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Abstract. Under standard Lipschitz conditions, trajectories of systems
described by ordinary differential equations are well defined in both for-
ward and reverse time. (The flow map is invertible.) However for hybrid
systems, uniqueness of trajectories in forward time does not guarantee
flow-map invertibility, allowing non-uniqueness in reverse time. The pa-
per establishes a necessary and sufficient condition that governs invert-
ibility through events. It is shown that this condition is equivalent to
requiring reverse-time trajectories to transversally encounter event trig-
gering hypersurfaces. This analysis motivates a homotopy algorithm that
traces a one-manifold of initial conditions that give rise to trajectories
which all reach a common point at the same time.

1 Introduction

Uniqueness is a fundamental property of solutions of dynamical systems. Intu-
itively, uniqueness in forward time should imply reverse time uniqueness1. That
is certainly the case for systems described by ordinary differential equations, as
discussed in the background presentation in Section 2. However it is not neces-
sarily true for hybrid systems.

Hybrid system solutions are composed of periods of smooth behaviour sepa-
rated by discrete events [2]. Standard transversality conditions can be established
to ensure transitions through events are well behaved. An overview is provided
in Section 4. However those conditions are not sufficient to ensure reverse-time
mappings through events are well defined. It is shown in the paper that another
transversality-type condition must be satisfied to ensure uniqueness in reverse-
time (or equivalently flow-map invertibility.)

Recent investigations have established conditions governing the well-posedness
of solutions for various hybrid system formalisms. A complementarity modelling
framework [3] underlies the characterization of solutions of linear relay systems
[4, 5] and further extensions to piecewise-linear systems [6, 7]. A more general
hybrid automata framework is considered in [8]. In all cases, well-posedness is
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1 In other words, invertibility of the flow map [1]. This is discussed further in Section 3.
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addressed in the context of forward solutions, i.e., whether there exists a unique
(forward) solution for every initial state x0. It is noted in [5], though without dis-
cussion, that forward-time well-posedness does not imply well-defined behaviour
in reverse time. That reverse-time issue is addressed in this paper, in the con-
text of flow-map invertibility. It is shown in Section 7 that non-invertibility gives
rise to a manifold of initial conditions for trajectories which all reach a common
point at the same time. Such concepts have not previously been explored.

Analysis of system dynamic behaviour is normally only concerned with trajec-
tory evolution in forward time. In such cases, the issues raised here are inconse-
quential. However reverse-time trajectories form the basis for the adjoint system
equations, which underlie algorithms for solving boundary value and dynamic
embedded optimization problems [9, 10, 11]. Application of such algorithms to
hybrid systems must therefore consider these uniqueness issues.

2 Background

Existence and uniqueness properties for systems of the form

ẋ = f(x), x(0) = x0 (1)

where f : R
n → R

n are well known [12, 13]. In particular, if f ∈ C1, i.e., is
continuous in x and has continuous first partial derivatives with respect to x
over R

n, then (1) has a unique solution

x(t) = φ(t, x0) ≡ φt(x0), (2)

with φ(0, x0) = x0. Furthermore, the flow map φ(t, x0) is differentiable with
respect to x0. The sensitivity transition matrix is defined as

Φ(t, x0) � ∂φ(t, x0)
∂x0

. (3)

It is obtained by differentiating (1) with respect to x0 to give

Φ̇(t, x0) = Df(t)Φ(t, x0), Φ(0, x0) = I (4)

where

Df(t) � ∂f(x)
∂x

∣∣∣∣
x=φ(t,x0)

.

The transition matrix Φ(t, x0) is the solution of a set of linear time-varying
differential equations (4), so has the property

det Φ(t, x0) = exp
{∫ t

0
Trace{Df(τ)}dτ

}
, (5)

which implies Φ(t, x0) is nonsingular for all t.
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Expanding φ(t, x0) in a Taylor series, and neglecting higher order terms,
results in

φ(t, x̄0) − φ(t, x0) ≈ Φ(t, x0)(x̄0 − x0) (6)
⇒ δx(t) ≈ Φ(t, x0)δx0. (7)

In other words a change δx0 in initial conditions2 induces a change δx(t) in the
trajectory at time t, with that change described (approximately) by Φ(t, x0).
Because Φ(t, x0) is nonsingular for all t, it may be concluded that given any
δx(t), it is always possible to find the corresponding δx0, i.e.,

δx0 = Φ(t, x0)−1δx(t). (8)

3 Reverse Time Trajectories

For systems of the form (1), the map φt ∈ C1. Furthermore, according to (5),
its derivative Dφt(x) = Φ(t, x) is always invertible. Therefore, by the inverse
function theorem [1], φt is a one-parameter family of diffeomorphisms. It follows
that φt has a C1 inverse φ−t, such that φ−t(φt(x)) = φ0(x) = x. This inverse
φ−t is referred to as the reverse time trajectory.

