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Abstract

A number of facts about quadratic algebraic problems and applied Newton—Raphson like methods are presented. The main results are
about solution structure, loading trajectories, load flow feasibility boundaries and Newton—Raphson solutions. Various practically important
applications of these properties are discussed. Although motivated by power flow problems, the results are valid for any problem described
by an algebraic system of quadratic equatic®2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction Taylor series, and its Jacobian matrixx) = of /ox is a
linear function of active and reactive components of nodal
Different problems in power system analysis and control voltages. Note that highly nonlinear static characteristics of
can be described by algebraic sets of quadratic equations ofoads can be always presented as quadratic functions by

the form means of Taylor series approximations and introducing
additional variables to reduce their nonlinearity.
f)=y+9gx) =0 D The load flow problem is certainly not the only example

N ] N of quadratic algebraic problems met in power system analy-
wherex € R, is a vector of unknown variableg,€ Ryisa  gjs |n fact, solutions of any optimisation problem with

vector of specified parameters, agith a quadratic function  jinear and quadratic objective function and constraints can

of x. ) ) be found by solving a quadratic system whose equations are
A classical example is the load flow problem where  ghained by differentiating the corresponding Lagrange

consists of nodal voltagegrepresents specified nodal para-  fynction with respect to unknown variables and Lagrange

meters such as nodal powers, agds the nodal power  myytipliers. For instance, the problem of finding the shortest
mismatch function. There are two main forms used for the distance from a current operating point to the load flow

power mismatch equations: the polar and rectangularforms.feasib"ity boundary, which is often considered as the
Both of them have some advantages. The polar form \qjtage collapse boundary, can be expressed as a quadratic
provides  significant reduction of computations. For task [9]. Once again, the problem can be represented as a

instance, the method, which uses P—Q decomposition of 4 ;5dratic equations set with the Jacobian malktixbeing a
the load flow problem [1], is widely used in practice. The |inear function of unknown variables.

rectangular form of power flow equations can be effectively |, any nonlinear problem, there are some important theo-
used as well—see Refs. [2—8]. The most important features gfical ‘issues including solution existence, numerical
of that form are that the power mismatch function can be method behaviour and their convergence to particular solu-
exactly expressed using linear and second order terms of thg;ons, |ocation of multiple solutions, configuration of singu-
lar boundaries where détx) = 0, mutual arrangement of

lutions and singular ndari n lution behaviour in
E-mail addressdavidh@ee.usyd.edu.au (D.J. Hill). S.O Utto Sfa .d S | guba bc:ju qa eSS ahd ‘:’Odqt 0 hbe a IOU d
ITel.: +1.205.257-6107: faxt 1-205-257-1040. vicinity of singular boundaries. Such studies have already
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Studies of the multiple solutions of the load flow problem 2. Quadratic power flow studies
play a role in determining proximity to voltage collapse
[5,10]. In order to obtain multiple load flow solutions, This section deals with some basic properties of the quad-
Tamura et al. used a set of quadratic load flow equations ratic power flow problems, their solutions, singularities, and
and the Newton—Raphson (NR) optimal multiplier method the NR method.
[7]. Iba et al. used Tamura’'s approach and some newly
discovered convergence peculiarities of the NR method to 2-1. Property 1
find a pair of closest multiple solutions [8]. It is observed
from experimental results [8] that if a poirtomes close to
a line connecting a couple of distinct solutions, a further NR
iterative process in rectangular form goes along this line.
The next observation in Ref. [8] is that, in the vicinity of a
singular point, the NR method with the optimal multiplier
gives a trajectory which tends to the straight line connecting
a pair of closely located but distinct solutions. These
features are effectively used in Ref. [8] to locate multiple
load flow solutions. The authors asked for a theoretical
background of these experimentally discovered properties.

