
Bulk Power System Dynamics and Control V, August 26-31, 2001, Onomichi, Japan

Inverse Problems in Power Systems

I.A. Hiskens1

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana IL 61801 USA

Abstract—Large disturbances in power systems often initi-
ate complex interactions between continuous dynamics and
discrete events. Such behaviour can be modeled in a system-
atic way by a set of differential-algebraic equations, modified
to incorporate impulse (state reset) action and constraint
switching. The paper presents a practical object-oriented
approach to implementing the DAIS model. The systematic
nature of the DAIS model enables efficient computation of
trajectory sensitivities, which in turn facilitate algorithms
for solving inverse problems. The paper outlines a num-
ber of inverse problems, including parameter uncertainty,
parameter estimation, boundary value problems, border-
collision bifurcations, locating critically stable trajectories,
and optimal control.

Keywords: Dynamic modeling, power system dynamics, hy-
brid systems, inverse problems.

I. Introduction

Interactions between continuous dynamics and discrete
events are an intrinsic part of power system dynamic be-
haviour. Devices that obey physical laws typically ex-
hibit continuous dynamics. Examples range from gener-
ators and their controllers at the system level, through to
capacitors and inductors within power electronic circuits.
On the other hand, event-driven discrete behaviour is nor-
mally associated with rule-based components. Examples
in this latter category include protection devices [1], tap-
changing transformers [2], power electronic switches [3] and
supervisory control [4]. Limits within physical devices also
fall into this category; an event occurs when a controller
signal saturates or a FACTS device encounters its maxi-
mum/minimum firing angle.
To illustrate continuous/discrete interactions in power

systems, consider a disturbance consisting of an initiating
event, such as a lightning strike on a transmission line, fol-
lowed by protection action to remove the fault. The fault
would disturb the steady-state balance between the elec-
trical and mechanical torques on generator shafts, causing
angles and frequencies to respond dynamically. In paral-
lel, protection relays should detect the fault and decide on
the appropriate response. Trip signals are sent to circuit
breakers, which disconnect the faulted feeder after a small
(mechanical) time delay. Meanwhile, oscillations induced
in intermachine angles may or may not be stable. Removal
of the faulted line could lead to overloading of other feeders,
and their subsequent tripping. The consequent increased
demand for reactive power may activate generator over-

1Research supported by the EPRI/DoD Complex Interactive Net-
works/Systems Initiative, the National Science Foundation through
the grant ECS-0085755, and the Grainger Foundation.

excitation protection, causing a reduction in terminal volt-
age, increased system losses, further overloading of feed-
ers and finally system disintegration. Whilst this scenario
seems pessimistic, it has occurred, to the detriment (and
annoyance) of many consumers!
Similar continuous/discrete interactions exist across all

layers of power systems. At the market layer, for exam-
ple, system measurements and participant inputs are in-
terpreted in terms of market rules to generate events that
affect the physical system.
In all cases, discrete events influence continuous dynam-

ics, which in turn trigger new events. Modeling and simula-
tion must accurately capture these interactions. Power sys-
tem simulation has generally evolved to the point where the
continuous/discrete nature of dynamic behaviour is fairly
accurately replicated. However it is common to find event
handling treated as an ad hoc addition to continuous state
simulation. The nature of inverse problems dictates a more
systematic hybrid systems approach to capturing continu-
ous/discrete interactions.
Power system analysis normally addresses forward prob-

lems. Given a system model and a set of parameters, sys-
tem response can be determined. However the disturbance
scenario outlined above motivates analysis questions that
are classed as inverse problems [5]. Such a disturbance
would generate recordings from Wide Area Measurement
Systems [6]. Those measurements could be used to im-
prove estimates of parameters of system models [7], [8].
This is an inverse problem; the measured response is given,
and a model is used to infer parameter values. It’s easy
to postulate other inverse problems. For example, what
are the minimal changes in controllable parameters, per-
haps generator MW and/or voltage setpoints, that would
avoid cascading tripping of overloaded feeders or voltage
dip problems or instability? How significantly do certain
parameters, e.g., load voltage dependence, impact system
behaviour?
Traditionally such inverse problems have been addressed

by repeated solution (simulation) of forward problems.
However systematic modeling provides the foundation for
algorithms that address inverse problems directly.
The paper has the following structure. Section II

presents a systematic representation of hybrid systems that
is applicable for analysis of power system dynamics. Im-
plementation issues are discussed in Section III. Inverse
problems are considered in Section IV, and conclusions are
presented in Section V.

II. Hybrid System Representation

A. Background

Power systems are an important example of hybrid sys-
tems, which are characterized by:
• continuous and discrete states;
• continuous dynamics;
• discrete events, or triggers;
• mappings that define the evolution of discrete states
at events.

Conceptually such systems can be thought of as an indexed
collection of continuous dynamical systems

Fq(ẋ, x, y) = 0, (1)

along with a mechanism for ‘jumping’ between those sys-
tems, i.e., for switching between the various Fq. Each sys-
tem is indexed by the discrete state q, whilst x and y are
the continuous dynamic and algebraic states respectively.
The jumping reflects the influence of the discrete event be-
haviour, and is dependent upon both a trigger condition
and a discrete state evolution mapping. Overall system
behaviour can be viewed as a sequential patching together
of dynamical systems, with the final state of one dynamical
system specifying the initial state for the next.