4 Hybrid Systems

Hybrid systems have the form

ẋ = fp(x), p ∈ P (9)

where fp : R
n → R

n, and P is some finite index set. Transitions between the
various subsystems fi → fj occur when the state x evolves to a point that
satisfies an event triggering condition,

sij(x) = 0 (10)

where sij : R
n → R. We shall assume sij ∈ C1. A more elaborate differential-

algebraic model, that incorporates switching and impulse effects, is described
in [14].

Assume all fp satisfy the differentiability condition of f in (1), and x is
continuous at events, i.e., impulses do not occur. Furthermore, assume that event
triggers are encountered transversally3,

∇sT
ij ẋ = ∇sT

ijfi �= 0 (11)

2 Parameter sensitivity can be incorporated through initial conditions by introducing
trivial equations

λ̇ = 0, λ(0) = λ0.

3 Tangential encounters are associated with grazing phenomena [15].
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Fig. 1. Jump conditions

and that event switching is well defined, in the sense that accumulation effects
do not occur. Under those conditions, (9) has a unique solution that can be
expressed in the same form as (2).

Away from events, the sensitivity transition matrix Φ(t, x0) is defined ac-
cording to (4). It is shown in [14] that at an event i → j, occurring at time τ ,
sensitivities Φ generically jump4 according to

Φ(τ+, x0) = Φ(τ−, x0) + (fj − fi)
∇sT

ijΦ(τ−, x0)
∇sT

ijfi
(12)

=

(
I + (fj − fi)

∇sT
ij

∇sT
ijfi

)
Φ(τ−, x0) (13)

= Φ(δ, x(τ−))Φ(τ−, x0) (14)

where δ in (14) signifies the time increment τ+ − τ−. Notice that the transver-
sality condition (11) ensures that the denominator of (12) is non-zero.

Equation (12) can be rewritten

Φ+ = Φ− − (fj − fi)
∂τ

∂x0
(15)

where
∂τ

∂x0
= −∇sT

ijΦ
−

∇sT
ijfi

4 No jump occurs if fi = fj or ∇sT
ijΦ(τ−, x0) = 0.
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gives the sensitivity of event triggering time to initial conditions. For a pertur-
bation δx0, (15) gives

δx = Φ−δx0 + fiδτ = Φ+δx0 + fjδτ,

which is illustrated in Figure 1.

5 Uniqueness in Forward and Reverse Time

Generalizing (14) to a sequence of events occurring at times 0 < τ1 < τ2 < · · · <
τ� results in the sensitivity transition matrix at t > τ� having composition

Φ(t, x0) = Φ(t − τ+
� , x(τ+

� )) × Φ(δ, x(τ−
� )) × Φ(τ−

� − τ+
�−1, x(τ+

�−1)) × . . .

× Φ(τ−
1 , x0)

where Φ(τ−
� − τ+

�−1, x(τ+
�−1)) corresponds to transitions along smooth sections of

the flow, and Φ(δ, x(τ−
� )) describes the transition through an event at time τ�.

Property (5) ensures that matrices Φ(τ−
� −τ+

�−1, x(τ+
�−1)) are always nonsingular.

However the following theorem establishes conditions governing the singularity
of transition matrices Φ(δ, x(τ−

� )).

Theorem 1. The sensitivity transition matrix Φ(δ, x(τ−)) is singular if and only
if ∇sT

ijfj = 0.

Proof: The proof makes use of the fact that det(I + abT ) = 1 + bT a, which is a
special case of det(I + AB) = det(I + BA) [16]. Then

det Φ(δ, x(τ−)) = det

(
I + (fj − fi)

∇sT
ij

∇sT
ijfi

)

= 1 +
∇sT

ij

∇sT
ijfi

(fj − fi)

=
∇sT

ijfj

∇sT
ijfi

,

which is zero if and only if ∇sT
ijfj = 0.