The present paper is written to further explore some
fundamental properties of quadratic algebraic problems x = x; + u(X; — X;) = X1 + wAXyq 2
and use them in a number of practical applications. The
main results establish the following properties:

2.1.1. Formulation

For a quadratic problenfi(x) = 0, there is a point of
singularity in the centre of a straight line connecting a
pair of distinct solutions irR}, and a vector co-linear to
this line nullifies the Jacobian matrix evaluated in the centre
point.

2.1.2. Proof
Let x4, X, be two distinct solutions of a quadratic problem
f(x) = 0. A line connecting these solutions can be defined

whereu is a parameter, andlx,; = X, — X;. Due to quad-

ratic nonlinearity, we have

e A variation of x along a straight line through a pair of .

distinct solutions of the probleifitx) = O results in varia- FOw) =T0) = Jxp)AXpy + 0.5W(=AXpy) &)
tion of the mismatch vectdi(x) along a straight line in
RY.

. lelere is a singular point in the middle of a straight line where 05W(Ax,,) is the quadratic term of the Taylor series
connecting a pair of distinct solutioms, x, in R} [5,6,11 expansion, Eg. (4). Itis clear thei{(—Ax) = W(Ax). From
and others]. Egs. (3) and (4),

e A vector co-linear to a straight line connecting a pair of .
distinct solutions iR nullifies the Jacobian matrix 0@ T J0@)1A%1 =0 ©)
J(x) = of /ox at the centre point of the line [5,6 and For a quadratic functionf(x), the Jacobian matrix
others]. contains elements which are linear functionsxofSo, it

o |If xbelongs to a straight line connecting a pair of distinct can be represented as
solutions, the NR iterative process goes along that line. n

¢ The maximal number of solutions on any straight line in  J(x) = ZAiXi + J(0) (6)
RY is two. i=1

¢ Along a straight line through two distinct solutiors X,
the problem can be reduced to a single scalar quadratic
equation which locates these solutions.

« If a loading procesy(B) in Ry reaches a singular point
detJ(x) = 0, the corresponding trajectory afB) in R} 2J(X0)A%1 =0 (7

tgnds to the right eigenvector nu!lifying(x) at the wherexy = (X, + %,)/2. AS Ax,, # 0, the vectorAxy is the
singular pomt (eXC?Pt in some special casgs). i right eigenvector corresponding to a zero eigenvalue of the
* At any singular point, there are two merging solutions  y,.,hian matrix. Moreover, for ait 0, which are co-

(except in some special cases). _ _linear vectors with respect thx,;, we getd(xy)x = 0.
e For any two pointsx; # X, and the Jacobian matrix

detJ(x;) # 0, the number and location of singularities
of the quadratic problenfi(x) = 0 on the straight line
throughxy, X, is defined by real eigenvalues of the matrix
I7H09)I0).

f(X%) = f(Xy) + I(X)AXp1 + 0.5W(AXy1) 4

where A;, J(0) are (nX n) constant matrices of Jacobian
coefficients,x; € x. Using Eq. (6), the equality (5) can be
rewritten as

2.1.3. Comments

Both the first and second parts were proved in Refs.
[2,5,11 and others]. The above proof seems to be more
simple and compact.

Some of the results are already known—see references
above. They are assembled here with new results and cleareR.1.4. Examples
explanations. Earlier versions of the results presented here Let us take an example of the New England Test System
are given in Refs. [2,12,13]. [14]. The system consists of 39 buses, 10 generators, and 18
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Table 1 domain boundary where détx) =0 by the A-plane is
Distinct load flow solutions given by dotted curves. To get the cut-set, the X-ray theo-
rem andA-plane method were used—see Section 3 and Ref.
[15]. In full compliance with Property 1, the singular points
V,kv.  5,grad V., kv §,grad  V,kv 3§, grad marked by small circles lie exactly in the middle of the
dashed lines connecting the poimisx, andXs.