B. Simulation model

Various abstract models, such as Petri nets and hybrid
automata [9], [10], [11], provide a framework for establish-
ing rigorous mathematical representations of physical de-
vices and systems. However those representations are not
immediately applicable to forward problems (via simula-
tion), much less inverse problems. A model that captures
the full richness of hybrid system behaviour, yet has a form
suitable for simulation, is required.
Simulation techniques and properties are well established

for differential-algebraic (DAE) systems [12]. Therefore the
proposed hybrid system model is adapted from that ba-
sic form by incorporating impulsive action and switching
of algebraic equations, giving the DA Impulsive Switched
(DAIS) model

ẋ = f(x, y) +
e∑

j=1

δ(ye,j)
(
hj(x, y)− x

)
(2)

0 = g(x, y) ≡ g(0)(x, y) +
d∑

i=1

(
g(i−)(x, y) + u(yd,i)

(
g(i+)(x, y)− g(i−)(x, y)

))
(3)

where
• x ∈ R

n are dynamic states, and y ∈ R
m are algebraic

states;
• δ(.) is the Dirac delta;
• u(.) is the unit-step function;
• f, hj : Rn+m → R

n ;
• g(0), g(i±) : Rn+m → R

m ; some elements of each g(.)

will usually be identically zero, but no elements of the

composite g should be identically zero; the g(i±) have
the same general form as g and are defined via (3),
leading to a recursive structure for g;

• yd, ye are selected elements of y that trigger algebraic
switching and state reset (impulsive) events respec-
tively; yd and ye may share common elements.

The impulse and unit-step terms of the DAIS model can
be expressed in alternative forms:
• Each impulse term of the summation in (2) can be
expressed in the state reset form

x+ = hj(x−, y−) when ye,j = 0 (4)

where the notation x+ denotes the value of x just
after the reset event, whilst x− and y− refer to the
values of x and y just prior to the event. This
form motivates a generalization to an implicit map-
ping h′j(x

+, x−, y−) = 0.
• The contribution of each g(i±) in (3) can be expressed
as

g(i)(x, y) =
{

g(i−)(x, y)
g(i+)(x, y)

yd,i < 0
yd,i > 0

i = 1, ..., d

with (3) becoming

0 = g(x, y) ≡ g(0)(x, y) +
d∑

i=1

g(i)(x, y). (5)

This form is often more intuitive than (3).
Equations (2),(3) are a reformulation (and slight general-
ization) of the model proposed in [13].
It can be convenient to establish the partitions

x =

 x

z
λ

 , f =

 f
0
0

 , hj =

 x

hj

λ

 (6)

where
• x are the continuous dynamic states, for example gen-
erator angles, velocities and fluxes;

• z are discrete dynamic states, such as transformer tap
positions and protection relay logic states;

• λ are parameters such as generator reactances, con-
troller gains and switching times.

This partitioning of the differential equations f ensures
that away from events, x evolves according to ẋ = f(x, y),
whilst z and λ remain constant. Similarly, the partitioning
of the reset equations hj ensures that x and λ remain con-
stant at reset events, but the dynamic states z are reset to
new values given by z+ = hj(x

−, y−).
Remark:
• The DAIS model assumes constant state space dimen-
sion x ∈ R

n , y ∈ R
m across events. This differs from

some other hybrid system implementations, for exam-
ple [14], where the state dimension is allowed to vary
upon component switching. The DAIS formulation is
not restrictive, though it may require carrying some

‘inactive’ states following an event. Maintaining con-
stant state dimension has a number of advantages: 1)
the variational equations describing trajectory sensi-
tivities, presented in Appendix A, have a simpler form,
and 2) switched states are more easily incorporated
into objective functions of optimization-based inverse
problems.

Initial conditions for the model (2)-(3) are given by
x(t0) = x0 and y(t0) = y0, where y0 is a solution of
g(x0, y0) = 0. Note that in solving for y0, the constraint
switching described by (3) must be taken into account.
This establishes the initial discrete state q0.
The flows of x and y are defined as

φ(x0, t) =
[
φx(x0, t)
φy(x0, t)

]
=

[
x(t)
y(t)

]
(7)

where x(t) and y(t) satisfy (2)-(3), along with initial con-
ditions,

φx(x0, t0) = x0 (8)
g(x0, φy(x0, t0)) = 0. (9)

C. Trajectory sensitivities

Trajectory sensitivities provide a way of quantifying the
variation of a trajectory resulting from (small) changes to
parameters and/or initial conditions [13], [15]. To obtain
the sensitivity of the flows φx and φy to initial conditions
x0, the Taylor series expansion of (7) is formed. Neglecting
higher order terms gives

∆x(t) =
∂x(t)
∂x0

∆x0 ≡ xx0(t)∆x0 (10)

∆y(t) =
∂y(t)
∂x0

∆x0 ≡ yx0(t)∆x0. (11)

Using the partitioning (6), x0 incorporates parameters λ, so
sensitivity to initial conditions x0 includes parameter sen-
sitivity. Equations (10)-(11) describe the changes ∆x(t)
and ∆y(t) in a trajectory, at time t along the trajectory,
for a given (small) change in initial conditions ∆x0 =
[∆xt

0 ∆zt
0 ∆λt]t. The time-varying partial derivatives

xx0 and yx0 are known as trajectory sensitivities. An
overview of the variational equations describing the evo-
lution of these sensitivities is provided in Appendix A.
Along smooth sections of the trajectory, the trajec-

tory sensitivities evolve according to a linear time-varying
differential-algebraic system (20)-(21). For large systems,
these equations have high dimension. However the compu-
tational burden is minimal when an implicit numerical in-
tegration technique such as trapezoidal integration is used
to generate the trajectory. An overview of this result is
provided in Appendix B. More complete details of both
appendices are given in [13].