�

Therefore, for a hybrid system, Φ(t, x0) will be singular if the conditions of
Theorem 1 occur at any event. But if Φ(t, x0) is singular, the hybrid system
flow φt is not a diffeomorphism, and the reverse time trajectory φ−t is not well
defined.

Recalling (7), a perturbation δx0 in initial conditions will always result in a
well defined perturbation δx(t) in the trajectory at time t. However if Φ(t, x0)
is not invertible, the reverse mapping (8) is not valid. A general perturbation
δx(t) cannot be mapped backwards to a corresponding unique δx0. More specif-
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Fig. 2. Conditions inducing singularity

ically though, if δx(t) lies in the range space of Φ(t, x0), then it can be mapped
backwards to a continuum of δx0

5.
It may be concluded that for hybrid systems, uniqueness of trajectories in

forward time does not guarantee uniqueness in reverse time.
Note that there is a subtle but important difference between the transversality

condition (11) and the singularity condition of Theorem 1, even though they have a
similar form.Transversality (11) ensures the trajectory has awell defined (forward)
encounter with the triggering hypersurface. Theorem 1 establishes conditions that
relate to the trajectory’s departure from the event. Furthermore, it should be em-
phasised that the triggering condition sij(x) = 0 is only active for subsystem i,
before the event. After the event, in subsystem j, it is no longer relevant.

Figure 2 illustrates ways in which the singularity condition of Theorem 1,
∇sT

ijfj = 0, may arise. In Figure 2(a), the post-event trajectory remains on
the triggering hypersurface for a non-zero time interval. This situation is rela-
tively common in practice, for example the action of anti-wind-up limits [17]. In
Figure 2(b), the post-event trajectory leaves the triggering hypersurface tangen-
tially. The examples of Section 8 consider both situations further.

These two cases motivate an interesting corollary of Theorem 1.

Corollary 2. The sensitivity transition matrix Φ(δ, x(τ−)) is nonsingular if and
only if the reverse-time trajectory φ−t(x(τ+)) is transversal to the triggering
hypersurface sij that induces the event at time τ .

5 Let u and v be the left and right eigenvectors of Φ(t, x0) corresponding to a zero
eigenvalue. Then if uT δx(t) = 0, δx0 will lie in the one-dimensional subspace defined
by δx0 = w + αv where δx(t) = Φ(t, x0)w and α is a scalar.
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In other words, to ensure uniqueness in reverse time, the reverse-time trajec-
tory must “encounter” triggering hypersurfaces transversally. (Though keep in
mind these hypersurfaces are really only defined for the forward trajectory.) The
situations presented in Figure 2 illustrate reverse-time non-uniqueness when this
transversality condition is not satisfied. In both illustrations, the post-event seg-
ment of the trajectory could have originated from the dotted trajectory, rather
than the actual pre-event (solid) trajectory.

Note that the two cases depicted in Figure 2 are structurally quite different.
In Figure 2(a), reverse-time non-uniqueness persists under perturbations in the
initial conditions, whereas for Figure 2(b), perturbations destroy that property.
However this latter case has an interesting sliding interpretation when the trig-
gering hypersurface is common to both the pre- and post-trigger subsystems.
Referring to Figure 2(b), consider trajectories that emanate from either subsys-
tem and encounter the triggering hypersurface just above the switching point of
the nominal trajectory (the switching that induces reverse-time non-uniqueness).
Those trajectories will slide along the hypersurface until they reach that pivotal
switching point. From there they will depart the hypersurface and follow the
post-switching trajectory shown in the figure. The pivotal switching point sepa-
rates the sliding region from that associated with well-behaved switching.

Keep in mind that this sliding interpretation is only appropriate when the
triggering hypersurface is common to both subsystems. Corollary 2 is more gen-
erally applicable.

6 Impulses at Events

The hybrid system model established in Section 4 and used through Section 5
assumed continuity of x at events. However results can be generalized to allow
impulses at events. Assume the impulse mapping at event i → j has the form

x+ = hij(x−)

where hij : R
n → R

n is a diffeomorphism, and x+, x− refer to the values of the
state just after, and just prior to, the event respectively6.

It is shown in [14] that with the inclusion of impulse effects, the sensitivity
transition matrix jump conditions (12)-(14) become

Φ(δ, x(τ−)) = Dh + (fj − Dhfi)
∇sT

ij

∇sT
ijfi

(16)

where Dh � ∂hij

∂x . In this case, Theorem 1 takes a slightly modified form.