Bus  Solutionx; Solutionx, Solutionxs

1 103.1 249 00 -—191.2 893 —424

2 101.7 -18.6 86.9 —11.0 641  —41.1

3 955 —20.4 920 -15.1 38 -—1252 2.2. Property 2

4 842 -196 946  —-15.7 445  —39.2 )

5 770 -16.4 96.6 -14.1 64.0 —29.0 2.2.1. Formulation

6 78.7 —15.0 973 -131 677 —264 For quadratic mismatch functiorfgx), a variation ofx

; gi-i *;g-i gg-g *1?-2 22-2 *gi-g along a straight line through a pair of distinct solutions of
9 00 1040 1008 —234 88.9  —40.2 the problemf(x) =0 re_sults_ in \_/arnlatlon of the mismatch
10 882 —129 98.9 ~108 735 _o53 vectorf(x) along a straight line irfiR, .

11 849 —136 982  —11.6 712 -257

12 846 —13.9 96.8  —11.7 676  —26.7 2.2.2. Proof

13 879 -141 982 -117 689 275 Let x be a point on the straight line connecting two
14 87.9 -16.9 969 —13.6 59.0 —34.3 - i ; .
15 942  _187 975 145 643  —450 distinct solutionsx;, X, described by Eq. (2). For quadratic
16 986 -17.7 99.4  —13.1 69.5 —45.2 mismatch functions,

17 983 —19.1 972  -143 523  —49.7 5

18 97.1  -20.1 951  —15.1 320 -56.4 f(X) = f(x)) + ud(X)Ax%p1 + 0.5u"W(AXy1) (8

19 1035 —12.9  103.8 -8.4 936  —39.1

20 98.3 —14.2 98.5 -9.7 92.6 —40.8 f(xp) = f(Xg) + J(X)AXy; + 0.5W(AXy7) 9

21 100.0 -151  100.6 —10.6 795  —41.2 _ _ _
22 103.4 -105 1037 -6.0 925  -35.1 where 05W(AXx,,) is the quadratic term of the Taylor series
23 1027 -10.7 1031 —6.2 915  -353 expansion, Eq. (9). At points, x,, we havef (x;) = f(X,) =

24 995 -175 1003 —13.0 73.0 —451 0. So, from Eq. (9),

25 1035 —17.3 939 -12.0 756  —45.8

26 1024 —17.9 983 —129 734  —48.1 0.5W(AXy1) = —J(X)AXoq (10)

27 99.9 -19.7 972  -149 625  —51.7 _

28 1036 —143 1015 -9.2 88.8  —43.2 Using Eg. (10), Eqg. (8) transforms to

29 1041 —115 1027 -6.3 941  -39.9

30 1048 162 1048 -83 1048 -37.4 f(Xg + pAXo1) = w(l — wWI(X)AX = BP 1y

31 98.2 -0.0 98.2 0.0 98.2 0.0 .

22 983  —4.8 083 3 983  _156 where 8= w(l— u), ® = Jx;)AX,,.Thus the mismatch
33 99.7 -83 99.7 38 99.7 —344 function f(x; + uAx,,) varies along the straight lin8®

34 1012  -9.1  101.2 -46 1012 —-355 in [RRQ.

35 1049  -57 1049 -12 1049  -29.7

36 1064  —2.7 1064 1.7 1064 —26.52

37 1028 —10.7 1028 -49 1028 -37.3 2'2'3: Comments . . . .
38 102.7 47 102.7 05 102.7 -32.7 This fact was mentioned in Ref. [5]. An interesting
39 103.0 -286  103.0 —-27.3 103.0 —425 conclusion follows from Properties 1 and 2. Variations of

x along a straight line connecting a couple of distinct solu-
tions are actually motions of along the right eigenvector
loads. Bus number 31 is chosen as a slack bus. All othernullifying J(x) in the middle of the line.