III. Implementation

A. Flexible component interconnection

Models of large systems are most effectively constructed
using a hierarchical or modular approach. With such an

approach, components are grouped together as subsystems,
and the subsystems are combined to form the full system.
This allows component and subsystem models to be devel-
oped and tested independently. It also allows flexibility in
interchanging models.
The interactions inherent in hybrid systems are counter

to this decomposition into subsystems and components.
However the algebraic equations of the DAIS model can
be exploited to achieve the desired modularity. Each com-
ponent or subsystem can be modeled autonomously in the
DAIS structure, with ‘interface’ quantities, e.g., inputs and
outputs, established as algebraic variables. The compo-
nents are then interconnected by introducing simple alge-
braic equations that ‘link’ the interface variables. This is
similar to the connections concept of [16]. Note that all
interconnections are non-causal [17], i.e., no rigid input-
output arrangement of components is assumed.
To illustrate this linking concept, consider a case where

the n-th algebraic state of component j, denoted yj,n, is
required by component k. In the model of component k,
the corresponding quantity would appear as an algebraic
variable yk,m. The connection is made via the simple alge-
braic equation yj,n − yk,m = 0. In general, all linking can
be achieved by summations of the form∑

ckyi,j = 0 (12)

where ck is ±1. Notice that all connections are external to
the component models.
The linking strategy results in an interesting structure

for the Jacobian2

J =
[
fx fy

gx gy

]
.

Components contribute square blocks down the diagonal of
fx and flattened rectangular blocks along the diagonal of
the upper section of gy. The lower section of gy is an inci-
dence matrix, with ±1’s given by the external connections
(12). Figure 1 illustrates this structure. (This particular
matrix corresponds to a ten generator representation of the
Nordel power system [8].) A Jacobian structure like that
of J was identified in [18], where a similar arrangement of
components and connections was used in the development
of an optimal power flow.
The structure and values of the lower connection sub-

matrix of J , and hence F{ , are fixed for all time. This
can be exploited in the factorization of F{ to improve the
efficiency of solving (26)-(27). The efficiency improvement
can be significant, as these equations are solved at every
time step.
In general, components and subsystems of any form can

be modeled, provided they are structured with interfacing
algebraic variables that can be linked to other components.
Noise and/or random disturbances can be added to the
model by linking components that generate random signals.

2This Jacobian has the same structure as the matrix F{ , given
by (28), that is required for implicit numerical integration and for
computing trajectory sensitivities.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 1802

Connection Equations

fx fy

gygx

Fig. 1. Sparsity structure of Jacobian J .

B. Matlab implementation

The proposed modular approach to constructing hy-
brid systems has been implemented in Matlab [19]. In
this implementation, the system is described by a data
file that contains model data information and (separate)
connections details. Each component of the system con-
tributes an entry to model data that consists of the com-
ponent name, initial values for x0 and y0, and background
parameters. Links between components are fully described
in connections using the form given by (12).
Every component is described by a file that calculates

values for f , g and h, and sparsely stored elements of the
partial derivative matrices fx, fy, gx, gy, hx and hy. These
component files are re-usable, i.e., case independent, and
reside in a component library. Relative indexing is used
for Jacobian elements, as each component model is au-
tonomous. (All connection information is externally de-
fined.) Hence within a model, the indexing of Jacobian
elements uses only local equation and variable numbering.
The simulation kernel uses these relative indices, along with
knowledge of equation and variable dimensions across all
models, to generate the location of each element in the full
matrices, i.e., the absolute indices. The actual matrices are
never built explicitly, but rather are stored sparsely.

C. Symbolic differentiation

As indicated above, partial derivative matrices are calcu-
lated and stored sparsely by component files. Hand deriva-
tion of these partial derivatives can be tedious for large
complicated models. Therefore the process has been au-
tomated through the use of symbolic differentiation [19].
Symbolic manipulation has been utilized in power system

simulation previously [20], though the implementation was
quite different.
The generation of a component file begins with an ana-

lytical model in the DAIS form. The analytical model must
be unambiguously mapped into a character representation
that can be manipulated symbolically. It is also important
that this mapping does not restrict the implementation of
the DAIS form. Fortunately the DAIS model structure is
well suited to such translation. All elements of the model
can be clearly and uniquely identified.
A Matlab function has been developed for translating the

input model representation into a component file that can
interact with the simulation kernel [19]. Building the f ,
g and h equations involves relatively straightforward char-
acter string manipulation. Generating the partial deriva-
tives is more challenging. Firstly, equations and variable
strings are converted to symbols. Symbolic differentiation
produces partial derivatives that must be simplified and
converted back to strings. If the final expression is zero,
the derivative is discarded, as matrices are stored sparsely.
Component files are generated off-line and stored in the

component library. Therefore symbolic manipulation does
not slow simulation speed.

D. Computation of junction points

Switching and reset events generically do not coincide
with the time instants of the numerical integration process.
However simulation accuracy depends upon correct loca-
tion, between integration time steps, of events [21].
A simple check of sign changes in trigger variables yd

and ye at each integration step will reveal most events [13].
However this check fails to detect events where the associ-
ated trigger variables change sign an even number of times
over a time step. A more thorough search for events is
required, though a trade-off must be made between search
accuracy and computational cost. An efficient approach
proposed in [21] uses interpolation polynomials generated
by a BDF integration method [12].

IV. Inverse Problems

System analysis is often tantamount to understanding
the influence of parameters on system behaviour, and ap-
plying that knowledge to achieve a desired outcome. The
‘known’ information is the desired outcome. The parame-
ters that achieve that outcome must be deduced. Because
of the inverse nature of the problem, the process has tra-
ditionally involved repeated simulation of the model. This
can be time consuming and frustrating, as the relationship
between parameters and behaviour is often not intuitively
obvious.
Systematic modeling, as presented in previous sections,

allows the development of new tools that can solve in-
verse problems directly, albeit via iterative techniques. The
DAIS model is conducive to the efficient generation of tra-
jectory sensitivities. Those sensitivities quantify, to first or-
der, the effects of parameters on dynamic behaviour. They

therefore underlie the development of gradient-based algo-
rithms.
The following subsections present a range of inverse

problems. Algorithms that address those problems are out-
lined. This list is not exhaustive, but seeks to provide an
overview of the possibilities that follow from systematic
modeling.

