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Abstract Physical limits place bounds on the diver-

gent behaviour of dynamical systems. The paper ex-

plores this situation, providing an example where gen-

erator field-voltage limits capture behaviour, giving rise

to a stable, though non-smooth, limit cycle. It is shown

that shooting methods can be adapted to solve for such

non-smooth switching-induced limit cycles. By contin-

uing branches of switching-induced and smooth limit

cycles, the paper established the co-existence of equi-

libria, smooth and non-smooth limit cycles. Further-

more, it is shown that when branches of switching-

induced and smooth limit cycles merge, the limit cycles

are annihilated at a grazing bifurcation.

Keywords Border-collision bifurcations .

Continuation methods . Grazing . Hybrid dynamical

systems . Limit cycles . Piecewise smooth dynamics .

Shooting methods

1 Introduction

The dynamic behaviour of many real-world devices and

systems is subject to constraints that restrict large ex-

cursions of state variables. In some cases, the restric-
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tions are inherent in the device or system’s physical

characteristics. In other cases, limiters are employed

to avoid undesirable conditions. Generally, these re-

strictions can exert a significant influence on large-

disturbance response. Transitions between unrestricted

and restricted behaviour are often conveniently mod-

elled via switching realizations. The resulting models

involve both continuous and discrete dynamics, quali-

fying them as hybrid dynamical systems [1, 2], or piece-
wise smooth dynamical systems [3].

Constraints on large state excursions can stabilize

otherwise divergent (unstable) behaviour. A very sim-

ple illustration is provided in Fig. 1. In this example,

continuous dynamics are driven by an unstable second-

order system. With no restriction on state behaviour,

the oscillations would grow to infinity. By adding a

constraint on x2, however, the system stabilizes to a

non-smooth limit cycle. This motivating illustration is

simple, but indicative of behaviour exhibited by numer-

ous practical systems. The paper will present a power

system example, where the action of controller limits

is fundamental in the creation of stable limit cycles.

It has been shown previously [4, 5] that stable limit

cycles may be induced by state constraints. Further-

more, these switching-induced limit cycles can co-exist

with other stable and unstable limit sets. Prior investiga-

tions have been impeded, however, by a lack of numer-

ical methods for directly locating non-smooth limit cy-

cles. Finding the limit cycle in Fig. 1 is trivial; just allow

the system to run for awhile. Solving for non-smooth

(possibly unstable) limit cycles in higher dimensions,
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Fig. 1 Second-order system
with constraint at x2 = 1.0

in the presence of other limit sets, is not nearly so

straightforward. Techniques that address this problem

have recently been established in [6–8] though. This pa-

per exploits these numerical shooting methods to fur-

ther explore switching-induced non-smooth limit cy-

cles.

The paper is organized as follows. A generic dy-

namic model is introduced in Section 2, along with tra-

jectory sensitivity concepts. Section 3 provides back-

ground to limit cycle analysis and grazing phenomena,

and an example is explored in Section 4. Conclusions

are presented in Section 5.

2 System dynamic behaviour

2.1 Model

Analysis of hybrid system dynamics requires a non-

restrictive model formulation that is capable of captur-

ing the full range of continuous/discrete behaviour, yet

is computationally efficient. It is shown in [9, 10] that

these specifications are met by a model that consists of

a set of differential-algebraic equations, adapted to in-

corporate switching of the algebraic equations, and im-

pulsive (state reset) action. This DA Impulsive Switched
(DAIS) model has its genesis in the familiar DAE

model

ẋ = f (x, y) (1)

0 = g(x, y) (2)

where x ∈ Rn are dynamic states, y ∈ Rm are algebraic

states, f : Rn+m → Rn , and g: Rn+m → Rm .

Switching events can be incorporated into the DAE

model by requiring the algebraic equations (2) to switch

between sets of equations that describe pre- and post-

event conditions. Considering a single switching event,

(2) can be replaced by

0 = g(x, y) �
{

g−(x, y) s(x, y) < 0

g+(x, y) s(x, y) > 0,
(3)

where the superscripts ‘−’ and ‘+’ index the two sets of

algebraic equations.1 A switching event coincides with

a zero crossing of the trigger function s(x, y). Note that

the concept of crossing is important. If the trajectory

just touches (grazes) the triggering surface

S = {(x, y) : s(x, y) = 0} (4)

1 The functions g− and g+ may themselves have a switched form,
resulting in a hierarchical switching structure.
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then behaviour beyond that point is indeterminant, as

switching may or may not occur [7]. This is discussed

further in Section 3.5. The following assumption is re-

quired for well-defined behaviour.