generators are represented by means of constant active

powers and terminal voltages. Loads have fixed active and2.2.4. Examples

reactive demands. We consider three distinct load flow solu-  In the same New England test system and for the same
tions x4, X and xz given in Table 1. These solutions were solution setx;, X, andxs, let us consider a map= —y, —
selected from a solution set obtained by the method for g(x) of the A-plane in Fig. 1 into the spacﬂé;‘—see Fig. 2.
computing multiple solutions of quadratic algebraic Point O represents the conditiogy + g(x) =0, X =
problems given in Section 3. All three points are low voltage x;,X,,X;. As the straight lines defined by;(uy) =
solutions. As the points;, x, and xz do not belong to a  x; + w1Axy; and Xo(up) = X3 + wpAXg, are mapped into
straight line, they define a plane R} which we call the the distinct straight linesy;(wy) = w1(1 — w1)I(X1)AXpq
A-plane. TheA-plane is very convenient for viewing the and y,(uy) = ua(1 — u)J(X1)AXg; which intersect at
mutual arrangement of solutions and singularities of a point 0, the last two lines define a planelmﬁ. This plane
load flow problem [15]. Actually, solutiong;, x, and X3 is referred to as tha-plane inRS. All points which belong
can be shown as points in the plane—see Fig. 1. Straightto the straight linex; () andx,(u,) are given accurately as
lines connecting these three solutions belong to the plane—the corresponding points on the lings(w,) and y,(u,)
they are drawn as dashed lines. The cut-set of the feasibilityincluding all singular points with dekXx) = 0. Singular
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Fig. 1. A-plane inR} (New England Test System).

points A and B correspond to the pointd andB in Fig.

1. They have a specific nature. For example, a loading

processx;(uq) results in a straight motion from point 0
to point A, u, < /2. At point A, the maximum load-
ability point with w; = /2 is reached. A further loading
along Xi(w1), mq > 1/2, results in backward straight
motion from A to 0. All other singular points (dotted
curves beyond the straight lines A—-and 0-B) are

2.3. Property 3

2.3.1. Formulation

If any pointx is on a straight line connecting two distinct
solutions of the quadratic problefiix) = 0, the Newton—
Raphson iterative process with the initial point from
follows this line.

obtained as projections of multidimensional singular 2.3.2. Proof

curves on theA-plane inRy.

If any point X is on the line connecting two distinct

0.5

-3.5F

1 1 1 1 1 1 1
-16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0

2000

Fig. 2. A-plane inRy (New England Test System).
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Fig. 3. Newton—Raphson process along the line connecting two distinct solutions (New England Test System).

solutions it can be described in the form (2). The middle
point of Ax,, is Xg = 0.5(X; + X,). The quadratic mismatch
function can be expressed as

f(X) = F(X0) + IX)(X — Xo) + O.EW(X — Xo)

To express the last term of Eq. (12) in terms of Jacobian
matrices, we write

f(Ax) = f(0) + J(0)AX + 0.5W(AX)

12

13

f(0) = f(AX) — J(AX)AX + 0.5W(AX) (14)
By summing of the last two equalities,

W(AX) = [J(AX) — J(0)]AX,

and so

0.5W(X — ) = 053X — %) = JOIX — Xp)

On the contrary, taking into account the quadratic nonlinear-
ity of f(x) and Eq. (6),

IX = x9) = IX) = I(x) + J(0)

Therefore, in Eq. (12), we have

0.5W(X — Xp) = 0.5[J(X) — I (X — Xo)

Noting Eq. (7), thenl(x)(X — Xo) = 0. From Eq. (12),
f(x) = f(%o) + 0.5 )X — Xo) (15)

For the NR method with initial point, we have the follow-
ing expression for the correction vecthr

f(x) + JXHAX =0 (16)
From Eq. (11),
f(X) = w(d — WIX)AX 17)

and so

I AX = p ML — ) HK),

At the pointu = 0.5, we havex = X, and it follows from
Eqgs. (17) and (18) that

f(x) = 0.25u~ (1 — ) H(x) (19
By the substitution of Eq. (19) into Eq. (15), it follows
(20)

w01 (18)

f(x) = 0.25u (1 — w) ) + 0.5IX)(X — Xo)
Multiplying Eq. (20) byd (') and taking into account Eq.
(16),

AX = =2u(1 = wl4ud — w) — U7X — )

Eqg. (21) shows that the NR correcting \_/ecm(' belongs
to the straight line directed by the vectot — xp), i.e. the
iterative process goes along the line conneckng..

