
Distributed Output Feedback MPC for Power System Control

Aswin N. Venkat, Ian A. Hiskens, James B. Rawlings and Stephen J. Wright

Abstract— In this paper, a distributed output feedback
model predictive control (MPC) framework with guar-
anteed nominal stability and performance properties is
described. Distributed state estimation strategies are de-
veloped for supporting distributed output feedback MPC
of large-scale systems, such as power systems. It is shown
that under certain (easily verifiable) conditions, local mea-
surements are sufficient for observer stability. More gen-
erally, stable observers can be designed by exchanging
measurements between adjacent subsystems. Both estima-
tion strategies are suboptimal, but the estimates gener-
ated converge exponentially to the optimal estimates. A
disturbance modeling framework for achieving zero-offset
control in the presence of nonzero mean disturbances and
modeling errors is presented. Automatic generation control
(AGC) provides a practical example for contrasting the
performance of centralized and distributed controllers.

I. INTRODUCTION

Control of large, networked systems has traditionally
been achieved by designing local, subsystem-based
controllers that ignore the interactions between the
different subsystems. It is well known that such a
decentralized control philosophy may result in poor
system-wide control performance if the subsystems
interact significantly. Centralized MPC, on the other
hand, is impractical for control of large-scale, geograph-
ically expansive systems, such as power systems. A
distributed MPC framework becomes necessary. Such a
control strategy was established in [1], where iterative
exchange of information between subsystems allowed
the performance benefits of centralized MPC to be
realized. An overview of this state feedback controller
is provided in Sections III and IV .

The state information required by the distributed
MPC strategy is not available in many applications.
A state estimation process is therefore required. Cen-
tralized state estimation is inconsistent with the goal
of distributed control. The paper addresses this issue
by establishing two distributed estimation procedures,
one that relies on local measurements only, and the
other that requires limited exchange of measurement
information with adjacent subsystems.

Developing techniques to integrate subsystem-based
MPCs is both a challenge and an opportunity. The
potential requirements and benefits of cross-integration
within the MPC framework has been discussed in [2],
[3]. A distributed MPC algorithm for unconstrained,
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linear time-invariant (LTI) systems in which the dy-
namics of the subsystems are influenced by the states of
interacting subsystems has been described in [4], [5]. In
the above mentioned distributed MPC framework, the
only information transferred between subsystem-based
MPCs (agents) are their current policies. Competing
agents have no knowledge of each others cost/utility
functions. It is known that such strategies in which
competing agents have no knowledge of each oth-
ers cost functions converge to the Nash equilibrium
(NE) [6], which is usually suboptimal in the Pareto
sense [7], [8].

Automatic generation control (AGC) provides a top-
ical example for illustrating the performance of dis-
tributed MPC in a power system setting. The purpose
of AGC is to regulate the real power output of genera-
tors, with the aim of controlling system frequency and
tie-line interchange [9]. AGC must account for various
limits, including restrictions on the amount and rate of
generator power deviations.

Flexible AC transmission system (FACTS) devices
allow control of the real power flow over selected paths
through a transmission network [10] . As transmission
systems become more heavily loaded, such controlla-
bility offers economic benefits [11] . However FACTS
controls must be coordinated with each other, and
with AGC. Distributed MPC offers an effective means
of achieving such coordination, whilst alleviating the
organizational and computational burden associated
with centralized control.

II. MODELS

Distributed MPC relies on decomposing the overall
system model into appropriate subsystem models. A
system comprised of M interconnected subsystems will
be used to establish these concepts.

A. Centralized model
The overall system model is represented as a discrete,

linear time-invariant (LTI) model of the form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (1)

in which k denotes discrete time (A,B) stabilizable,
(A,C) detectable and

A =

2
6666664

A11 A12 . . . A1M

...
...

. . .
...

Ai1 Ai2 . . . AiM

...
...

. . .
...

AM1 AM2 . . . AMM

3
7777775

B =

2
6666664

B11 B12 . . . B1M

...
...

. . .
...

Bi1 Bi2 . . . BiM

...
...

. . .
...

BM1 BM2 . . . BMM

3
7777775

C =

2
6664

C11 0 . . . 0
0 C22 . . . 0

...
...

. . .
...

0 . . . . . . CMM

3
7775 u =

ˆ
u1

′ u2
′ . . . uM

′˜ ′

x =
ˆ
x1

′ x2
′ . . . xM

′˜ ′
y =

ˆ
y1

′ y2
′ . . . yM

′˜ ′
.
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We use the notation {1,M} to denote the sequence of
integers 1, 2, . . . M . For each subsystem i ∈ {1,M}, the
triplet (ui, xi, yi) represents the subsystem input, state
and output vector respectively with ui ∈ Rmi , xi ∈ Rni

and yi ∈ Rzi . Define n =
∑

i ni,m =
∑

i mi and z =∑
i zi.

B. Decentralized model
In the decentralized modeling framework, the effect

of the external subsystems on the local subsystem is
assumed to be negligible. The decentralized model for
subsystem i, i ∈ {1,M} is written as

xi(k + 1) = Aiixi(k) + Biiui(k)

yi(k) = Ciixi(k) (2)

C. Compound models (CM)
The CM for each subsystem i combines the effect of

the local subsystem variables as well as the effect of the
states and inputs of the interconnected subsystems. The
CM for subsystem i follows directly from (1) and can
be written as

xi(k + 1) = Aiixi(k) + Biiui(k) +
X
j �=i

(Aijxj(k) + Bijuj(k))

yi(k) = Ciixi(k) (3)

III. DISTRIBUTED MPC
A. Preliminaries

The compound models for each subsystem i ∈
{1,M} are assumed to be available. For the class of dis-
tributed MPC methods considered in this work, an it-
eration and exchange of variables between subsystems
is performed during a sample time. We may choose
not to iterate to convergence. The iteration number is
denoted by p.