A. Parameter uncertainty

System parameters can never be known exactly. In fact
uncertainty in some parameters, e.g., load models, can be
quite high. Quantifying the effects of parameter uncer-
tainty is not strictly an inverse problem, but illustrates the
usefulness of trajectory sensitivities.
Because of the uncertainty in parameters, investigation

of system behaviour should (ideally) include multiple stud-
ies over a range of parameter values. However simulation
of large systems is computationally intensive. Such an in-
vestigation would be extremely time consuming. The more
practical approach is to assume that a nominal set of pa-
rameters provides an adequate representation of behaviour
over the full range of values. This may not always be a
good assumption though.
A computationally feasible (though approximate) ap-

proach to repeated simulation is to generate a first order
approximation of the trajectory for each set of perturbed
parameters. The first order approximation is obtained by
truncating the Taylor series expansion of the flow φ. Using
(10)-(11), this gives

φ(x02 , t) = φ(x01 , t) +
[
xx0(t)
yx0(t)

]
(x02 − x01) (13)

where xx0(t), yx0(t) are computed along the nominal tra-
jectory φ(x01 , t). Therefore if the trajectory sensitivities
xx0(t), yx0(t) are available for a nominal trajectory, then
(13) can be used to provide a good estimate of trajectories
φ(x02 , t) corresponding to other (nearby) parameter sets.
(Recall that parameters λ are embedded in x0.)
The computational burden involved in generating the

approximate trajectories is negligible. Given the nomi-
nal trajectory and associated trajectory sensitivities, new
(approximate) trajectories can be obtained for many pa-
rameter sets. Therefore a Monte-Carlo technique can be
employed to quantify the uncertainty in a trajectory:
• parameter sets are randomly generated,
• first order approximations are obtained using (13).

Figure 2 illustrates this process for a simple example where
a disturbance initiates interactions between a tap-changing
transformer and a dynamic load. The dark line shows the
nominal trajectory. The bound around that trajectory was
obtained using 200 randomly chosen sets of parameters.
Further details can be found in [22].
Statistics quantifying the uncertainty in system behav-

iour due to parameter uncertainty can be obtained from
the Monte-Carlo simulation. For example, it’s possible to
state the probability that a disturbance would initiate pro-

0 20 40 60 80 100 120 140 160 180 200
0.8

0.85

0.9

0.95

1

1.05

Time (sec)

V
3 (

pu
)

Fig. 2. Trajectory bounds.

tection operation or that a voltage would fall below some
predetermined threshold.
Another approach to assessing the significance of para-

meter uncertainty is via worst case analysis [23]. This in-
volves finding the values of parameters (within specified
bounds) that induce the greatest deviation in particular
system variables, for example voltages. The algorithm can
be formulated as a constrained optimization, and is truly
an inverse problem. Such optimization problems are dis-
cussed as part of later inverse problems.

B. Parameter estimation

System-wide measurements of power system distur-
bances are frequently used in event reconstruction to gain a
better understanding of system behaviour [7], [24]. In un-
dertaking such studies, measurements are compared with
the behaviour predicted by a model. Differences are used to
tune the model, i.e., adjust parameters, to obtain the best
match between the model and the measurements. This
process requires a systematic approach to,
1) identifying well-conditioned parameters that can be es-
timated reliably from the available measurements, and

2) obtaining a best estimate for those parameters.
It is shown in [8] that trajectory sensitivities can be used

to guide the search for well-conditioned parameters, i.e.,
parameters that are good candidates for reliable estima-
tion. Large trajectory sensitivities imply the correspond-
ing parameters have leverage in altering the model trajec-
tory to better match the measured response. Small tra-
jectory sensitivities, on the other hand, imply that large
changes in parameter values would be required to signifi-
cantly alter the trajectory. Parameters in the former cat-
egory are well-conditioned, whereas the latter parameters
are ill-conditioned. Only parameters that influence mea-
sured states can be identified. A parameter may have a
significant influence on system behaviour, but if that in-
fluence is not observable in the measured states, then the

0 1 2 3 4 5 6 7 8 9 10
300

350

400

450

Time (s)

B
us

 1
2

vo
lta

ge
, V

12
 (

kV
)

Measured

Initial parameter values

Estimated parameter values

Fig. 3. Parameter estimation.

parameter is not identifiable. The concept of identifiability
is explained more formally in [25].
A parameter estimation algorithm that is based on a

Gauss-Newton iterative procedure is presented in [8]. The
algorithm minimizes a nonlinear least-squares cost

V(θ) = 1
2
‖y̆(θ)−ms‖2

2

where ms are the sampled measurements of the distur-
bance, y̆(θ) are the flows provided by the model that corre-
spond to the measured quantities, and θ are the unknown
parameters. This minimization can be achieved (locally at
least) by the iterative scheme

S(θj)tS(θj)∆θj+1 = S(θj)t(y̆(θj)−ms) (14)

θj+1 = θj − αj+1∆θj+1

where αj+1 is a scalar that determines the parameter up-
date step size3. The matrix S is built from the trajectory
sensitivities y̆θ, i.e., sensitivity of model flows y̆ to parame-
ters θ. The invertibility of StS relates directly to identifi-
ability [25].
The parameter estimation process is illustrated in Fig-

ure 3. A voltage measurement from a disturbance on the
Nordel system [8] is shown. The figure also shows the sim-
ulated voltage trajectory for the initial parameter values,
and the tuned values obtained after convergence (in four
iterations) of (14). The improvement is clear.
Remarks:
1) Parameter estimation via (14) is not restricted to
smooth systems. In fact, it is possible to estimate
parameters that underlie event descriptions (provided
measurements capture an occurrence of the event.)

2) For large systems, feasibility of the Gauss-Newton al-
gorithm is dependent upon efficient computation of

3Equation (14) could be solved by inverting StS, however faster
and more numerically robust algorithms are available [26].