Assumption 1. The trajectory encounters the triggering

surface S transversally.

The precise behaviour of the model at a switching

event is not well defined by (3), and requires further

explanation. Let the event occur at trigger time τ , and

define τ− as the time instant just prior to τ , and τ+ as

the instant just after τ . The limit values of the states

can then be expressed as,

x− ≡ x(τ−) := lim
t↑τ

x(t), x+ ≡ x(τ+) := lim
t↓τ

x(t)

(5)

y− ≡ y(τ−) := lim
t↑τ

y(t), y+ ≡ y(τ+) := lim
t↓τ

y(t),

(6)

where t ↑ τ implies t < τ approaches τ from below,

and t ↓ τ implies t > τ approaches τ from above.

Clearly, two sets of variables (x−, y−) and (x+, y+) are

required to fully describe behaviour at an event [11].

By definition s(x−, y−) = 0, but s(x+, y+) may

not necessarily equal zero. Furthermore, assume with-

out loss of generality that s(x(t), y(t)) < 0 for t <

τ . Then, well-defined switching behaviour requires

s(x(t), y(t)) > 0 for t > τ . Also, this sign assump-

tion implies g−(x−, y−) = 0 and g+(x+, y+) = 0. Dy-

namic states are unaltered at a switching event, so

x− = x+. However, in order to satisfy the altered alge-

braic equations, often y− �= y+.

Switching events cannot efficiently capture all forms

of discrete behaviour. It is often useful to model im-

pulsive action that introduces discrete jumps into the

dynamic x-states. Such behaviour can be described by

a reset equation

x+ = h(x−, y−) when s(x, y) = 0, (7)

where h : Rn+m → Rn . The superscript notation is con-

sistent with earlier use, with x+ denoting the value of

x just after the reset event, while x− and y− refer to

the values of x and y just prior to the event. As in the

case of a switching event, a reset event is triggered when

s(x, y) passes through zero. Away from that zero cross-

ing condition, the evolution of the dynamic x-states is

described by the differential equations (1).

This overview of the DAIS model has neglected

some of the technical details required to ensure well-

defined behaviour. However, full details are provided

in [9]. It should be emphasized that the DAIS model is

nothing more than a formalization of simulation mod-

els that are used for practical simulation. The formal-

ization, however, allows trajectory sensitivities to be

cleanly defined [10].

Dynamic behaviour, generated numerically by sim-

ulation, can be described analytically by the flow,

x(t) = φ(x0, t) (8)

y(t) = ψ(x0, t). (9)

Initial conditions imply

φ(x0, t0) = x0 (10)

g(φ(x0, t0), ψ(x0, t0)) = 0. (11)

2.2 Trajectory sensitivities

Algorithms for locating limit cycles require the sensi-

tivity of a trajectory (flow) to perturbations in initial

conditions [12]. To obtain the sensitivity of the flows φ

and ψ to initial conditions x0, the Taylor series expan-

sions of (8)–(9) are formed. Neglecting higher order

terms gives

�x(t) = ∂φ(x0, t)

∂x0

�x0 ≡ �(x0, t)�x0 (12)

�y(t) = ∂ψ(x0, t)

∂x0

�x0 ≡ �(x0, t)�x0 (13)

where � and � are the sensitivity transition matrices,

or trajectory sensitivities, associated with the x and y
flows, respectively [13]. Equation (12) describes the

change �x(t) in a trajectory, at time t along the tra-

jectory, for a given (small) change in initial conditions

�x0. Likewise, the change in �y(t) is given by (13).

The evolution of the trajectory sensitivities � and �

is described by variational equations that are developed

in [10]. Away from events, where system dynamics

evolve smoothly, the sensitivities � and � are obtained
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by differentiating (1)–(2) with respect to x0. This gives

�̇ = fx (t)� + fy(t)� (14)

0 = gx (t)� + gy(t)� (15)

where fx ≡ ∂ f/∂x , and likewise for the other Jacobian

matrices. Note that fx , fy , gx , gy are evaluated along

the trajectory, and hence are time-varying matrices. The

computational burden of numerically integrating this

(potentially high order) linear time-varying DAE sys-

tem is minimal though. It is shown in [14, 10, 15] that

when an implicit numerical integration technique such

as trapezoidal integration is used, the solution of (14)–

(15) can be obtained as a by-product of computing the

underlying trajectory.

