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ABSTRACT

Modelling of multi-layer power system interactions will be-
come increasingly important as market mechanisms and
feedback controls become more tightly coupled into the
physical system layer. Time-delays are an important as-
pect of that inter-layer coupling. This paper integrates de-
terministic, nonlinear time-delays into a systematic hybrid
(continuous/discrete) system model. The paper addresses
issues arising in the implementation of implicit numerical
integration techniques, and computation of trajectory sensi-
tivities. Applications that have the form of inverse problems
are motivated.

1. INTRODUCTION

The traditional view of power system dynamics has focussed
primarily on the behaviour of components within the phys-
ical system. Little attention has been paid to interactions
between the physical system and higher level layers. How-
ever with tighter integration of market mechanisms and feed-
back controls, the modelling of those linkages is becoming
increasingly important [1].

A postulated scenario of multi-layer interactions, lead-
ing ultimately to cascading failure of the system, is presented
in Fig. 1. Whilst time-scale separation currently makes such
a scenario unlikely, that comfort zone is steadily shrink-
ing. Time-delays are an important aspect of the interlinking
of layers, and play a crucial role in the postulated failure
scenario. This paper therefore addresses issues of incor-
porating time-delays into dynamical models of multi-layer
power systems.

Deterministic modelling of power systems provides in-
sights into dynamical behaviour, and underlies most analysis
and design functions. Therefore, even though time-delays
are usually random, a deterministic (nonlinear) time-delay
model has been adopted here. This model can be thought of
as describing average response. The model is fully de-
veloped, in the context of a systematic hybrid (continu-

ous/discrete) system representation, in Section 2. This sys-
tematic modelling methodology facilitates algorithms for
addressing inverse problems, such as parameter estimation
and shooting methods [2, 3]. Further discussion of applica-
tions is provided in Section 5.

2. MODEL

2.1. Extended DAIS model

Power systems are composed of components that exhibit
continuous dynamic behaviour, along with others that re-
spond discretely. Examples of the former include genera-
tors and controllers, whilst the latter include switched shunts
and controller saturation limits. Furthermore, in multilayer
systems, commands are often communicated as discrete sig-
nals. Systems that exhibit intrinsic continuous/discrete inter-
actions have become known generically as hybrid systems.
Power systems therefore form an important example of this
class of system.

It has been shown in [3, 4] that hybrid systems can be
modelled as a set of differential-algebraic equations, adapted
to incorporate impulsive (state reset) action, and switching
of the algebraic equations. The importance of time-delay
effects on the behaviour of multilayer systems was high-
lighted in Section 1. Therefore this paper extends that DA
Impulsive Switched (DAIS) model by incorporating general,
nonlinear time delays. The resulting model has the form

ẋ = f(x, y) +
r∑

j=1

δ(yr,j)
(
hj(x, y) − x

)
(1)

0 = g(x, y, yd) ≡ g(0)(x, y, yd) +
s∑

i=1

g(i)(x, y, yd) (2)

yd(t) = ȳ(θ(y, t)) (3)

where

g(i)(x, y, yd) =
{

g(i−)(x, y, yd),
g(i+)(x, y, yd),

ys,i < 0
ys,i > 0 (4)
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Fig. 1. Market induced cascading failure.

and (3) should be interpreted as

yd,i(t) = ȳi(θi(y, t))

with the vector ȳ composed of selected elements of y. Let �
denote the vector of pointers establishing the correspondance
between ȳ and y. Then

ȳ[i] = y[�i]

implies that the ith element of ȳ corresponds to the �th
i

element of y. We shall adopt the vector notation

ȳ = y[�]. (5)

More than one element of ȳ may refer to the same element
of y. (This would be the case where a component model
required the same variable to be delayed by various time
periods.)

The impulsive action of state resetting is captured by the
Dirac delta δ(.). The state reset equations can be expressed
in the alternative form

x+ = hj(x−, y−) when yr,j = 0.