Time (hr:mn)

V
o

lt
ag

e

Fig. 4. Oscillations in distribution system voltage.

trajectory sensitivities. This underlines the impor-
tance of systematic modeling.

C. Boundary value problems

It is interesting to consider boundary value problems of
the form

r
(
x0, x(tf)

)
= 0 (15)

where tf is the final time, and x(t) is the trajectory that
starts from x0 and is generated by (2),(3). The initial val-
ues x0 are variables that must be adjusted to satisfy r.
(Though r may directly constrain some elements of x0.)
To establish the solution process, (15) can be rewritten

r
(
x0, φx(x0, tf)

)
= 0, (16)

which has the form r̃(x0) = 0. Boundary value problems
can be solved by shooting methods [27], [28], which are
a combination of Newton’s method for solving (16) along
with numerical integration for obtaining the flow φx. New-
ton’s method requires the Jacobian

J =
∂r

∂x0
+

∂r

∂φx
xx0(tf), (17)

which is dependent upon the trajectory sensitivities evalu-
ated at tf .
Boundary value problems per se are uncommon in power

systems. However an application of increasing importance
is the calculation of limit cycles (sustained oscillations).
Oscillations have been observed in a variety of power sys-
tems, from generation [29] to distribution. This latter case
is illustrated in Figure 4, where the oscillations were driven
by interactions between transformer tapping and capacitor
switching.
To solve for limit cycles, (16) can be written

x0 − φx(x0, T) = 0

where x0 lies on the limit cycle and T is its period. Solu-
tion of this boundary value problem via a shooting method
requires xx0(T), which is exactly the Monodromy matrix
[27], [30]. The eigenvalues of this matrix determine the
stability of the limit cycle.

D. Border-collision bifurcations

When a system trajectory encounters the operating char-
acteristic of a protection device, a trip signal is sent to
circuit breakers. If the trajectory almost touches the oper-
ating characteristic but just misses, no trip signal is issued.
The bounding (separating) case corresponds to the trajec-
tory grazing, i.e., just touching, the operating characteris-
tic but not crossing it. This is a form of global bifurcation;
it separates two cases that have significantly different out-
comes. Numerous names exist for this phenomena, includ-
ing C-bifurcation, switching-time bifurcation and border-
collision bifurcation.
Examples of such bifurcations can be found in many ap-

plication areas. They are particularly important in power
electronic circuits, where zero-crossings are fundamental to
control strategies, and to the switching of self-commutating
devices [31]. In fact it has been shown that border-collision
bifurcations can provide a path to chaos in simple DC-DC
converters [32].
Identifying the critical values of parameters that corre-

spond to a border-collision bifurcation is an inverse prob-
lem. Let the operating/switching characteristic be de-
scribed by b(x, y) = 0. A trajectory will be tangential to
that characteristic at the point [x∗ y∗]t = φ(x∗0, t∗) given
by

b(x∗, y∗) = 0
(bx − byg

−1
y gx)

∣∣
(x∗,y∗)

f(x∗, y∗) = 0.

The critical values of parameters are given by x∗0. This is a
special form of boundary value problem. Shooting methods
provide the basis for gradient-based algorithms.

E. Critically stable trajectories

Theoretically it’s possible to find parameter values that
cause a disturbed system to be critically stable, i.e., the
trajectory lies exactly on the stability boundary. A per-
turbation of a parameter in one direction would lead to
stability, whereas a perturbation in the opposite direction
would cause instability. In practice, the critical values of
parameters cannot be determined exactly. However an al-
gorithm that approaches those values has been developed
[33].
The algorithm is based on the assumption that the limit

set consists only of isolated equilibria. Under that assump-
tion, the stability boundary is composed of the stable mani-
folds of type-1 unstable equilibrium points (UEPs) that lie
on the boundary [34]. Therefore an unstable trajectory
must pass through the stable manifold of a type-1 UEP. If
a disturbance to the system is critically cleared, the trajec-
tory will lie on the stable manifold of a UEP, and approach
that UEP in infinite time. A trajectory that is nearly crit-
ically cleared, whether stable or unstable, will pass close
by that UEP. But generally the UEP is unknown. Energy
function methods require a knowledge of this ‘controlling
UEP’ [35]. The proposed algorithm does not.

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

Gen 1 angle (rad)

G
en

 2
 a

ng
le

 (
ra

d)

Initial guess (T
m

=0.7200)

Final estimate (T
m

=0.7934)

Actual critical trajectory (T
m

=0.7930)

Fig. 5. Convergence to critical trajectory.

Equilibria satisfy

f(x, y) = 0

along with algebraic constraints (3). Therefore proximity
to equilibria can be established using the quadratic cost
function

J (x, y) = 1
2
f(x, y)tWf(x, y) (18)

where W is a diagonal matrix that is used to weight the
relative importance of the various elements of f . Near
an equilibrium point, the cost J (x, y) becomes small. By
monitoring J (x, y) along a trajectory, points that are lo-
cal minima can be found. Many of those points indicate
proximity to equilibria.
The proposed algorithm is based on the idea that J (x, y)

defines a hypersurface in the variables t (time) and x0 (ini-
tial conditions and parameters). Starting from a local min-
imum in J on the initial trajectory, t and x0 can be varied
to minimize J over that hypersurface. As J is minimized,
the minimum point moves closer towards a UEP, and hence
the trajectory moves closer to passing through that UEP.
The implementation of this algorithm in [33] uses a

Gauss-Newton technique for minimizing J . The gradient
information required by the minimization process is pro-
vided by trajectory sensitivities. Figure 5 illustrates the
process. In that example, the critical value of mechani-
cal torque Tm at one of the generators was obtained. It
can be seen from the figure that the actual critical trajec-
tory undergoes convoluted behaviour in the vicinity of the
UEP. This introduces local minima into the cost function
J , masking the location of the global minimum (exact crit-
ical value). However the local and global minima are close,
so the error introduced by convergence to the wrong point
is small.

