating boundary points, it is difficult to im-
plement the constraint (2) directly in algorithms that solve sets
of nonlinear simultaneous equations. However (2) can be effec-
tively implemented as,

(3)

(4)

where is the right eigenvector corresponding to a zero
eigenvalue of . Because (3), (4) force to have a zero eigen-
value, they ensure that (2) is satisfied.

Points on the power flow solution space boundary are there-
fore described by

(5)

(6)

(7)

a set of equations in unknowns. It again follows
that when , the set of equations (5)–(7) defines solution
boundary curves.

III. A N OVERVIEW OF A CONTINUATION METHOD

As mentioned earlier, if a set of equations is underdetermined,
with one more unknown than constraint, then solutions will
be curves rather than points. We are interested in determining
such curves. One method is to generate successive points along
the curve using an Euler homotopy approach [10]. This is a
predictor–corrector algorithm that was successfully applied to
the power flow problem in [11]. In this section we review this
approach to generating solution curves. The details of imple-
menting the algorithm for generating boundary curves are pro-
vided in Section IV.

To describe the algorithm, it is convenient to write (5)–(7),
with , as a general set of equations,

(8)

where

and . Assume we are at a point on the curve and
wish to move to the next point.

The first step of the algorithm is the prediction of the next
point on the curve. To do this, we find the vector that is tangent to
the curve at , and move along that vector a predefined distance

. This is a (scalar) control parameter that effectively deter-
mines the distance between successive points along the curve.
In regions of high curvature, may need to be small. When the
curve is almost linear, a large value ofwould suffice. The unit
vector that is tangent to the curve (8) at is given by,

(9)

(10)

where is the Jacobian . The prediction of
the next point on the curve is,

Having found the prediction point, we now need to correct to
a point on the curve. The Euler method does this by solving
for the point of intersection of the curve and a hyperplane that
passes through and that is orthogonal to. Points on this
hyperplane are given by,

(11)

or alternatively

(12)

Either (11) or (12) can be used. The point of intersection of the
curve and the hyperplane is then given by,

(13)
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Fig. 2. Predictor–corrector process.

(14)

Note that in (14), , and are fixed, with being the only
unknown. The first equations, which follow from (8), en-
sure the point is on the desired curve. The last equation, from
(12), ensures the point is on the hyperplane. Together (13), (14)
form a set of equations in unknowns. They can
be solved using a standard technique such as Newton–Raphson.
The predictor–corrector process is illustrated in Fig. 2.

After the second point on the curve has been determined,
an approximate tangent vector can generally be used for ob-
taining successive points. The approximate tangent vector at the
th point, which is used to calculate the th point, is given

by,

Obtaining the approximate tangent vector involves much less
computation than finding the exact tangent vector using (9),
(10). However the approximation may not be adequate in re-
gions of high curvature.

IV. I MPLEMENTATION

In order to use a predictor–corrector technique to obtain a
solution boundary curve, we need to find an initial point on that
curve. Referring to Fig. 1, the simplest approach is to follow one
of the power flow curves until a turning point is identified. That
turning point provides an initial point on the solution boundary
curve. Generating a boundary curve can therefore be viewed as
a two stage algorithm: 1) find an initial boundary point, and
2) continue the boundary curve from that point. Over the first
stage, only a single parameter is free. Stage 2 requires the
release of a second parameter.

During stage 1, the tangent vector (generated as a by-product
of the continuation process) can be used to identify a turning
point. Referring to (9), the tangent vector along power flow
curves, i.e., over stage 1, can be written

(15)

Note that is a scalar because there is only one free parameter
at this stage. It can be seen from Fig. 1 that at turning points,
the tangent to the power flow curve is vertical. As a curve is
traversed through such a point, there is no change in the value
of the parameter. This implies that at a turning point . By

monitoring along the power flow curve, a point that is close
to a boundary point can be found.