21

2.3.3. Comments

This fact was experimentally discovered in Ref. [8],
where again the authors asked for some theoretical proof
of the phenomena.

2.3.4. Examples

In the same New England test system, let us consider
Newton—Raphson iterations starting from the pok
X; + 0.43(x3 — X;) which lies exactly on the line
(X — X3)—see point 0 in Fig. 3. A numerical simulation
has been done, and it has been discovered that the entire
NR process goes along the same line onARglane—see
points 1, 2, 3 and 4 in Fig. 3. The initial leap from point O to
point 1 is explained by the fact that the point 0 is taken
rather close to the singular poiAt
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Fig. 4. Two distinct solutions along the connecting line (New England Test System): 1-Efr2eCurveai? + b + c; 3-Curve¢(x,, A) = (ar? + ba +

o2,

2.4. Property 4

2.4.1. Formulation

The maximum number of solutions of a quadratic equa-
tion f(x) = 0 on each straight line in the state sp&E is
two.

2.4.2. Proof
Let us take the function

dA,X) = F1(X + AAXF (X + AAX) (22
For a quadratic mismatch functidiix),
f(X + AAX) = f(X) + AJX)AX + 0.5A2W(AX)
So,
BA %) = [FX) + AIAX + 0.5A2W(AX)|?
= [f|* + [AI0AX* + [[0.5A2W(AX)|?
+ 24P (0 I0AX + BWHX)I()AX + A% F{XOW(AX)

The functiong(A, X) equals zero if and only ffi(x + AAX) =
0. At a solution poinx = x,, f(x,) = 0,and the function (22)
is

HA, %) = 02504 W(AX)|P + APWHAX)I(X,)AX
+ A2Px)AX
= (a\® + b + 0)A?

wherea, b, ¢ are the obvious functions dfx. For any fixed

direction Ax # 0, ¢(\, x,) equals zero in the two following
cases

@Ar=0;
(b) aA® + bA + ¢ = 0.

The first case gives us the original solution point X,.
The second case corresponds to solutiass x, on the
straight line directed byAx. However, as it is clear from
Eq. (22), that function (22) cannot be negative. Thy% +
bA + ¢ =0, and in case (b) it is possible to have only one
additional solution except., but not two or more. So, on the
line we get one rook = x,, and we can have only one
additional root corresponding to condition (b).

2.4.3. Examples

Fig. 4 shows a typical shape of the scaled functiais
(curve 1), aA>+br+c (curve 2) and ¢(Ax.) =
(ax? + bA + ¢)A? (curve 3) along a straight ling, + AAx
connecting two distinct solutions in the New England test
system. Two zero minima op(A,x,) atA =0 andAr =1
correspond to the first solution. and additional solution
X 7 X

2.5. Property 5

2.5.1. Formulation

For a straight line, connecting two solutions i}, the
system of quadratic equations can be reduced to a single
scalar quadratic equation, which locates these solutions.

