
Bounding Uncertainty in Power System Dynamic Simulations

Ian A. Hiskens M.A. Pai Trong B, Nguyen

Department of Electrical and Computer Engineering

University of Illinois at IJrbana-Champaign

1406 W. Green Street

Urbana

Abstract—Parameters of power system models can never
be known exactly. Yet dynamic security assessment relies
upon the simulations derived from those uncertain models.
This paper proposes an approach to quantifying the uncer-
tainty in simulations of power system dynamic behaviour.
It is shown that trajectory sensitivities can be used to gen-
erate an accurate first order approximation of the trajectory
corresponding to a perturbed parameter set. The compu-
tational cost of obtaining the sensitivities and perturbed
trajectory is minimal. Therefore it is feasible to quickly
generate many approximate trajectories from a single nom-
inal case. To quantify the effect of parameter uncertainty
on the nominal case, parameter sets are randomly gener-
ated according to their underlying statistical distribution.
An approximate trajectory is obtained for each set. The
collection of trajectories provides a bound within which the
actual system dynamic behaviour should lie.
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I. INTRODUCTION

Analysis of power system dynamic behaviour is largely
model based. Actual system behaviour is inferred from the
simulated response of system models formed from many
component models. Planning and operating decisions are
influenced by simulated behaviour, therefore model accu-
racy is very important. Model validation clearly plays a
vital role [1], [2]. However many parameters can never be
known with absolute certainty; load modelling provides a
classic example [3].

Ideally, multiple studies should be undertaken over a
range of parameter values. However simulation of large
power systems is computationally intensive. Such an in-
vestigation would be extremely time-consuming. The more
practical approach is to assume that a nominal set of pa-
rameters provides a good representation of behaviour over
the full range of values. This may not always be a good

assumption though,
An approach to quantifying the uncertainty in power sys-

tem simulation is presented in this paper. The ideas build
on trajectory sensitivity analysis. The paper is structured
as follows. Modelling issues are discussed in Section II,
with a general model structure given in Appendix A. Tra-
jectory sensitivities are reviewed in Section III. The algo-
rithm for quantifying trajectory uncertainty is presented in
Section IV. Conclusions are provided in Section V.
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II. MODELLING

Power systems are composed of many diverse compo-
nents. Interactions between the components can result in
co replicated forms of dynamic behaviour. The influences
on system response include:
Q continuous nonlinear dynamics, examples include electri-

cal machines and their associated controllers and mechan-
ical plant;
● algebraic constraints, primarily current balance at net-
wclrk nodes;
. discontinuities, for example cent rol and physical limits,

and feeder switching;
. ,~iscrete-event dynamics, such as protection relaying and

tap-changer operation.

Nonlinear differential-algebraic models provide a famil-
iar framework for representing the continuous dynamics of

power systems. However less attention has been focussed
on rigorous modelling of discontinuities and discrete-event
dynamics. For example, Figure 1 is representative of the
rules governing tap-changer operation. The mapping of

these rules into an analytical model is not straightforward.

The development of a model that can capture the full
range of continuous/discrete (hybrid) dynamic behaviour
is outside the scope of this paper. Details can bq found
in [4]. For completeness however, a model is provided in
Appendix A. This model forms the basis for the trajectory
sensitivity analysis presented in Section III.

Trajectories of the model (7)-(10) describe the behav-
iour of the dynamic states z and algebraic states y over
time. To faciliate the discussion
and trajectory uncertain y, this
be defined in terms of the flow

of trajectory sensitivities
dynamic behaviour shall

where ~ are initial conditions, i.e.,

(2)

III. TRAJECTORY SENSITIVITIES

A, Background

The flow @ of a system will generally vary with changes
in parameters and/or initial conditions. Trajectory sensi-
tivity analysis provides a way of quantifying the changes
in the flow that result from (small) changes in parameters
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and initial conditions. The development of these sensitiv-
ity concepts will be based upon the DAD model (7)-(10).
In this model, ~ incorporates the initial conditions zo and
.zO, as well as the parameters A Therefore the sensitivity
of the flow to G fully describes its sensitivity to zo, zo and
A.

Trajectory sensitivities follow from a Taylor series expan-

sion of the flows & and #v. Referring to (1), the expansion
for & can be expressed as

Neglecting the higher order terms and using (1), we obtain

i.e., the sensitivity of the flow ~z to (small) changes A%
is given by the trajectory sensi~vities g%(t). A similar
Taylor series expansion of #v yields

(4)

In this case the sensitivity of the flow du to (small) changes
A~ is given by the trajectory sensitivities ya (t).

Once the trajectory sensitivities Zh (t)and Y&(t) are
known, the sensitivity of the system flow # to small changes
in initial conditions and parameters, which are described
by A%, can be determined from

Point

Fig. 2. Transformer-load example.

The computation of trajectory sensitivities is outlined in
Appendix B. Complete details can be found in [4].