Initial conditions for � are obtained from (10) as

�(x0, t0) = I (16)

where I is the identity matrix. Initial conditions for �

follow directly from (15),

0 = gx (t0) + gy(t0)�(x0, t0). (17)

Equations (14)–(15) describe the evolution of the

sensitivities � and � between events. It is also neces-

sary to determine the jump conditions describing event-

induced changes in � and �. Consider the most general

case of a coincident switching/reset event, described by

(3) and (7). (The jump conditions appropriate for sepa-

rate switching or reset events follow directly from this

more general situation.) It is shown in [10] that the

jump conditions for the sensitivities � are given by

�(x0, τ
+) = h∗

x �(x0, τ
−) − ( f + − h∗

x f −)τx0
(18)

where

τx0
≡ ∂τ

∂x0

= − s∗
x �(x0, τ

−)

s∗
x f − (19)

and

f − ≡ f (x−, y−) (20)

f + ≡ f (x+, y+) (21)

h∗
x = (

hx − hy g−1
y gx

)∣∣
τ− (22)

s∗
x = (

sx − sy g−1
y gx

)∣∣
τ− . (23)

Note that jump conditions are only well defined when

Assumption 1 is satisfied. Otherwise, if the trajectory

encounters S tangentially rather than transversally, the

denominator of (19) will equal zero. The sensitivities

� immediately after the event are given by

�(x0, τ
+) = − (

g−1
y gx

)∣∣
τ+ �(x0, τ

+). (24)

Keep in mind that g in (22)–(23) refers to its pre-event

form, whereas post-event conditions apply in (24).

Subsequent to the event, for t > τ+, calculation of

the sensitivities proceeds according to (14)–(15). The

jump conditions (18) and (24) provide the initial con-

ditions for this post-event integration.

3 Limit cycle analysis

3.1 Poincaré maps

Limit cycles and their stability can be determined using

Poincaré maps [16, 17]. This section provides a brief

review of these concepts, and establishes a connection

with trajectory sensitivities.

A Poincaré map effectively samples the flow of

a periodic system once every period. The concept

is illustrated in Fig. 2. If the limit cycle is stable,

oscillations approach the limit cycle over time. The

samples provided by the corresponding Poincaré map

approach a fixed point. An unstable limit cycle results

in divergent oscillations. For such a case, the samples

of the Poincaré map diverge.

Γ

Σ

P(x0)

x*

φ(x0,t)

x0

σx~

Fig. 2 Poincaré map
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To define a Poincaré map, consider the limit cycle

	 shown in Fig. 2. Let 
 be a hyperplane transversal

to 	 and defined by


 = {x : σ
(x − x̃) = 0} (25)

where x̃ is a point anchoring 
, and σ is a vector nor-

mal to 
. The trajectory emanating from x∗ will again

encounter 
 at x∗ after T seconds, where T is the

minimum period of the limit cycle. The existence of

trajectory sensitivities ensures continuity of the flow

φ with respect to initial conditions. Therefore, trajec-

tories starting on 
 in a neighbourhood of x∗ will, in

approximately T seconds, intersect 
 in the vicinity of

x∗. Hence, φ and 
 define the Poincaré map

xk+1 = P(xk) := φ(xk, τr (xk)) (26)

where τr (xk) ≈ T is the time taken for the trajectory to

return to 
. Complete details can be found in [16, 17].

Note that the Poincaré map is well defined even though

the underlying flow may be non-smooth.

3.2 Shooting method

From (26), it can be seen that a point x∗ on the limit

cycle can be located by using Newton’s method to solve

the non-linear algebraic equations

Fl(x
∗) = φ(x∗, τr (x∗)) − x∗ = 0. (27)

The solution process therefore has the iterative form

xi+1 = xi − (DFl(x
i ))−1 Fl(x

i ). (28)

It is shown in [7] that the Jacobian DFl is given by

DFl(x
i ) =

(
I − f |τr (xi )σ




σ
 f |τr (xi )

)
�(xi , τr (xi )) − I

(29)

where f is the vector field (1) and � is the sensitiv-

ity transition matrix (12). Referring to (27), evaluation

of Fl(xi ) at each iteration requires numerical integra-

tion. This process is therefore referred to as a shooting
method [12].