2.5.2. Proof
Let x5, X, be unknown distinct solutions of a quadratic



Y.V. Makarov et al. / Electrical Power and Energy Systems 22 (2000) 313—-323

4001

300

200

o
100

-100

319

-200 ' !
-200 -100 0

100

1 1 J
200 300 400

Fig. 5. Two loading trajectoriex(8) ending at singular poirA (New England Test System).

problemf(x) = 0. Suppose we have a poixtand direction
Ax. which define a line connecting the pair of solutions. The
mismatch function calculated along this line is

F(a) = f(x. + aAX,) (23

wherea is a scalar parameter. Let us take any fixed value
a = a, and define a constant

P, = F(a,) # 0 (24)

Having Egs. (23) and (24), consider the equation

P F(a)=0 (25)

It follows from Property 1 thatb. and F(«) are co-linear
vectors, and Eq. (25) is true onlyif(«) = 0. Using Eq. (24)
and the Taylor series expansion

F(a) = f(x,) + ad(X,)AX, + 0.50°W(AX,)
we get the scalar quadratic equation

ac’ +ba+c=0 (26)

where a= 050 W(AX,), b= ®LI(x,)AX,, c= DLF(x.).
Eq. (26) has a pair of distinct real roats, «, corresponding
to X;, X, and we can define these solutions xs=
Xe T @1 AX,, Xo = X, + apAX,.

2.6. Property 6

2.6.1. Formulation

For almost all cases, if any loading procg&8) ends at a
singular pointx, of the problemy(B) + g(x) = 0, whereg(x)
is a quadratic function ot and 8 is a scalar loading para-
meter, there are two distinct solutiors x, merging at the
singular point, and the trajectorias(8), X,(8) tend to the

right eigenvector corresponding to a zero eigenvalue of the
Jacobian matrixi(xg).

2.6.2. Proof
Let a loading process wit variable and

y(B) +9(x) =0 27

end at a singular pointy, corresponding t@g = B,. At the
singular point, ¢ = y’B(BO) dB = Y, dB. The implicit func-
tion theorem gives

J(Xo) dX + dy = J(xp) dx + Yo dB = 0 (29)

By multiplying Eq. (28) bys', wheresis the left eigenvector
of J(Xp) corresponding to a zero eigenvalue, we get

SJ(xp) dx + Yo dB =Y, dB =0

For the general case of loadingY, # 0, and, therefore,
dB = 0. This, means that the loading paramegereaches
its extremal valugd, at the singular poink,. Alternatively,
when sY, = 0, the loading trajectoryy(8) tends to the
tangent hyper-plane to the singular margdetJ(x) = 0)
of the problentf(x) = 0 at the pointx,. It follows from the
fact thatsis an orthogonal vector with respect to the singular
margin in[Ry.

Using Eq. (28), we have

J(xg) dx =10 (29

So, the increment>dhas the same direction as the right
eigenvectorr of the Jacobian matrix corresponding to its
zero eigenvalue, and the last part of Property 6 has been
proved.

On the contrary, having Eq. (29),

—YoAB = J(x)Ax + FW(AX) 50 Lw(ax)
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andW(Ax) = W(—AXx). So, for a small incremertg at the
point X, we have two increments of of opposite signs

directed along. Therefore, the first part of Property 6 has

been proved.

2.6.3. Comments
The property follows from [16, p. 217]. A similar fact was

Y.V. Makarov et al. / Electrical Power and Energy Systems 22 (2000) 313—-323

3. Power system applications

This section illustrates how the properties analysed in
Section 2 can be used in power system analysis.

3.1. Finding multiple solutions of a quadratic problem

Property 1 allows to find multiple solutions of a quadratic

mentioned in Ref. [17] The prOOf presented here was first prob|emf x) = o, for examp|e, the load flow pr0b|em_ Note
given in Ref. [9]. It explains the experimental fact obtained that Eq. (11) can be rewritten as

in Ref. [8]. It was observed that in the vicinity of a singular

point the NR method with the optimal multiplier gives a 1+ A% + (1 = DI(x)AX =0 3D
trajectory which tends to the straight line connecting a wherex is a known solutionAx an unknown increment of
pair of closely located load flow solutions, x.. Actually, state variables and an unknown scalar parameter. Except

the loading trajectory(p) in Eqg. (27) can be represented as  the trivial caseAx = 0, the last equation corresponds to a
the convergence trajectory of the NR method. If it comes (ifferent solution

close to the singular margin, it tends to the right eigenvector .

r, which nullifies the Jacobian matrix in the middle point X2 = X1 + 1 “AX, w70

between closely located solutions. Property 3 says that thegystem (31) has equations and + 1 unknown variables,
further iterative process goes along the line directed by the g5 it is necessary to add an additional equation in Eq. (31),

|| < oo,

vector(xy, X,), and that the line is co-linear to So, Proper-
ties 3 and 6 explain these phenomena.

