
Proceedings of the 35th FM07 2:30
Conference on Daoision end Control
Koba, Japan ● December 1996

Lyapunov Function Analysis of Power Systems with
Dynamic Loads

Ian A. Hiskens Robert J. Davy
Department of Electrical and Computer Engineering

The University of Newcastle
Callaghan, NSW, 2308, Australia

ianh@ee. newcastle.edu. au

870
Abstract

A recently developed Lyapunov (energy) function in-
corporates both generator and load dynamics. This pa-
per reviews that energy function. Its use in the assess-
ment of the stability of power systems where generator
and load dynamics are active is presented. Further,
generator/load interaction is explored. This new en-
ergy function allows for direct assessment of (dynamic)
voltage collapse scenarios. It provides an analytical ba-
sis for establishing critical capacitor and load switching
times. These issues are considered.

1 Introduction

Application of energy function ideas to power systems
was originally motivated by the desire for rapid assess-
ment of intermachine (angle) stability [12]. This was a
natural focus, as power system stability was typically
concerned with ensuring that the angles between ma-
chines remained bounded. Instability occurred when
angle differences increased to the point where there was
pole slipping (and subsequent machine tripping). Re-
cently however, other (network related) dynamic phe-
nomena have also had a major influence on system
planning and operation. These phenomena are gener-
aJlyreferred to as voltage instability or voltage collapse
[4].

Voltage collapse can occur over different time frames.
A transient form of voltage collapse occurs when net-
work voltages decline rapidly in response to an increase
in intermachine angles [8, 14]. This form of voltage col-
lapse is closely related to singularity of the algebraic
equations of the power system model. Energy function
analysis of this situation is presented in [7, 14]. In that
analysis, loads are modelled as statically dependent on
voltage.

However in the more traditional
lapse, the dynamic behaviour of
role [6]. In response to a voltage

0-7803-3590-2/96$5.00@ 1996IEEE

view of voltage col-
loads plays a major
step, loads often ex-
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Figure 1: Generic load response

hibit dynamic recovery of the form shown in Figure 1
[5, 10]. In a weakened system, this restoration of load
at reduced voltage can lead to a continuzd decline in
voltage. Ultimately the process ends in cascaded pro-
tection operation and/or machine (angle) instability.

It is appealing to consider the extension of energy func-
tion techniques to situations where both generator and
load dynamics are active. This has been made possible
by a recent extension [3] of the ‘structure preserving’
energy function to incorporate dynamic load behaviour
of the form shown in Figure 1. Of particular interest
is the direct assessment of (load driven) voltage insta-
bility. In that case, limits on reactive power sources
must be taken into account. That extension of energy
functions is described in [9].

Traditionally angle stability and voltage stability is-
sues have been treated separately. However angles and
voltages are all states of the one system, and so must
interact. Certainly there can be a time scale separation
between angle and voltage effects. However that is not
necessarily always the case. For example, in the volt-
age collapse scenario, frequently machine separation is
the ultimately mode of failure [8]. Further, dynamic
loads which have a comparatively fast response time



can interact with intermachine oscillations to tiect the
damping of those oscillations [11]. This generator (an-
gle) – load (voltage) interaction will be considered in
this paper from an energy function perspective.

Energy functions offer a number of benefits in the anal-
ysis of system stability [13]. These include direct (fast)
assessment, and the provision of a ‘measure’ of system
stability. These benefits have previously been recog-
nized for angle stability assessment, but can now be
extended to situations where load dynamics are im-
portant, such as voltage instability phenomena. Also,
critical clearing time ideas can be extended to appli-
cations such as determining critical capacitor or load
switching times for alleviating voltage collapse.

The paper is structured as follows. In Section 2 we pro-
vide an outline of the load and system modelling details
that are necessary for establishing the energy function.
Section 3 then gives an energy function that incorpo-
rates generator and load dynamics. Energy function
analysis of generator/load systems is presented in Sec-
tion 4. Conclusions are given in Section 5.

2 Modelling

2.1 System model
In extending the structure preserving model to incor-
porate load dynamics, the usual assumptions relating
to system modelling shall be made. Therefore syn-
chronous machines are represented by the classical ma-
chine model, with dynamics given by the usual swing
equations,

Mihgi + Dg,wgi + PELEC, = l’~, (1)

Also, the network is assumed to be lossless. Ftdl details
can be found in [7].

Let the complex voltage at the ith bus be the (time
varying) phasor ViZ6i where di is the bus phase an-
gle with respect to a synchronously rotating reference
frame. The bus frequency deviation is given by Wi = hi.
We shall use the machine reference model, so that
all angles are referenced to the nth bus angle, i.e.,
aa = d~– dn. Define,

a = [CZ1, ....J–J.
~ = [%o+l, ....WJ

x= [vi,...,vn]~

2.2 Load model
In the development of strict Lyapunov functions of the
form commonly used in power system analysis, it is
necessary to assume real power demand is given by [7],

Pd, (wi) = P:, + tiiDli (2)
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We wish to allow reactive power load to have a dynamic
response of the form shown in Figure 1. A model which
captures that behaviour is given by [5],

Tqiiq, = –zqi + Q;, – Qt, (I@ (3)

QLi (X>d = ~~i + Qti (’K)
(4)

where x~i is an internaJ state of the load. To ensure
that a strict Lyapunov function is obtained, it is nec-
essary to restrict the reactive power transient response
to,

(5)

This form for Q~i(Vi) is rather unusual. However the
free parameters in the model, i.e., Q~i and pi, can be
varied to provide a good (local) approximation to the
more usual exponential form for Qti (Vi). This is illus-
trated in [3].