Notice that because the flow φ and associated sen-

sitivities � are well defined for non-smooth systems,

solution of (27) is also well defined for such systems.

3.3 Limit cycle stability

Stability of the Poincaré map (26) is determined by

linearizing P at the fixed point x∗, i.e.,

�xk+1 = D P(x∗)�xk . (30)

From the definition of P(x) given by (26), it follows

that

D P(x∗) =
(

I − f |x∗σ


σ
 f |x∗

)
�(x∗, T ) (31)

where τr (x∗) = T . Even though P may be built from

a non-smooth trajectory, the linearization D P is still

well defined, and describes the local stability of the

underlying non-smooth limit cycle.

The matrix �(x∗, T ) is exactly the trajectory sen-

sitivity matrix after one period of the limit cycle, i.e.,

starting from x∗ and returning to x∗. This matrix is

called the Monodromy matrix. It is shown in [17] that

for an autonomous system, one eigenvalue of �(x∗, T )

is always 1, and the corresponding eigenvector lies

along f |x∗ . The remaining eigenvalues of �(x∗, T ) co-

incide with the eigenvalues of D P(x∗), and are known

as the characteristic multipliers mi of the periodic so-

lution. The characteristic multipliers are independent

of the choice of cross-section 
.

Because the characteristic multipliers mi are the

eigenvalues of the linear map D P(x∗), they describe

the (local) stability of the Poincaré map P(xk). Hence,

the (local) stability of the periodic solution is deter-

mined by:

1. All mi lie within the unit circle, i.e., |mi | < 1, ∀i .
The map is stable, so the periodic solution is stable.

2. Some mi lie outside the unit circle. The periodic

solution is unstable.

3.4 Continuation methods

It is often useful to explore the changes in limit cycle

structure and stability properties that result from pa-

rameter variations. This can be achieved by introducing

a free parameter θ into (27), giving

Fl(x
∗, θ ) = 0. (32)
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Parameter values

Triggering hypersurface

xg

xhit

θg
θhit

θmiss

Fig. 3 Trajectory grazing triggering hypersurface

As shown earlier, the point x∗ given by (27) fully

specifies the associated limit cycle. Therefore, the 1-

manifold, or curve, defined by (32) describes the vari-

ation of x∗, and hence the associated limit cycle varia-

tion, with changes in parameter θ .

The curve given by (32) can be traced using a ho-

motopy method [18]. A predictor-corrector process is

presented in [7]. Note that even when the underlying

dynamic behaviour is non-smooth, curves given by (32)

are generally smooth. Curve smoothness may be lost

at grazing bifurcations though [7, 19]. The details are

beyond the scope of this paper, though an illustration

is provided in Section 4.

3.5 Grazing limit cycles

Grazing refers to situations where the trajectory just

touches a triggering hypersurface. Figure 3 provides

an illustration. At a parameter value θg , lying between

θhit and θmiss, the trajectory tangentially encounters

(grazes) the triggering hypersurface. This bounding

case separates trajectories that encounter the hypersur-

face from those that do not.

A grazing limit cycle must touch the target hyper-

surface, which can be described by2

b(x) = 0. (33)

2 The more general case of b(x, y) = 0 is presented in [7]. The
dependence on algebraic variables y is neglected here to simplify
the presentation.

Furthermore, the trajectory must be tangential to the

hypersurface at the point of contact. It follows from (1)

and (33) that tangential contact is described by

∇b(xg)
 f (xg, yg) = 0, (34)

as f (xg, yg) specifies the trajectory direction at the

grazing point. Collecting together appropriate equa-

tions, a grazing limit cycle is described by,

Fl(x
∗, θ ) = 0 (35)

φ(x∗, tg; θ ) − xg = 0 (36)

b(xg) = 0 (37)

∇b(xg)
 f (xg, yg) = 0 (38)

g(xg, yg) = 0. (39)

This set of equations can be solved using a shooting

method. Full details are provided in [7], with a similar

development given in [8].

4 Example

4.1 Model

A single machine infinite bus system was used to ex-

plore the existence and nature of switching-induced

limit cycles. This system is shown schematically

in Fig. 4, and parameter values are provided in

Appendix A. The generator was represented by a sixth-

order machine model [20], and the AVR/exciter by the

IEEE standard model [21] given in Fig. 5. (The PSS

was disabled for these studies.) This resulted in a nine-

dimensional state space, x ∈ R9.