F. Optimal control

Optimization problems arise frequently in the analysis
of power system dynamics. Examples range from tuning
generator AVR/PSSs to determining the optimal location,
amount and switching times for load shedding [36]. All
these problems can be formulated using a Bolza form of
objective function

min
θ,tf

I(x, y, θ, tf) (19)

where

I = ϕ
(
x(tf), y(tf), θ, tf

)
+

∫ tf

t0

ψ
(
x(t), y(t), θ, t

)
dt,

θ are the design parameters, i.e., the parameters adjusted
to achieve the objective, and tf is the final time.
The solution of (19) for hybrid systems is complicated

by the discontinuous behaviour at events. However these
complications largely disappear under the assumption that
the order of events does not change as θ and tf vary, i.e.,
no border-collision bifurcations occur. This assumption is
common throughout the literature, though it is expressed
in various ways: transversal crossings of triggering hyper-
surfaces are assumed in [37], existence of trajectory sensi-
tivities is assumed in [38], and [39] assumes all flows have
the same history. All statements are equivalent.
Under that assumption, and other mild assumptions, it

is concluded in [39] that if I is continuous in its arguments
then a solution to (19) exists. Further, [38] shows that if I is
a smooth function of its arguments, then it is continuously
differentiable with respect to θ and tf . The minimization
can therefore be solved using gradient-based methods. Tra-
jectory sensitivities underlie the gradient information.
If the event ordering assumption is not satisfied, I may

be discontinuous. The optimization problem then takes
on a combinatorial nature, as each continuous section of I
must be searched for a local minimum.
Other optimization problems do not naturally fit the

form (19) of the objective function. Cascaded tap-changing
transformers provide an interesting example [40]. Minimiz-
ing the number of tap change operations is equivalent to
minimizing the number of crossings of triggering hypersur-
faces. Such a problem, by definition, does not satisfy the
earlier assumption requiring constant ordering of events.
This minimization is best addressed using switching con-
trol design techniques [41], though the solution process is
not yet well established.

G. Technical issues

Changes in event ordering, as discussed in the previous
subsection, influence all gradient-based algorithms for solv-
ing inverse problems. The effect is similar to power flow
solution when reactive power limits change status. Algo-
rithms usually converge, though with a slower convergence
rate and a reduced region of convergence.
Another interesting aspect of hybrid systems is that tra-

jectories may not be unique in reverse time, even though

they are unique in forward time. In other words, the same
final value φ(x0, tf) can be reached from different initial
values x0. In such cases, the trajectory sensitivity matrix
xx0(tf) is singular. This matrix underlies solution algo-
rithms for numerous inverse problems, for example (17).
An approach to addressing this issue is to decompose x0

into components that influence φ(x0, tf) and those that do
not. Attention is then restricted to the former group. This
is an area of on-going research.

V. Conclusions

The response of power systems to large disturbances of-
ten involves interactions between continuous dynamics and
discrete events. Such behaviour can be captured by a
model that consists of a set of differential-algebraic equa-
tions, modified to incorporate impulse (state reset) action
and constraint switching (DAIS model).
Models of large systems are most effectively constructed

using a modular or object-oriented approach. The desired
modularity can be achieved in a practical way with the
DAIS model. Components and/or subsystems are modeled
autonomously, with connections established via simple al-
gebraic equations. This object-oriented model structure is
amenable to symbolic manipulation.
Systematic modeling allows the development of tools for

solving inverse problems, including parameter uncertainty
and estimation, boundary value problems, locating border-
collision bifurcations and critically stable trajectories, and
optimal control. The DAIS model is conducive to the effi-
cient generation of trajectory sensitivities. Those sensitiv-
ities underlie gradient-based algorithms for inverse prob-
lems.

References

[1] L.G. Perez, A.J. Flechsig, and V. Venkatasubramanian, “Mod-
eling the protective system for power system dynamic analysis,”
IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1963–
1973, November 1994.

[2] M.S. Ćalović, “Modeling and analysis of under-load tap-
changing transformer control systems,” IEEE Transactions on
Power Apparatus and Systems, vol. PAS-103, no. 7, pp. 1909–
1915, July 1984.

[3] I. Dobson, “Stability of ideal thyristor and diode switching cir-
cuits,” IEEE Transactions on Circuits and Systems I, vol. 42,
no. 9, pp. 517–529, September 1995.

[4] M.D. Lemmon, K.X. He, and I. Markovsky, “Supervisory hybrid
systems,” IEEE Control Systems Magazine, vol. 19, no. 4, pp.
42–55, August 1999.

[5] A. Tarantola, Inverse Problem Theory, Elsevier Science, Ams-
terdam, 1987.

[6] J.F. Hauer, W.A. Mittelstadt, W.H. Litzenberger, C. Clemens,
D. Hamai, and P.N. Overholt, “Wide area measurements for
real-time control and operation of large electric power systems,”
DOE Final Report, April 1999.

[7] D.N. Kosterev, C.W. Taylor, and W.A. Mittelstadt, “Model
validation for the August 10, 1996 WSCC system outage,” IEEE
Transactions on Power Systems, vol. 14, no. 3, pp. 967–979,
August 1999.

[8] I.A. Hiskens, “Nonlinear dynamic model evaluation from distur-
bance measurements,” IEEE Transactions on Power Systems,
To appear.

[9] A. van der Schaft and H. Schumacher, An Introduction to Hybrid
Dynamical Systems, Springer-Verlag, London, 2000.

[10] C.G. Cassandras and S. Lafortune, Introduction to Discrete

Event Systems, Kluwer Academic Publishers, Norwell, MA,
1999.