The initial point of the boundary curve must satisfy (5)–(7).
Recall that in finding this initial point, is the only free param-
eter, with still constrained at this stage. So (5)–(7) becomes a
set of equations in unknowns, i.e., the initial point
is uniquely defined. A technique such as Newton–Raphson can
therefore by used to find the initial point. However such tech-
niques rely on a good initial guess for the variables, and .
Estimates of and are provided explicitly by the stage 1 con-
tinuation process. An estimate ofis given by the tangent .
To see this, recall that at the boundary point . So from
(15),

From (6) it can be seen that provides an estimate of.
Often more than one boundary point exists on the stage 1

power flow curve. Hence there are multiple potential starting
points. This property is used when computing disconnected sec-
tions of the solution boundary, and is illustrated in the example
of Section V-B.

During stage 2, along the boundary curve, the Jacobian of
(5)–(7) has the form,

(16)

where

When solving the corrector, (5)–(7) is augmented by an extra
row corresponding to the equation describing the hyperplane,
i.e., (11) or (12). This introduces an extra row into (16).

The th component of vector functionis given by,

where is the th component of , and and are the th
components of and respectively. Therefore is an

matrix with th element,

Similarly is an matrix with elements,

Most elements of and are zero, resulting in an extremely
sparse structure for . Therefore the continuation process is
tractable for large systems.



392 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 3, AUGUST 2001

Fig. 3. Two bus system.

Fig. 4. Power circles and solution boundary curve. Contours ofV .

V. EXAMPLES

A. Two Bus System

The numerical results obtained using the continuation algo-
rithm described earlier may be verified analytically for a two
bus system, such as shown in Fig. 3. In this system,Gen1 is a
slack bus,Bus2 is a PQ bus, and pu.

Eliminating from the real and reactive power balance equa-
tions forBus2 results in equations for power circles in the–
plane,

These curves (circles) are shown in Fig. 4 as dashed lines. Each
circle corresponds to a different value of . There exists a
boundary in the – plane beyond which there are no power
flow solutions. At any point on that boundary, the power flow
Jacobian is singular. It can easily be shown that points which
lie on the boundary, i.e., that satisfy the power flow equations
along with the requirement , are given by,

Hence the solution boundary curve in the– plane is a
parabola (remembering that and are fixed).

The solution boundary can be computed numerically by
making the following observation. In– space, with held
constant, boundary points occur when there is a change in the
number of solutions as is varied. The dashed curves of Fig. 5
show solutions for various (fixed) values of. (These curves
are analogous to Fig. 1. In this example is and is .)
Using the continuation technique, and allowingto be a free
parameter, the boundary curve in– space can be computed.
It is shown in Fig. 5 as a solid curve. The same curve plotted

Fig. 5. PV curves and solution boundary curve. Contours ofQ.

Fig. 6. Three bus system.

in – space is shown as a solid curve in Fig. 4. Note that
it has the predicted parabolic form. Furthermore, it forms the
boundary of the power circle diagrams and is tangential to the
circles.

It is interesting to note that the contours (dashed lines) of
Fig. 4 correspond to horizontal slices through Fig. 5, and the
contours of Fig. 5 correspond to horizontal slices through Fig. 4.
Together they provide a picture of the solution space in– –
space.

B. Three Bus System

This example explores the solution space boundary for the
system of Fig. 6. Even though the system is small, it illustrates
the complexity of the power flow solution space. The solution
space boundary will be investigated for two cases. The first con-
siders the boundary when and are free to vary, whilst the
second presents nomograms of versus . The connection
between these two cases will also be explored.

1) Case 1: versus : The power flow solution space
projected onto the – plane is shown in Fig. 7. In this figure,
each curve corresponds to a distinct value of. The outer
boundary of the solution space is clear. However there is also
some folding within the solution space. The continuation tech-
nique can be used to locate all the boundary curves, including
the inner folds.

Finding the boundary points amounts to finding those points
where, if is held constant and is varied (or vice-versa),
there is a change in the number of power flow solutions. Fig. 8
shows the power-angle curves atGen1 for various values of .
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Fig. 7. Power flow solution space,P –P view.

Fig. 8. Power-angle curves.

Fig. 9. Boundary curves inP –P space.

(These curves are rotated by 90compared with the normal pre-
sentation of power-angle curves. They are oriented in this way to
follow the bifurcation diagram convention of parameter on the
horizontal axis and state on the vertical axis.) There exist sev-
eral boundary (bifurcation) points with respect to. Using any
of these as a starting point, and releasing, loci of boundary
points may be computed (broken lines). Fig. 9 is obtained when
these loci are plotted in – space. Lines– and – in Fig. 8
form parts of curve 1 in Fig. 9. Likewise, line– forms part of
curve 2, and line – forms part of curve 3. Curves 1, 2 and 3 are

Fig. 10. Solution space,Q –P view. ConstantP curves.