The AVR regulates the generator terminal voltage Vt

by adjusting the generator exciter field voltage Efd. The

AVR
Exciter

PSS

~
VtV∞ Efd

Fig. 4 Single machine infinite bus system
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1+sTC

1+sTB

KA

1+sTA
Σ Efd

Vref

Vt
−

+
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1+sT3
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Fig. 5 Simple
PSS/AVR/exciter model

non-windup limits [22] on Efd, shown on the output

block of Fig. 5, model the physical saturation of the

exciter. These limits are inherently non-smooth, with

the upper limit Efdmax having a DAIS model of the form,

Ėfd = yf (40)

yf = 1

TA

(KAxin − Efd)

ytrig = Efd − Efdmax

⎫⎬⎭ ytrig < 0 (41)

yf = 0

ytrig = KAxin − Efd

}
ytrig > 0, (42)

where xin is the input to the block. The model is built

around two modes:

1. Efd is less than its upper limit. In this case yf drives

Efd according to the block dynamics. If Efd encoun-

ters its upper limit, or equivalently ytrig goes to zero,

the model switches to the second mode.

2. Efd lies on its upper limit. In this mode, Efd remains

fixed at its limit value as long as the block dynamics

are trying to force it higher. The trigger variable ytrig

monitors the block dynamics, so this is equivalent to

ytrig > 0. Constant Efd is achieved by setting yf = 0.

Efd can only deviate from the upper limit when the

block dynamics go negative. This is reflected in ytrig

changing sign, forcing the model to switch to the

first mode.

The lower limit Efdmin has a representation similar

to (40)–(42). It will be shown that these limits restrict

growing (unstable) oscillations in a way that gives rise

to stable limit cycles.

This example will illustrate that the efficient com-

putation of trajectory sensitivities for large-scale non-

smooth systems allows, (1) the use of shooting methods

for locating switching-induced limit cycles, and (2) as-

sessment of their stability properties.

4.2 Hopf bifurcation

For the parameter values given in Appendix A, a Hopf

bifurcation occurs at an AVR gain of K ∗
A = 208.22.

The equilibrium point is unstable for KA > 208.22.

To illustrate, for a gain of KA = 212, linearization

around the equilibrium point gave an unstable eigen-

value pair of 0.0053 ± j5.86. The behaviour of the

field voltage Efd is shown in Fig. 6. The initial growth

in oscillation magnitude reflects the instability of the

operating point. But notice that from around 70 s, be-

haviour stabilizes to a limit cycle. This is a consequence

of the field voltage encountering its maximum limit

Efdmax = 5.4.

The shooting method was used to locate this stable

limit cycle. Convergence was obtained in three itera-

tions, with the Vt − Efd projection of the limit cycle

shown in Fig. 7. It was found that all characteristic

multipliers lay within the unit circle, with the largest

having a magnitude of 0.83. This confirmed the limit

cycle was indeed an attractor.

Further investigation of the Hopf bifurcation re-

vealed that it was in fact supercritical. The bifurcation

diagram of Fig. 8, produced using the continuation pro-

cess of Section 3.4, shows a branch of stable limit cycles

emanating from the Hopf bifurcation.3 This branch of

limit cycles undergoes a cyclic fold at KA = 209.9,

beyond which the branch comprises unstable limit

cycles.

As shown in Fig. 8, the stable non-smooth

limit cycles, induced by the Efdmax limit, co-exist

3 The limit cycles are represented in Fig. 8 by the extreme values
of Efd.
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Fig. 7 Stable limit-induced
limit cycle for KA = 212

with the smooth limit cycles that result from the

Hopf bifurcation. Over the range 208.22 < KA <

209.9, the system exhibits an unstable equilib-

rium point, an unstable limit cycle, and two sta-

ble limit cycles (one smooth and one non-smooth).

These limit sets are shown in Fig. 9, for a gain

KA = 209.

The shooting method of Section 3.2 was used to ob-

tain the limit cycles of Fig. 9. In all cases, convergence

was obtained in three iterations, with each iteration re-

quiring a single simulation of one period of the os-

cillation. On the other hand, reliance on time-domain

simulation would be futile. The unstable limit cycle

has characteristic multipliers both inside and outside
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Fig. 9 Co-existing limit
cycles and equilibrium
point, KA = 209

the unit circle, so time reversal would not achieve con-

vergent behaviour. Furthermore, transient behaviour is

poorly damped in the vicinity of the Hopf bifurcation.