In the model (3), the steady state load characteristic
Q:, is a constant. This restriction is not necessary
though. It is shown in [3] that the Lyapunov function
can be easily adapted to allow for a voltage dependent
characteristic Qs~(Vi) of the form given in (5).

3 Lyapunov (Energy) Function

The complete model for the system with dynamic re-
active power loads is assembled in [3]. A Popov crite-
rion analysis is undertaken to obtain the corresponding
Lyapunov (energy) function,

It is interesting to consider the terms of this energy
function which are introduced by the dynamic be-
haviour of reactive power loads. Comparisons with the
static load energy function reveal that the second term
of (6) results from the load dynamics. The fifth and
sixth terms also appear to be quite different. However
it is shown in [3] that these latter terms can be replaced
by
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which is very similar to the corresponding term of the
static load energy function. Interestingly, both func-
tions give exactly the same value of energy at equilib-
rium points (EPs).

For a power system with no generator or load damping,
V along trajectories is given by,

‘o-m Tqi (tiq,)2
v=-~ ~;,

;=1 .

i.e., the dynamics of the reactive power
damping in the system.

(7)

loads provide

As mentioned earlier, this new Lyapunov function re-
lies on the usual assumptions that the system is loss-
less, and that reaJ power loads are constant. This of
course does not reflect realistic system conditions. A
number of numerical approximations have been devel-
oped for the static load case to overcome these restric-
tions [13]. These approximations are just as applicable
for the dynamic load energy function. The resulting
energy functions do not (generally) satisfy strict Lya-
punov function properties. However they have proven
to be useful for stability analysis of real systems [1].

4 Energy Function Analysis

4.1 Stability analysis
The use of energy function techniques for analysing the
stability of power systems is well documented [13]. The
first step is to find a critical value of energy V. such that
the region of state space defined by {Z : v(~) < v.}
provides a good estimate of the region of attraction.
A number of different methods have been proposed for
finding V.. The ‘controlling UEP’ method is a com-
mon choice [2, 13]. In that case, the critical energy is
given by the potential energy of the unstable equilib-
rium point (UEP) associated with a particular (con-
trolling) mode of instability. There are a number of
issues relating to finding the controlling UEP. However
they are beyond the scope of this paper. Details can
be found in [2].

The second step is to determine the system energy at
the beginning of the post-disturbance period, i.e., the
energy acquired during the disturbance. If that energy
is less than Vc, the system will be stable. Otherwise it
may be unstable. These ideas will now be illustrated.

The aim of the examples is to explore the characteris-
tics of the new Lyapunov function (6). It is therefore
convenient to use simple illustrative power systems.
However the ideas extend naturally to large systems.
Also, the examples satisfy the modelling assumptions
which underlie the (strict) Lyapunov function. Relax-
ation of these assumptions for practical analysis was
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discussed in Section 3.

The two machine, single load system of Figure 2 in-
volves both generator and load dynamics. For a rea-
sonably heavy load, the operating point, or stable equi-
librium point (SEP), is accompanied by a nearby UEP.
For this system there is only one UEP, so it is necessar-
ily the controlling UEP. The power flow solutions for
the SEP and UEP are given in Tables 1 and 2 respec-
tively.

y =1.0pu v, v, = l.opu
e,+ e, e,

jO.6 jO.5

1

— ‘1P ~
Q(xq,V,)

P:, P:,

Figure 2: Two generator, single load system

Table 1: SEP power flow

1 1 , ,

3 I 0.4588 I 40.84 ) -0.2 I -0.4000

Table 2: UEP power flow

The inertia of the generator at bus 1 was set to a large
value, so that the bus acted as an infinite bus. The
generator at bus 2 had an inertia constant of O.lpu.
Machine damping was set to zero to allow investigation
of load damping effects. Load parameters were: T~ =
l. Osec, Q: = 0.4Pu, Q; = O.lpu, p = 0.2Pu.

The potential energy of the UEP was evaluated aa Vc =

0.0404Pu. As mentioned in Section 3, this energy is
independent of load dynamics.

The system was faulted by opening the feeder between
buses 1 and 3. The feeder was returned to service when
system energy reached the critical value Vc = 0.0404Pu.
Figure 3 shows the behaviour of energy for this case.
The damping provided by the dynamic load is indicated
by the steady decline in energy following fault clearing.
The system is clearly stable. The load damping leads
to conservativeness in the stability estimate. It was
found that the energy at clearing time could be as high



as 0.047pu before instability occurred. This represents
a margin of approximately 16%. The initial portion
of the trajectory corresponding to the critically cleared
case is shown in Figure 4. This three dimensional plot
shows potential energy on the vertical axis. The poten-
tial energy well, a characteristic of energy functions, is
clearly evident in this figure. Notice that the first os-
cillation passes close to the UEP, but the second swing
shows that significant damping has occurred.