2.6.4. Examples

Fig. 5 shows two curves B) (circled curves) correspond-
ing to two different loading trajectorigg) ending at singu-
lar pointA. It is seen that both the trajectorigg3) tend to
the right eigenvector = x, — x; which nullifies the Jaco-
bian matrix at pointA.

2.7. Property 7 (X-ray theorem)

2.7.1. Formulation

For any two pointx; # X, and det)(x;) # 0O, the number
and location of singularities of the quadratic problgmx) =
0 on the straight line through, X, is defined by real eigen-
values of the matrix) ™ (x;)J(X,).

2.7.2. Proof
Let us define the line through, x; as Eqg. (2). Using Eq.
(6), it is easy to show that

Jxg + X — X)) = (1 — w)IXg) + ud(Xp)

As x; is a nonsingular point, for # 0, expression (30) can
be written as

I = pIx) X)IK) — (w — D]

wherel is the identity matrix. Therefore, all singular points

(30

for instance,

rrAx—1=0 (32)

wherer is a nonzero vector. By varyingand substitution of
newly discovered solutions instead xf in Egs. (31) and
(32), itis possible to get all solutions of a quadratic problem.
Tables 1 contains some of the distinct solutions in the New
England test system. The total number of solutions obtained
exceeds 70.

3.2. A-plane method

The X-ray theorem allows us to develop a new robust
method for finding the power system load flow feasibility
boundary and, more generally speaking, the singular bound-
aries of the power flow problem on theplane defined by
any three vectors of dependent variables (nodal voltages).
An advantage of the method is that it does not require an
iterative solution of nonlinear equations (except the eigen-
value problem). Besides benefits for visualisation and fully
flexible observation, the method is a useful tool for topolo-
gical studies of power system multiple solution structures
and stability domains. For instance, any three equilibria
(load flow solutions) can be chosen to form theplane,
and the relative positions of these points and bifurcation
surfaces will be reflected on the-plane in all details.

3.2.1. Obtaining bifurcation curves on theplane
A plane inR} can be defined by any three distinct points

on the line, Eq. (2) can be computed as real eigenvalues ofy, y, andx, provided the condition

the matrixJd ~1(x))J(%y).

2.7.3. Comments

X3 7 Xg + (X — %) (33

is satisfied for any scalar parametgr. Condition (33)

The X-ray theorem can be effectively used to locate all means that the points, X, andx; do not belong to a straight
singularities of the load flow Jacobian matrix along a given line in R}. Once Eq. (33) is true, the pointg x, andx; form

ray in the space of dependent variabkedn particular, it
forms a basis of tha-plane method given in Section 3.

a triangularA, which defines a plane iR} and gives the
name for the proposed method. Any point on thelane
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can be expressed by means of scalar parametesiad y,:

X(y1, ¥2) = X1 + vi(X = X1) + y2(Xz — X1) (3%

It is clear thatx(0,0) = x;, X(1,0) = X, and x(0,1) = Xs.
Suppose that at the point;, detJ(x;) # 0. Then the
following procedure can be used to find out all singula-
rities of J(X) in the A-plane. The idea consists in rota-
tion of a vector x(y4,v,) — X; in the A-plane, and
subsequent computations of all singularities Jgk) on
each line defined by this vector. L&t be the angle,
which defines the current orientation of the vector
X(y1, ¥2) — X1 with respect to the vector, — x; in the
A-plane. The following steps are used:

. Choose the angleé= 0.