[11] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

[12] K.E. Brenan, S.L. Campbell, and L. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations,
SIAM, Philadelphia, PA, 1995.

[13] I.A. Hiskens and M.A. Pai, “Trajectory sensitivity analysis of
hybrid systems,” IEEE Transactions on Circuits and Systems I,
vol. 47, no. 2, pp. 204–220, February 2000.

[14] S. Galán, W.F. Feehery, and P.I. Barton, “Parametric sensitiv-
ity functions for hybrid discrete/continuous systems,” Applied
Numerical Mathematics, vol. 31, pp. 17–47, 1999.

[15] P.M. Frank, Introduction to System Sensitivity Theory, Acad-
emic Press, New York, 1978.

[16] H. Elmqvist, “A structured model language for large continuous
systems,” PhD Thesis TFRT-1015, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden, 1978.

[17] H. Elmqvist, S.E. Mattsson, and M. Otter, “Modelica - A lan-
guage for physical system modeling, visualization and interac-
tion,” in Proceedings of the IEEE Symposium on Computer-
Aided Control System Design, Hawaii, August 1999.

[18] R. Bacher, “Symbolically assisted numeric computations for
power system software development,” in Proceedings of the 13th
Power Systems Computation Conference, Trondheim, Norway,
June 1999, pp. 5–16.

[19] I.A. Hiskens and P.J. Sokolowski, “Systematic modeling and
symbolically assisted simulation of power systems,” IEEE Trans-
actions on Power Systems, vol. 16, no. 2, pp. 229–234, May 2001.

[20] F.L. Alvarado and Y. Liu, “General purpose symbolic simula-
tion tools for electric networks,” IEEE Transactions on Power
Systems, vol. 3, no. 2, pp. 689–697, May 1988.

[21] T. Park and P.I. Barton, “State event location in differential-
algebraic models,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 6, no. 2, pp. 137–165, April 1996.

[22] I.A. Hiskens, M.A. Pai, and T.B. Nguyen, “Bounding uncer-
tainty in power system dynamic simulations,” in Proceedings of
the IEEE PES Winter Meeting, Singapore, January 2000.

[23] M.W. Tian and C.-J.R. Shi, “Worst case tolerance analysis of
linear analog circuits using sensitivity bands,” IEEE Transac-
tions on Circuits and Systems I, vol. 47, no. 8, pp. 1138–1145,
August 2000.

[24] R.H. Craven, T. George, G.B. Price, P.O. Wright, and I.A.
Hiskens, “Validation of dynamic modelling methods against
power system response to small and large disturbances,” in Pro-

ceedings of CIGRÉ General Session, Paris, August 1994.
[25] I.A. Hiskens, “Identifiability of hybrid system models,” in Pro-

ceedings of the 9th IEEE Conference on Control Applications,
Anchorage, AK, September 2000.

[26] G.H. Golub and C.F. Van Loan, Matrix Computations, John
Hopkins, 2nd edition, 1989.

[27] R. Seydel, Practical Bifurcation and Stability Analysis,
Springer-Verlag, New York, 2nd edition, 1994.

[28] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,
Springer, New York, 1980.

[29] K. Kim, H. Schättler, V. Venkatasubramanian, J. Zaborszky,
and P. Hirsch, “Methods for calculating oscillations in large
power systems,” IEEE Transactions on Power Systems, vol. 12,
no. 4, pp. 1639–1648, November 1997.

[30] I.A. Hiskens, “Stability of limit cycles in hybrid systems,” in
Proceedings of the 34th Hawaii International Conference on Sys-
tem Sciences, Maui, HI, January 2001.

[31] S. Jalali, I. Dobson, R.H. Lasseter, and G. Venkataramanan,
“Switching time bifurcations in a thyristor controlled reactor,”
IEEE Transactions on Circuits and Systems I, vol. 43, no. 3,
pp. 209–218, March 1996.

[32] M. di Bernardo, “The complex behavior of switching devices,”
IEEE Circuits and Systems Newsletter, vol. 10, no. 4, pp. 1–13,
December 1999.

[33] I.A. Hiskens, M.A. Pai, and P.W. Sauer, “An iterative approach
to calculating dynamic ATC,” in Proceedings International Sym-
posium on Bulk Power System Dynamics and Control - IV, San-
torini, Greece, August 1998.

[34] H-D. Chiang, M.W. Hirsch, and F.F. Wu, “Stability regions of
nonlinear autonomous dynamical systems,” IEEE Transactions
on Automatic Control, vol. 33, no. 1, pp. 16–27, January 1988.

[35] M.A. Pai, Energy Function Analysis for Power System Stability,
Kluwer Academic Publishers, Boston, MA, 1989.

[36] C. Moors and T. Van Cutsem, “Determination of optimal load
shedding against voltage instability,” in Proceedings of the 13th
Power Systems Computation Conference, Trondheim, Norway,
June 1999.

[37] M.S. Branicky, V.S. Borkar, and S.K. Mitter, “A unified frame-
work for hybrid control: Model and optimal control theory,”
IEEE Transactions on Automatic Control, vol. 43, no. 1, pp.
31–45, January 1998.

[38] S. Galán and P.I. Barton, “Dynamic optimization of hybrid
systems,” Computers chem. Engng, vol. 22, Suppl., pp. S183–
S190, 1998.

[39] B. Piccoli, “Hybrid systems and optimal control,” in Proceedings
of the 37th IEEE Conference on Decision and Control, Tampa,
FL, December 1998.

[40] M. Larsson, “Coordinated voltage control in electric power sys-
tems,” PhD Thesis, Department of Industrial Electrical Engi-
neering and Automation, Lund Institute of Technology, Lund,
Sweden, 2000.

[41] R.W. Brockett, “Minimum attention control,” in Proceedings of
the 36th Conference on Decision and Control, 1997, pp. 2628–
2632.