The flows of the dynamic states x and algebraic states y
are defined as

x(t) = φx(x0, t) (6)

y(t) = φy(x0, t) (7)

where x(t) and y(t) satisfy (1)-(4), implying that

yd(t) = φȳ

(
x0, θ(φy(x0, t), t)

)
= φyd

(x0, t).

The flows satisfy the initial conditions,

φx(x0, t0) = x0 (8)

g
(
x0, φy(x0, t0), φyd

(x0, t0)
)

= 0. (9)

An ambiguity arises in the model when θ(y, t) < t0. That
is resolved by enforcing the condition,

yd(t) = ȳ(t0), θ(y, t) < t0.

Away from events, system dynamics evolve smoothly
according to the modified differential-algebraic model

ẋ = f(x, y) (10)

0 = g(x, y, yd) (11)

yd(t) = ȳ(θ(y, t)) (12)

where g is composed of g(0) together with appropriate choices
of g(i−) or g(i+), depending on the signs of the correspond-
ing elements of ys.

System behaviour at switching and reset events is not di-
rectly influenced by time-delays. Rather, time-delays affect
smooth behaviour between events, as described by (10)-(12).
Therefore subsequent sections that explore implementation
issues will focus on this modified DA system.

2.2. Time-delay interpretation

The general nonlinear form of the time-delay functional
θ(y, t) in (3) places few restrictions on time-delay modelling.
However for ease of implementation, it is convenient to
assume causality, i.e.,

θ(y, t) ≤ t.

More traditional time-delay representations [5] fit within this
general framework. For example a constant time-delay is
simply

θ(y, t) = t − θc
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Fig. 2. Communications time-delay.

where θc ≥ 0 is constant.
As mentioned in Section 1, average time-delays over

communications links are generally not constant, but rather
have a form akin to Fig. 2. The average time-delay is rel-
atively constant for low traffic volume. However above a
certain channel threshold, the time-delay increases. Fig. 2
shows a linear increase; the exact form is not important
from the modelling perspective. The DAIS model allows
straightforward implementation of the Fig. 2 time-delay,

0 = y2 − θc,
0 = y2 − θc − m(y1 − y∗

v),
y1 < y∗

v

y1 > y∗
v

θ(y, t) = t − y2.

The generality of (3) does however raise some interesting
technical issues. For example, it can be shown that simple
structures such as

y2(t) = y1(t − y2)

may result in non-uniqueness of solutions. Details are be-
yond the scope of this present paper.

3. SIMULATION

The modified DAIS model (1)-(4), or alternatively (10)-
(12) along smooth sections of trajectories between events,
is only useful if a reliable numerical integration process
can be established. Implicit integration techniques, such
as BDF formulae or trapezoidal integration, are known to
be robust for differential-algebraic systems [6]. We have
adopted trapezoidal integration due to the relative simplicity
of implementation.

Full details of trapezoidal integration of the DA model
(10)-(12), with no time-delays, is provided in [4]. The
focus here is on the modifications required to incorporate
time-delays. Trapezoidal approximation of the differential
equations (10) results in the coupled set of algebraic equa-

tions

0 = F1(x, y) (13)

0 = g(x, y, yd) (14)

0 = F2(y, yd) = yd − ȳ(θ(y, t)) (15)

which must be solved for x, y and yd at each time step. This
is achieved using Newton’s method, which involves building
and inverting the Jacobian

J =




∂F1
∂x

∂F1
∂y 0

∂g
∂x

∂g
∂y

∂g
∂yd

0 ∂F2
∂y

∂F2
∂yd

= Id




where Id is the d-dimensional identity matrix. The only
term of any real novelty is ∂F2

∂y , which can be obtained via
the chain rule as,

∂F2

∂y
= −diag{dȳ

dt
(θ(y, t))}∂θ

∂y

where diag{.} refers to a diagonal matrix built from the
associated vector.

Due to the simple structure of F2, it is convenient to
solve explicitly for yd by substituting ȳ directly into (14),
resulting in the algebraic equation

0 = g
(
x, y, ȳ(θ(y, t))

)
.