. Computey; =lcosfandy, =1sin6, | > 0.

. Define a poink = x(vy4, ¥») as in Eq. (34).

. Find eigenvalues of the matrm’l(xl)J(x).

. Computey; = (1 - /\J-)’l for all real eigenvalues; # 1
from the previous step.

. For each value ofy;, define the corresponding point in
the A-plane as

b wWNPEF

(o]

X(0) = X1 + pilyi(% — Xp) + v2(X3 — X1)] (35

. Change = 0 + A6, whereA# is an increment, and go to
step 2 unles® = .

The set of pointsq(6) computed for differen® forms
a cut-set of the feasibility domain boundary by the

plane. The procedure does not require an iterative solu-
tion except as needed for the eigenvalue problem. The

reliable QR technique is recommended to be used in
step 4.

3.2.2. Visualisation of thel-plane inRy

Although the bifurcation pointsx(6) in Eq. (35)
belong to theA-plane, they are vectors in the multi-
dimensional spaceR}. To get a visual representation
for them, it is convenient to use a new two-dimensional
coordinate system associated with theplane itself. For
this purpose, we use the following oblique-angled coor-
dinate system:

%, =[0 O] (36)

% =l —x[[1 OF

%3 = X3 — X[ cosay sinay, ]
where

_ t _
o, = Arce OS(Xs X1) (X2 = Xq)
x5 — xalllX2 = x4l

In the new two-dimensional coordinate system, the
expression for computing the power flow singular points
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becomes the following:

%(0) = pi(y1% + v2%3) (37

3.2.3.A-plane inRy

Consider a particular case when, x, and x; are
distinct solutions of the load flow problem. It follows
from Property 2 in Section 2 that these points cannot lie
on a straight line iriRQ. Property 3 says that, from=
—g(x), the straight lines

X(y1, 0) = X + 71X — X1) (39)
X0, v2) = X + ¥2(X3 = X1) (39
in R} are mapped into the straight lines

Y1 =Y(71,0) = y1(y1 — DIX)(X2 — X1) (40
Y2 = Y(0, v2) = y2(y2 — DIX)(X3 — X1) (41)

in [F&;‘, respectively. The last two lines pass through a
common point—g(x;), and they define a plane which
we call theA-plane inRy.

3.2.4. Visualisation of thel-plane in [R{Q

Fromy = —g(x), all singular points computed along the
lines (38) and (39) are mapped into points of the lines (40)
and (41), respectively. So, they lie on theplane in the
spaceRy. The rest of the pointg,(6) mapped from the\-
plane inR; do not normally belong to tha-plane inRy; the
A-plane inRy is mapped by = —g(x) into a surface which
is not a plane. The only thing, which we can do here, is to
find out their projectiong;(6) on theA-plane in the space
Ry. The projectiony;(6) can be found by the following way.
Let

¥i(0) = B1¥1 + BoYo
whereB, and B, are parameters, and, ¥, are defined as

y1=lyif[1 01 (43)

(42)

2 = [yl cosey, siney ]! (44)

wherea, = arccoly| [lya| " (y2)'(y2). The coefficientss;
and 3, can be found by solving the linear equation

(Ilylll2 iy )(Bl) _ (y‘m(@))

vive  Ival? J\ B2 yhYi(6)

They are then used in Eq. (42) to get singular points in
the two-dimensional oblique-angled coordinate system
(V1. ¥2)-

As the singular points belong to a nonlinear surface, and
we use their projections on th&-plane, the resulting plot
reflects a qualitative shape of the singular boundarR{]n
Nevertheless, all singular points along the lid&andAC
are defined accurately.

(45
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3.2.5. Examples express their gratitude to Mr Bhudjanga Chakrabarti, who
The proposed method has been tested for the above Newhelped with the bibliography and put very valuable
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X3 define aA-plane inRy shown in Fig. 1. The plane is preparation.
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