Theorem 3. For nonsingular Dh, the sensitivity transition matrix Φ(δ, x(τ−))
is singular if and only if ∇sT

ijDh−1fj = 0.

6 An implicit impulse mapping h̆ij(x+, x−) = 0 is also acceptable, though not used
here.
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Proof: The proof is similar to that of Theorem 1. With Dh nonsingular,

det Φ(δ, x(τ−)) = det(Dh) det

(
I + (Dh−1fj − fi)

∇sT
ij

∇sT
ijfi

)

= det(Dh)

(
1 +

∇sT
ij

∇sT
ijfi

(Dh−1fj − fi)

)

= det(Dh)

(
∇sT

ijDh−1fj

∇sT
ijfi

)
.

Given that Dh is nonsingular, singularity of Φ(δ, x(τ−)) corresponds to
∇sT

ijDh−1fj = 0.
�

The condition established in Theorem 3 has a very similar interpretation
to that of Theorem 1. Now though, the post-event vector field fj is translated
via Dh−1 back to a pre-event coordinate system, where transversality is again
required for nonsingularity.

7 Homotopy Algorithm

To first order, deviations in a trajectory at time t are given by (7). If Φ(t, x0)
is singular then a deviation δx0 that coincides with the null-space7 of Φ(t, x0)
results in δx(t) = 0. As mentioned in Section 5, under such conditions φ(t, x0)
maps a continuum of x0 to a single point x(t). In fact, if Φ(t∗, x0) has rank
deficiency k, then x(t∗) = φ(t∗, x0) defines a k-manifold.

If Φ(t∗, x0) has a single zero eigenvalue, then

Σ = {x0 : φ(t∗, x0) − x(t∗) = 0} (17)

describes a 1-manifold, or curve. Homotopy methods can be used to generate suc-
cessive points along such curves. An Euler homotopy provides a robust predictor-
corrector algorithm [18].

Assume a point x̄0 on Σ is known. (This is a straightforward initial value
problem.) The first step of the homotopy algorithm is the (first order) prediction
of the next point on the curve. This is achieved by finding the vector that is tan-
gent to Σ at x̄0. This tangent vector is nothing more than the (normalized) right
eigenvector v of Φ(t∗, x̄0) corresponding to the zero eigenvalue. The prediction
of the next point is obtained by moving along v a predefined distance τ ,

x0,pred = x̄0 + τv,

where

Φ(t∗, x̄0)v = 0 (18)
‖v‖ = 1. (19)

7 The null-space is spanned by the right eigenvectors corresponding to zero eigenvalues.
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Having found the prediction point, we now need to correct to a point x0 on the
curve. The Euler method does this by solving for the point of intersection of the
curve and a hyperplane that passes through x0,pred and that is orthogonal to v.
Points x0 on this hyperplane are given by,

(x0 − x̄0)T v = τ. (20)

The point of intersection of the curve and the hyperplane is therefore given by

φ(t∗, x0) − x(t∗) = 0 (21)

(x0 − x̄0)T v = τ. (22)

Note though that (21)-(22) describe n + 1 equations in n unknowns. However
the rank deficiency of (21) suggests that one of those equations is redundant,
and so can be discarded. It remains to determine which equation to discard.

Newton-Raphson solution of (21)-(22) proceeds via the iteration formula[
Φ(t∗, x0)

vT

]
∆x0 =

[
φ(t∗, x0) − x(t∗)
(x0 − x̄0)T v − τ

]
(23)

where Φ(t∗, x0) is singular, with a single zero eigenvalue. Solution of (23) re-
quires that uT (φ(t∗, x0) − x(t∗)) = 0, where u is the left eigenvector of Φ(t∗, x0)
corresponding to the zero eigenvalue. In other words, u describes the linear
dependence between the first n equations of (23). This implies that the best
equation to discard from (21) is that corresponding to the element of u with the
largest absolute value.

The next point on the curve is therefore given by Newton-Raphson solution of

F (x0) ≡
[

φ(t∗, x0) − x(t∗)
(x0 − x̄0)T v − τ

]
= 0 (24)

which utilizes the (nonsingular) Jacobian

DF (x0) =
[

Φ(t∗, x0)
vT

]
, (25)

where underlining in (24) and (25) indicates that the appropriate equation has
been discarded.