[42] W.F. Feehery, J.E. Tolsma, and P.I. Barton, “Efficient sensitiv-
ity analysis of large-scale differential-algebraic systems,” Applied
Numerical Mathematics, vol. 25, pp. 41–54, 1997.

[43] S. Li, L. Petzold, and W. Zhu, “Sensitivity analysis of
differential-algebraic equations: A comparison of methods on a
special problem,” Applied Numerical Mathematics, vol. 32, pp.
161–174, 2000.

[44] D. Chaniotis, M.A. Pai, and I.A. Hiskens, “Sensitivity analysis
of differential-algebraic systems using the GMRES method - Ap-
plication to power systems,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, Sydney, Australia,
May 2001.

Appendix

I. Trajectory Sensitivity Equations

Away from events, where system dynamics evolve
smoothly, the sensitivities xx0 and yx0 are obtained by dif-
ferentiating (2)-(3) with respect to x0. This gives

ẋx0 = fx(t)xx0 + fy(t)yx0 (20)
0 = gx(t)xx0 + gy(t)yx0 (21)

where fx ≡ ∂f/∂x, and likewise for the other Jacobian
matrices. Note that fx, fy, gx, gy are evaluated along
the trajectory, and hence are time-varying matrices. It is
shown in Appendix B that the solution of this (potentially
high order) DAE system can be obtained as a by-product
of solving the original DAE system (2)-(3).
Initial conditions for xx0 are obtained from (8) as

xx0(t0) = I

where I is the identity matrix. Initial conditions for yx0

follow directly from (21),

0 = gx(t0) + gy(t0)yx0(t0).

Equations (20),(21) describe the evolution of the sensi-
tivities xx0 and yx0 between events. However at an event,
the sensitivities are often discontinuous. It is necessary
to calculate jump conditions describing the step change in
xx0 and yx0 . For clarity, consider a single switching/reset

event, so the model (2)-(5) reduces to the form

ẋ = f(x, y) (22)

0 =
{

g−(x, y)
g+(x, y)

s(x, y) < 0
s(x, y) > 0 (23)

x+ = h(x−, y−) s(x, y) = 0. (24)

Let (x(τ), y(τ)) be the point where the trajectory encoun-
ters the hypersurface s(x, y) = 0, i.e., the point where an
event is triggered. This point is called the junction point
and τ is the junction time. Assume that the trajectory
encounters the triggering hypersurface transversally.
Just prior to event triggering, at time τ−, x and y are

given by

x− = x(τ−) = φx(x0, τ
−)

y− = y−(τ−) = φy(x0, τ
−)

where

g−(x−, y−) = 0.

Similarly, x+, y+ are defined for time τ+, just after the
event has occurred. It is shown in [13] that the jump con-
ditions for the sensitivities xx0 are given by

xx0(τ
+) = h∗x xx0(τ

−)− (
f+ − h∗x f

−)
τx0 (25)

where

h∗x =
(
hx − hy(g−y)

−1g−x
)∣∣

τ−

τx0 = −
(
sx − sy(g−y)−1g−x

)∣∣
τ− xx0(τ

−)(
sx − sy(g−y)−1g−x

)∣∣
τ− f−

f− = f(x(τ−), y−(τ−))
f+ = f(x(τ+), y+(τ+)).

The sensitivities yx0 immediately after the event are given
by

yx0(τ
+) = − (

g+
y (τ

+)
)−1

g+
x (τ

+)xx0(τ
+).

Following the event, i.e., for t > τ+, calculation of the
sensitivities proceeds according to (20),(21), until the next
event is encountered. The jump conditions provide the
initial conditions for the post-event calculations.

II. Efficient trajectory sensitivity computation

Consider the DAIS model (2)-(3) away from events.
The trapezoidal approach to numerical integration approx-
imates the differential equations (2) by a set of algebraic
difference equations. These algebraic equations are coupled
with the original algebraic equations (3) giving

xk+1 = xk +
η

2
(
f(xk, yk) + f(xk+1, yk+1)

)
(26)

0 = g(xk+1, yk+1) (27)

where the superscripts k, k + 1 index the time instants
tk, tk+1 respectively, and η = tk+1 − tk is the integration

time step. Equations (26)-(27) describe the evolution of the
states x, y from time instant tk to the next time instant
tk+1.
Notice that (26)-(27) form a set of implicit nonlinear al-

gebraic equations. To solve for xk+1, yk+1 given xk, yk

requires the use of a nonlinear equation solver. Newton-
based iterative techniques are commonly used. The solu-
tion process involves forming and factorizing the Jacobian

F{ =
[

η
2fx − I η

2fy

gx gy

]
. (28)

Now consider the sensitivity equations (20)-(21). Using
trapezoidal integration, they are approximated by

xk+1
x0

= xk
x0
+
η

2
(
fk

x x
k
x0
+ fk

y y
k
x0
+ fk+1

x xk+1
x0

+ fk+1
y yk+1

x0

)
0 = gk+1

x xk+1
x0

+ gk+1
y yk+1

x0
.

Rearranging gives[
η
2f

k+1
x − I η

2f
k+1
y

gk+1
x gk+1

y

][
xk+1

x0

yk+1
x0

]

=

[−η
2

(
fk

x x
k
x0
+ fk

y y
k
x0

) − xk
x0

0

]
. (29)

Therefore xk+1
x0

and yk+1
x0

are obtained as the solution of a
linear matrix equation. But notice that the matrix which is
inverted in solving (29) is exactly the Jacobian (28) used in
solving for xk+1 and yk+1. Because that matrix has already
been built and factorized to calculate xk+1 and yk+1, the
solution of (29) involves little extra computation.
To improve simulation speed, (26)-(27) are often solved

using a quasi-Newton method. As a result, the factors of
F{ may not be available for solving (29) directly. However
a number of computationally efficient techniques have been
proposed in [42], [43], [44].