System energy
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Figure 3: System cleared at UEP energy
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Figure 4: Stable trajectory in a potential energy well
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The amount of load damping was reduced by reducing

Q: by a factor of 10. The reactive power load and load
state were then less sensitive to voltage variations. In
this case the conservativeness of the stability estimate
was less than 2.7Y0.

The controlling UEP method is based on the assump-
tion that when a system goes unstable, it will pass close
by the UEP of interest. However is systems with dy-
namic loads, that may not always be the case. Two fac-
tors have a significant influence, 1) the transient voltage
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dependence of the load, and 2) the load time constant.

At a UEP, the demand of a dynamic load is given by its
steady state characteristic QS(V). If the transient char-
acteristic Qt (V) is significantly more sensitive to volt-
age, then the system may not (initially) pass near the
UEP. The load time constant plays an important role
in the transition from behaviour dominated by Qt (V)
to behaviour given by Q,(V).

The system may not pass near the controlling UEP if
machine and load behaviour can be decomposed into
slow and fast subsystems. If a load time constant is
short, the load dynamics behave as a singular perturba-
tion to the machine dynamics. The energy associated
with the load is then quite distinct from the energy
due to the machines. After fault clearing the total en-
ergy may be higher than the energy of the UEP, since
the energy associated with the load is quickly built up
and dissipated. An extreme example of this is shown
in Figure 5. The load time constant was decreased to
0.01 seconds. (Alternatively the machine inertia could
have been increased). When the fault occurred, energy
built up very quickly. However energy was quickly dis-
sipated when the fault was cleared. Some energy due to
machine motion remained. The phase portrait shows
these two distinct modes of system behaviour.
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Figure 5: System behaviour with short time constant

If the load time constant is relatively long, then load
behaviour (in the short term) will be given by the tran-
sient voltage characteristic. Therefore the disturbed
system may not pass near the UEP. This is shown in
Figure 6, where the load time constant WaSadjusted to
50 seconds. With almost no damping, system energy is
sustained at a value well above that of the UEP. The
phase portrait again shows a decomposition of system
beahviour. The load state has moved very little, even
though angles are deviating quite significantly. Ulti-



mately, as the load does respond, the system may ap-
proach the UEP and go unstable. However this would
be a slow process.

System energy
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Figure 6: System behaviour with long time constant

In cases where the controlling UEP method is unre-
liable, for example due to time scale decoupling ef-
fects, the ‘potential energy boundary surface’ (PEBS)
method [13] may be used to obtain a less-conservative
estimate of the critical energy.

4.2 Load system analysis
The system shown in Figure 7 will be used to illustrate
the stability analysis of load systems. Load parameters
are given in Table 3. Bus 1 is
are no generator dynamics.

o

an infinite bus, so there

v, =1.opu
, e,=o v,

1
P,
Q~x,,,V3)

Figure 7: Dynamic load system

Bus
number Tq Q: Q; P

2 4.0 0.4 0.3 0.05

3 1.0 0.4 1.0 0.2

Table 3: Load parameters

In this case the system was disturbed by increasing the
impedance between buses 1 and 2. With no corrective
38
switching action, the system was unstable. The voltage
at bus 2 steadily declined. This is shown in Figure 8.
However stability could be maintained by switching a
shunt capacitor (with a susceptance of 0.4pu) before
the system acquired energy equal to the critical value
Vc given by the controlling UEP. Time domain simula-
tion of this stable case is also shown in Figure 8, along
with a delayed switching case. A potential-energy-well
view of critical capacitor switching is shown in Fig-
ure 9. This clearly illustrates the significance of the
UEP energy in determining the critical switching time.
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Figure 8: Critical capacitor switching

Figure 9: Energy view of critically switched system

An energy-type analysis of critical capacitor switching
was undertaken in [15]. This example reinforces the
value of such an approach. However the ideas can now
be justified on the basis of rigorous Lyapunov stability
arguments.
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5 Conclusions

Energy function techniques have long been recognized
as a useful way of analysing machine (angle) stability.
By using an energy function which incorporates the
effects of load dynamics, these techniques can be ex-
tended to systems where generators and loads interact
dynamically. In fact, direct assessment of (dynamic)
voltage collapse is possible. This is illustrated in the
paper. The controlling UEP method is used to deter-
mine the critical switching time of a capacitor. Delayed
switching results in voltage collapse.

In systems with dynamic loads, unstable trajectories
may not always pass close by a UEP. Two factors have
a significant influence, 1) the transient voltage depen-
dence of the load, and 2) the load time constant. In
particular, if machine and load behaviour can be de-
composed into slow and fast subsystems, then the rele-
vance of the UEP may be diminished. Potential energy
boundary surface (PEBS) ideas then become impor-
tant.
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