8 Examples

8.1 Example 1

As indicated in Section 5, anti-wind-up limits provide a common situation where
reverse-time transversality is not possible. This can be illustrated using a simple
example that consists of a linear continuous-time system

ẋ =
[−1 2

−2 −1

]
x
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together with an anti-wind-up limit restricting x1 ≤ 0.4. In terms of the hybrid
system representation of Section 4, this system may be modelled as

ẋ = f1(x) =
[−1 2

−2 −1

]
x (subsystem 1)

ẋ = f2(x) =
[

0 0
−2 −1

]
x (subsystem 2)

with transitions from subsystem 1 to 2 triggered when

s12(x) = x1 − 0.4 = 0

and from subsystem 2 to 1 when

s21(x) = [−1 2]x = 0.

This latter condition ensures ẋ1 < 0 after switching, so behaviour is directed
away from the limit surface. The response of this system for initial conditions
x0 = [0 1]T is shown as a solid line in Figure 3.

At the instant prior to the limit being encountered (event triggering), the
sensitivity transition matrix Φ(τ−, x0) had eigenvalues 0.64± j0.40. However for
this event,

Φ(δ, x(τ−)) =
[

0 0
0 1

]
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which clearly has a zero eigenvalue, with corresponding left eigenvector ∇sij =
[1 0]T .

The homotopy algorithm was used to locate other initial points that reached
the same final point at the same time. These are shown in Figure 3 as dashed
lines. Once the limit is encountered, the trajectories are indistinguishable. All
are well defined in forward time, but there is no unique reverse-time trajectory.

8.2 Example 2

Behaviour of the form shown in Figure 2(b) can be illustrated using the simple
hybrid system,

ẋ = f1(x) =
[

0
1

]
(subsystem 1)

ẋ = f2(x) =
[

1
x1

]
(subsystem 2)

with transitions from subsystem 1 to 2 triggered when

s12(x) = x2 = 0.

The solid line in Figure 4 shows the trajectory given by initial conditions x0 =
[0 −1]T . The singularity condition of Theorem 1 occurs at the switching point
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Fig. 6. Generator field voltage response

x = [0 0]T , implying the trajectory is not unique in reverse time. This non-
uniqueness is confirmed by the dashed trajectory which starts at x0 = [−1 0.5]T ,
but coincides with the nominal trajectory from the point x = [0 0]T onwards.

If transitions from subsystem 2 to 1 were triggered when

s21(x) = s12(x)

then all trajectories emanating from below the dashed line would slide along the
x1-axis until reaching the point x = [0 0]T . From there they would all follow the
nominal trajectory shown.
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8.3 Example 3

A more elaborate power system case has also been considered. In this case,
generators were represented by a sixth order nonlinear model [19], and equipped
with the excitation system shown in Figure 5. This system includes clipping
limits on the stabilizer output VPSS , and anti-windup limits on the field voltage
Efd. The response of the generator field voltage Efd to a fault is shown in
Figure 6. Note that this trajectory is quite non-smooth, as is typical for power
systems.

At 0.086 sec, the anti-windup limit was encountered. As anticipated, the sen-
sitivity transition matrix Φ(δ, x(0.086−)) was singular, with a single zero eigen-
value at that event. The homotopy algorithm was again used to locate initial
points that converged to the same final point at the same final time. Results are
shown in Figure 7. The solid line corresponds to the original case. The dashed
trajectories originate from points given by the homotopy. Note that all curves
converge at 0.086 sec.

9 Conclusions

Hybrid system solutions are composed of periods of smooth behaviour sepa-
rated by discrete events. Standard transversality conditions can be established to
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ensure transitions through events are well behaved. However certain applications,
such as the adjoint equations in dynamic embedded optimization, require the
evaluation of behavior in reverse time. Standard transversality conditions are
not sufficient in that case. It is shown in the paper that another reverse-time
transversality-type condition must be satisfied to ensure a unique reverse-time
mapping through events.

When reverse-time trajectories are not well-posed, two situations may arise.
In the first case, a continuum of initial conditions can be found for trajecto-
ries that all reach the same point in state-space at the same time. It has been
shown that when this continuum is a 1-manifold, a predictor-corrector homo-
topy method can be used to trace that curve. Alternatively, trajectories ex-
hibiting reverse-time non-uniqueness may be isolated. In that case, under the
special condition that the event triggering hypersurface is common to both the
pre- and post-event subsystems, the ill-posed trajectory separates (reverse-time
non-unique) sliding behaviour from well-defined switching.
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