Therefore, lengthy simulation would be required for ad-

equate convergence to the stable limit cycles. Shooting

methods are however unaffected by the stability prop-

erties and damping associated with a limit cycle.

4.3 Grazing bifurcation

As the gain KA is reduced, the branches of switching-

induced and smooth limit cycles converge to a point

where the smooth limit cycle becomes tangential to

(grazes) the Efdmax surface. By solving (35)–(39) using

the shooting method of [7], it was found that the grazing
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limit cycle occurred at KA = 206.26. This limit cycle

is shown in Fig. 10. The figure also shows that as KA

reduces, the switching-induced limit cycle spends less

and less time on the Efdmax surface. Correspondingly,

one of its characteristic multipliers approaches unity.

The smooth and non-smooth limit cycles coalesce at

grazing. As KA is further reduced beyond the grazing

value, the limit cycles vanish, with structural stability

lost due to a grazing bifurcation [19, 23].

The grazing bifurcation observed in this example has

a form similar to grazing-sliding bifurcations discussed

in [24]. In this case, however, there is no sliding. Rather,

the switching dynamics (40)–(42) produce behaviour

that achieves an outcome similar to the Filippov (slid-

ing) solution. (Note that the DAIS representation al-

lows more general hybrid system structures than those

usually associated with piecewise-smooth systems.)

The Poincaré maps of the bifurcating limit cycles

together establish a piecewise-smooth map, with the

grazing case forming the border between the smooth re-

gions of the composite map. In terms of this piecewise-

smooth map, the grazing bifurcation may be interpreted

as a border-collision bifurcation [19, 25, 26]. At the bi-

furcation, a branch of stable fixed points encounters a

branch of unstable fixed points. No fixed points exist

for values of the parameter KA beyond the bifurcation

value. The example therefore exhibits a saddle-node

border-collision bifurcation. This is consistent with the

observation that a characteristic multiplier approaches

unity as the stable branch is traversed towards the bi-

furcation.

5 Conclusions

The flow of a dynamical system, and the associated tra-

jectory sensitivities, are well defined for smooth sys-

tems. These concepts can, however, be extended in

a natural way to non-smooth systems. Accordingly,

Poincaré maps also extend naturally to non-smooth

systems. This allows a straightforward development of

shooting methods and local stability analysis for non-

smooth limit cycles.

The extensions break down when a trajectory tan-

gentially encounters (grazes) a triggering hypersurface.

These grazing situations can be located though by solv-

ing, via a shooting method, an augmented problem that

includes the limit cycle description together with the

conditions governing the tangential encounter.

Constraints on large state excursions are inherent in

many real-world devices and systems. The resulting re-

strictions on system dynamics can stabilize otherwise

divergent (unstable) behaviour. For systems that ex-

hibit underlying oscillatory response, constraints tend
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to induce periodic, non-smooth, limit cycle behaviour.

A power system example, which gives rise to this form

of behaviour, has been explored in the paper. It has been

shown that switching-induced limit cycles can co-exist

with other, more traditional, limit sets.

As parameters vary, switching-induced limit cycles

may vanish at grazing bifurcations, where the flow be-

comes tangential to the switching surface. An exam-

ple presented in the paper shows the annihilation of a

switching-induced limit cycle and a smooth limit cycle

at such a bifurcation. Using Poincaré maps, this form

of grazing phenomenon can be interpreted as a saddle-

node border-collision bifurcation.

Appendix A: Example parameters

The following per unit parameter values fully describe

the single machine infinite bus system of Section 4. All

parameters are given on a 100 MVA base, with ω in

rad/s.� Machine parameters: ra = 0.0006, xd = 0.588, x ′
d =

0.0913, x ′′
d = 0.075, T ′

d0 = 6.59, T ′′
d0 = 0.0386, xq =

0.588, x ′
q = 0.1, x ′′

q = 0.075, T ′
q0 = 1.0, T ′′

q0 =
0.0419, xl = 0.049, M = 0.0667, D = 0.005, Tm =
2.5.� AVR parameters: TR = 0.04, TA = 0.04, TB = 12,

TC = 1, Vsetpoint = 1.05, Efdmax = 5.4, Efdmin = −5.� PSS is disconnected.� Infinite bus parameters: V∞ = 1.� Line parameters: r = 0.01, x = 0.25, b = 0.4.
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