The corresponding reduced Jacobian then has the form

Jred =

[
∂F1
∂x

∂F1
∂y

∂g
∂x ( ∂g

∂y + ∂g
∂yd

diag{dȳ
dt (θ(y, t))} ∂θ

∂y )

]
.

Notice that time-delays really only alter the effective ∂g
∂y ,

though that alteration can be significant.
Evaluation of the Jacobian J , or alternatively Jred, re-

quires the computation of dȳ
dt (θ(y, t)), the rate of change of ȳ

at time θ(y, t), i.e., some time in the past. Therefore the nu-
merical integration process requires evaluation (and storage)
of dȳ

dt along the trajectory. To achieve this, differentiation of
(11)-(12) with respect to t, along with some manipulation,
yields

0 =
∂g

∂x
f(x, y) +

[
∂g

∂y
+

∂g

∂yd
diag{dȳ

dt
(θ(y, t))}∂θ

∂y

]
dy

dt

+
∂g

∂yd
diag{dȳ

dt
(θ(y, t))}∂θ

∂t
,

from which dy
dt may be obtained. If follows from (5) that

dȳ

dt
(t) =

dy[�]

dt
(t)

where � is the indexing vector. Implementation has assumed
that

dȳ

dt
(θ(y, t)) = 0, for θ(y, t) < t.



4. TRAJECTORY SENSITIVITIES

Trajectory sensitivities approximate the variation of a tra-
jectory resulting from (small) changes to parameters and/or
initial conditions [7]. To obtain the sensitivity of the flows
φx and φy to initial conditions x0, the Taylor series expan-
sions of (6)-(7) are formed. Neglecting higher order terms
gives

∆x(t) =
∂x(t)
∂x0

∆x0 ≡ Φx(t)∆x0 (16)

∆y(t) =
∂y(t)
∂x0

∆x0 ≡ Φy(t)∆x0. (17)

These equations describe the changes ∆x(t) and ∆y(t) in a
trajectory, at time t along the trajectory, for a given (small)
change in initial conditions ∆x0. The time-varying partial
derivatives Φx and Φy are known as trajectory sensitivities.
Complete details of the variational equations describing the
evolution of these sensitivities for the DAIS model are pro-
vided in [4].

The introduction of time-delays into the DAIS model
results in modification of the associated variational equa-
tions. The time-delay version is obtained by differentiating
(11)-(12) with respect to x0, resulting in

0 =
∂g

∂x
Φx(t) +

[
∂g

∂y
+

∂g

∂yd
diag{dȳ

dt
(θ(y, t))}∂θ

∂y

]
Φy(t)

+
∂g

∂yd
Φȳ(θ(y, t)).

The role of the modified ∂g
∂y is again evident.

5. APPLICATIONS

Incorporating time-delays into the DAIS model in a sys-
tematic way has maintained an efficient process for obtain-
ing trajectory sensitivities as a by-product of numerically
computing the trajectory. Trajectory sensitivities are effec-
tively gradients of the trajectory, and so can be used to build
gradient-based iterative algorithms.

Numerous applications follow, including parameter es-
timation, boundary value problems, and optimal control.
For example, a shooting method [8] could be formulated
to determine the critical value of a delay that induced os-
cillations. Work is proceeding in the development of such
applications [3].

6. CONCLUSIONS

Modelling of multi-layer power system interactions will be-
come increasingly important as market mechanisms and
feedback controls become more tightly coupled into the

physical system layer. Time-delays are an important aspect
of that inter-layer coupling.

This paper has established a deterministic, nonlinear
time-delay model, and incorporated that model into a sys-
tematic hybrid (continuous/discrete) system representation.
It has been shown that time-delays affect the algebraic Ja-
cobian of the differential-algebraic model. This modified
Jacobian follows through into the computation of trajectory
sensitivities.

Availability of trajectory sensitivities facilitates gradient-
based iterative algorithms for solving inverse problems such
as parameter estimation, boundary value problems, and op-
timal control.
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