B. First order approximation

A change in parameters and/or initial conditions will
usually generate a new trajectory. Based on the Taylor
series expansion, a first order approximation of the new

trajectory can be obtained from (5) as

[1

x (t)
t%o,2, ~) = ‘7$(G,I, O + ;:(t) G!Z0,2 – 30,1) (6)

—

where ZH (t), y%(t) are computed along the original trajec-

tory q$(~,l, t). In other words, if the trajectory sensitivities

z~ ~(t), Yq (t) are available for a nominal trajectory, then
(6) can be used to provide a good estimate of the trajectory
#(~,2, t)corresponding to another (nearby) parameter set.
This is illustrated in the following example.

Ecample 1

The small system of Figure 2 provides a case where con-
tinuous and discrete-event dynamics interact. The trans-
former tap-changer logic is described by Figure 1. The

load exhibits dynamic recovery. Figure 3 shows the re-
sp onse of the voltage at bus 3 following the tripping of one
of the feeders between the supply point and bus 1. The
nc~minal trajectory, corresponding to a load time constant
Tf, = 5s and a tapping delay of TtaP = 20s, is shown aa
a dashed line. This trajectory V3(t;5, 20), along with the
corresponding trajectory sensitivities $# and ~ wast’T~ap~
used to generate a first order approximation of the voltage
response when TP = 5.5s and Tt~P= 22s, according to

T\appr”x(t; 5.5, 22) =v3(t; 5, 20)

(9V3
-(t;5,20).+ o.5#i 5>W + 2aTtap

The approximate trajectory is shown in Figure 3, along
with the actual perturbed trajectory Vs(t; 5.5, 22). It can
be seen that the first order approximation is very close.

❑

The computational burden involved in generating the ap-
proximate trajectories is negligible. Therefore given the
nominal trajectory and associated trajectory sensitivities,
new (approximate) trajectories can be obtained for many
parameter sets. This forms the basis of the procedure given
in Section IV for quantifying trajectory uncertainty.
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Fig. 3. Trajectory approximation for Example 1. Fig. 4. Trajectory bounds for Example 1.

C. Eficient calculation of sensitivities

The feasibility of generating approximate trajectories us-
ing (6) rests on the efficient computation of the trajectory
sensitivities. It appear from (13),(14) that the solution of
high order differential equations is required. Fortunately
that is not the case.

If an implicit numerical integration technique such as
trapezoidal integration [5], [6] is used to obtain the nom-
inal trajectory, then at each time step a Jacobian matrix

must be built and factorized. It is shown in [4] that exactly
the same Jacobian is required for numerical integration of
the trajectory sensitivity equations (13) ,(14). Because this
matrix is already factorized, little extra computation is in-
volved in numerically integrating (13),(14).

IV. BOUNDING UNCERTAINTY

Exact knowledge of parameter values is unlikely. It is
more common for the range of a parameter value to be
known. Also, an estimate of the statistical distribution

may be available. For example, it might be assumed that
parameters are uniformly distributed between some lower
and upper bounds. Alternatively, there may be sufficient
data to assume a normal distribution with some mean and
variance. In any case, such distributions allow parameter
sets to be randomly chosen.

As indicated earlier, simulation of a large number of pa-
rameter sets is not feasible. However generation of the first
order approximation of a perturbed trajectory is feasible
for a large number of cases. Therefore a Monte-Carlo tech-
nique can be employed to quantify the uncertainty in a
trajectory:

● Parameter sets are randomly generated,
● first order approximations are obtained using (6).
The following examples illustrate this process.

Example 1 (cent)

The parameters of interest in this case were the load time
constant TP and the transformer tapping delay TtaP. The
nominal case, with TP = 5s and Ttap = 20s is shown in Fig-

ure 4 as a dark line. It was assumed that these parameters
were uniformly distributed over the ranges TP c [4 6] and

T~3PE [15 25]. Two hundred sets of parameters {TP, Tt.p}
were randomly chosen, and an approximate trajectory gen-

erated for each case. These trajectories are shown in Fig-
ure 4 by dotted lines. The bound on the nominal trajectory
is cIearly evident.

Notice that the bound becomes wider with each tap
change, before shrinking as steady-state is approached.
This occurs as a result of the errors due to the uncertainty
in TP and TtaP accumulating over time.

❑

Example 2

The IEEE 39-bus 10-machine case illustrates trajectory
bcunds for a larger system. Data for this example can be
found in [7]. A fault was applied at bus 17. The response
of the voltage at bus 8 is plotted in Figure 5. The nomi-
na,l trajectory, which is shown as a solid line, corresponds
to constant admittance loads, i.e., the active and reactive
pc~wer voltage indices were < = 2.0 and q = 2.0 respec-

tively at all buses. To introduce parameter uncertainty,
the load indices of five major load buses were assumed to
be uniformly distributed over the ranges (i E [1.5 2.5] and
vi E [1.5 2.5]. One hundred sets of parameters were ran-
dc}mly chosen, and an approximate trajectory generated for
each case. These trajectories are shown as dotted lines in
Figure 5.