Fig. 11. Boundary curves inQ –P space.

disconnected. Different starting points must be used to obtain
the various curves. Curve 1 forms an outer boundary, beyond
which no power flow solutions exist. Curves 2 and 3 correspond
to the internal folds. They divide the solution space into regions
where different numbers of equilibria exist [3].

2) Case 2: versus : An interesting view of the solution
space is obtained by plotting versus for various values
of . The resulting curves are shown in Fig. 10. The solution
space is clearly bounded. Of particular interest though is the
hole through the middle of the solution space. Note also the
convoluted form of the individual curves.

To obtain initial points on the outer and inner boundary
curves, was constrained to a value of 1.8 pu, corresponding
to a slice through the hole. Parametersand were both
allowed to vary. Initial boundary points were given by the
bifurcation points of the resulting versus curve. The
boundary curves obtained from those initial points are shown
in Fig. 11.

Even though it is not immediately apparent, Fig. 10 is closely
related to power circles similar to those of Fig. 4. This becomes
clearer in Fig. 12, where curves of versus are plotted
for various values of . Each curve has a circular shape. The
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Fig. 12. Solution space,Q –P view. Constant� curves.

Fig. 13. Solution space,P –Q –P view.

collection of curves all lie within the solution space boundaries
identified in Fig. 11.

3) Connections:The projections of the power flow solution
space given by Figs. 7 and 10 can be combined to show the so-
lution space in the three dimensional– – space. Fig. 13
shows half of this surface, together with its– and –
projections. (Half the surface was removed to reveal the inner
folds.) The complicated features of this surface, including the
folds and the hole, are now easier to comprehend.

VI. REACTIVE POWER LIMITS

Reactive power limits of generators and SVCs can play a role
in limiting the power flow solution space [18]. In such cases,
the solution space boundary is composed of sections where the
power flow Jacobian is singular, and other sections where a re-
active power limit is enforced. Fig. 14 illustrates such a case.
This is the same example as shown in Fig. 1, but now reactive
power limits are considered. As in Fig. 1, the dashed line shows
the boundary due to Jacobian singularity. However this is now
truncated by the dotted line which corresponds to points where

Fig. 14. Influence of reactive power limits.

the reactive power limit is first encountered. The true boundary
is composed of the dashed line together with the section of the
dotted line to the left of the point where the two curves intersect.

The reactive power limit curve, i.e., the dotted curve in
Fig. 14, can be obtained from a normal continuation method.
There are two free parameters, and , so the total number
of unknowns is . Also, there are nominally power
flow equations. However along the reactive power limit curve,
a voltage constraint and a reactive power constraint are both
enforced at the generator bus [19]. This adds an extra constraint,
resulting is a problem of equations in unknowns.
A 1-manifold (curve) is therefore defined.

VII. CONCLUSION

A knowledge of the solution boundary of the power flow
problem is important for determining the robustness of oper-
ating points, and for evaluating strategies for improving robust-
ness. A method of exploring that solution boundary has been
developed.

Curves of points which lie on the solution boundary can be
found using a predictor–corrector approach. The curves result
from freeing two parameters and enforcing the power flow con-
straints together with the extra constraint that the power flow Ja-
cobian must be singular. An Euler homotopy method has been
used for producing the curves. The algorithm has been illus-
trated using small examples. However the approach extends nat-
urally to larger systems.

Examples have demonstrated some of the possible forms that
the solution boundary can exhibit. It appears that quite compli-
cated behavior is possible. This could have a significant influ-
ence on the formulation of algorithms for optimally improving
system robustness. It remains to fully explore these issues.

In an operational environment, security monitoring often in-
volves a comparison of measured (or state estimator) quanti-
ties with loadability constraints. These constraints frequently
take the form of nomograms determined off-line. The proposed
algorithm allows on-line generation of such nomograms, en-
suring more accurate assessment of security and transmission
availability.
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