The approximate trajectories show a bound around the
nc)minal trajectory. The bound is more pronounced at the
vcdtage extremes, where the uncertain load indices are more

influential.
This example illustrates the importance of error bounds

in assessing risks such as voltage sag. The nominal trajec-
tory may indicate an acceptable voltage dip, However the
error bound may fall below the viability threshold, indicat-
ing vulnerability y of the actual system.

❑

In these examples, the whole trajectory was generated for
ea,ch parameter set. However if only particular sections of
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Fig. 5. Trajectory bounds for Example 2,

a trajectory were of interest, (6) could be used to generate

just those pieces. Storage of the trajectory sensitivities
would only be required for those periods.

V. CONCLUSIONS

Parameters of power system models can never be known

exactly. Yet the results of power system simulation stud-
ies are routinely used in planning and operating decisions.
Therefore it is important to quantify the errors induced by
parameter uncertainty. This paper provides a technique for
bounding the errors.

Trajectory sensitivities can be efficiently computed for

a nominal trajectory. They can then be used to generate
first order approximations of perturbed trajectories. Error
bounds around a nominal trajectory can be obtained by a
Monte-Carlo process consisting of,
1. generating random sets of parameters, and
2. computing a first order approximation of the trajectory

corresponding to each parameter set.
The error bounds allow better assessment of risks such as
voltage sag and unplanned protection operation.

APPENDIX

A. MODEL STRUCTURE

Systems which exhibit complex interactions between
continuous and discrete-event dynamics can be modelled
by a parameter dependent differential-algebraic-discrete
(DADj model of the-form,

i = f(z, v)—

o = g(”)(z, y)

o=
{

g(~-)(a,y) Yd,i<0

g(~+)(&,y) Yd,i >0

+g =lQj(&-, y-) y~,j= O

where

(7)

(8)

i=l d,. ... (9)

j ~ {1, .. ..e} (10)

In this model, z are continuous dynamic state variables, ~
are algebraic state variables, z are discrete state variables,

and A are parameters. As an example, in the power system
context x would include machine dynamic states such as
an,gles, velocities and fluxes, y would include network vari-

ab [es such as load bus voltage magnitudes and angles, .z
could represent transformer tap positions and relay inter-

nal states, and A could be chosen from a diverse range of

parameters, from loads through to fault clearing time. In
(lo), Z- and y- refer to the values of ~ and y just prior to
the reset condition, whilst Z+ denotes the value of g just
aft er the reset event.

Notice that the definition of f ensures that z and A re-
main constant away from reset–events (10). Further, ~j

ensures that x and A remain unchanged at a reset event.
.Away from switching and reset events, the system is de-

scribed by a smooth differential-algebraic model

i = l(L Y) (11)

o = 9(2>!/) (12)

where g is composed of (8) together with functions from
(9~ chosen depending on the signs of the elements of yd.

B. TRAJECTORY SENSITIVITY (COMPUTATION

.Away from events, where system dynamics evolve
smoothly, the sensitivities g% and y% are obtained by dif-

ferentiating (11), (12) with respect to ~. This gives

where ~zs ~, and likewise for the other Jacobian matri-

ces. Note that & ~Y, gg, gy are evaluated along the tra-

jectory, and hence are time varying matrices. It is shown in
[4] that the solution of this (potentially high order) DA sys-

tem can be obtained as a by-product of solving the original
DA system (11),(12).

[nitial conditions for ~q are obtained from (2) as

where 1 is the identity matrix, and for ya from (14),

o = 9J~o) + 9?4(~o)Y20(to).

Equations (13) ,(14) describe the evolution of the sensi-
tivities x% and y~ between events. However at an event,
ths sensitivities are generally not continuous. It is nec-
essary to calculate jump conditions describing the step
change in XZOand y%. For clarity, consider a single switch-
ing/reset event, so the model (7)-(10) reduces to the form

it = f(z, Y) (15)—

o=
{

9- (L Y) S(Z,Y) <0
9+(L Y) S(LY) >0

(16)

z+=h(a– ,y–) S(z, y) = o. (17)
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Let (g(~), y(~)) be the point where thetrajectory encoun-
ters the hypersurface s(~, y) = O, i.e., the point where an

event is triggered. This point is called the junction point
and T is the junction time.

Just prior to event triggering, at time ~-, we have

where

o = g-(g-,y-)<

Similarly, Z+, y+ are defined for time r+, just after the
event has occurred. It is shown in [4] that the jump condi-
tions for the sensitivities Z% are given by
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The sensitivities ya immediately after the event are given
by

Yq(~+) = – (9:(7+))-19iy+)QT+).

Following the event, i.e., for t > T+, calculation of the

sensitivities proceeds according to (13),(14), until the next
event. The jump conditions provide the initial conditions
for the post-event calculations.

Actual power systems involve many discrete events. The
more general case follows naturally though, and is pre-
sented in [4].
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