The set of admissible controls for subsystem i,Ωi ⊆
Rmi is assumed to be a nonempty, compact, convex set
containing the origin in its interior. For convenience,
we define

Ωi = {ui ∈ Rmi |Diui ≤ di, di > 0} (4)

The set of admissible controls for the whole plant Ω is
defined to be the Cartesian product of the admissible
control sets of each of the subsystems. For subsystem
i at time k, the predicted state vector at time t > k is
denoted by xi(t|k). By definition xi(k|k) ≡ xi(k).

The cost function for subsystem i is defined over an
infinite horizon and written as

φi (xi, ui; xi(k))

=
1

2

∞X
t=k

xi(t|k)′Qixi(t|k) + ui(t|k)′Riui(t|k) (5)

in which Qi > 0, Ri > 0 are symmetric weighting
matrices and xi(k) = [xi(k + 1|k)′, xi(k + 2|k), . . . . . .] ′ and
ui(k) = [ui(k|k)′, ui(k + 1|k)′, . . . . . .] ′.

Previous papers [12], [1], discuss existing distributed
MPC strategies and their drawbacks. In particular,
the unreliability of the class of communication-based
strategies 1, in which each subsystem’s MPC has no
information about the objectives of the interconnected
subsystems’ MPCs, is demonstrated.

1Similar strategies have been proposed by [4], [5]

B. Feasible cooperation-based MPC (FC-MPC)
To arrive at a reliable, distributed, systemwide MPC

framework, we modify the objectives of the subsys-
tems’ MPCs to provide a means for cooperative be-
havior among the controllers. Each local controller
objective φi is replaced by one that measures the
systemwide impact of local control actions. Here, we
choose the simplest such measure, the overall plant ob-
jective which is a strong convex combination of the in-
dividual subsystems’ objectives i .e., φ =

∑
wiφi, wi >

0,
∑

wi = 1 2.
For notational simplicity, we drop the time depen-

dence of (xp
i (k),up

i (k)) and represent it as (xp
i ,u

p
i ). The

control horizon is denoted by N . For each subsystem i
at iteration p, only the subsystem input sequence up

i is
optimized and updated. The other subsystems’ inputs
are not altered during this optimization; subsystem i
holds their values at up−1

j , j �= i.
In large-scale implementations, the system sampling

interval may be insufficient for convergence of the iter-
ative, cooperation-based algorithm. In such cases, the
cooperation-based algorithm has to be terminated prior
to convergence of the exchanged input trajectories. The
last calculated input trajectories are used to define a
suitable control law. To facilitate intermediate termina-
tion, it is imperative that all iterates generated by the
cooperation-based algorithm are systemwide feasible
(i.e., satisfy all model and inequality constraints) and
the resulting distributed control law is closed-loop
stable. In the following section, a distributed MPC
algorithm (Algorithm 1) that maintains strict feasibility
of all intermediate iterates is described. Algorithm 1
also allows the definition of a distributed control law
(for both state and output feedback) that assures nom-
inal closed-loop stability for all values of the iteration
number.

Define the finite sequences xi(k)
′

= [xi(k +
1|k)

′
, . . . , xi(k + N |k)

′
] and ui(k)

′
= [ui(k|k)′, ui(k +

1|k)
′
, . . . , ui(k + N − 1|k)

′
]. For convenience, we drop

the k dependence of xi and ui. It is shown in [1] that
for each i ∈ {1,M}, xi can be expressed as

xi = Eiiui + fiixi(k) +
X
j �=i

[Eijuj + fijxj(k)]. (6)

in which Eij , fij are functions of the subsystem model
matrices Aij , Bij , ∀ i, j ∈ {1,M}.

The input trajectory ui is obtained by augmenting
ui with the input sequence ui(t|k) = 0, k + N ≤ t. The
state trajectory xi is derived from xi by propagating
the terminal state xi(k + N |k) using (3) and ui(t|k) =
0, k+N ≤ t,∀ i ∈ {1,M}. For subsystem i, the FC-MPC
optimization problem is

min
ui

MX
r=1

wrΦr

“
up−1

1 , . . . , up−1
i−1 , ui, u

p−1
i+1 , . . . , up−1

M ; xr(k)
”

(7a)
subject to

ui(j|k) ∈ Ωi, k ≤ j ≤ k + N − 1 (7b)
ui(j|k) = 0, k + N ≤ j (7c)

2In contrast, each communication-based MPC optimizes over its
local objective. Convergence of this formulation is assumed and is
therefore a drawback. At convergence of communication-based MPC,
the NE solution (suboptimal) is obtained.
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The cost function Φi(·) is obtained by eliminating the
state trajectory xi from (5). The solution to the above
optimization problem is denoted by u

p(∗)
i . By defini-

tion,

u
p(∗)
i

′ = [up(∗)
i (k|k)′, up(∗)

i (k+1|k)′, . . . , up(∗)
i (k+N−1|k)′]

Details of the state feedback distributed MPC frame-
work for stable power systems is available in [1]. A
brief description is included in this paper for the sake
of completeness.

IV. IMPLEMENTABLE FC-MPC ALGORITHM

For φi(·) convex, quadratic (5), the FC-MPC opti-
mization problem for each subsystem i ∈ {1,M} can be
written explicitly. Details of the optimization problem
are given in Appendix A.

A. FC-MPC algorithm and properties
The state sequence generated by the input sequence

u and initial state z is represented as x(u;z). The
following algorithm is employed for cooperation-based
distributed MPC.

Algorithm 1:
Given

`
u0

i , xi(k)
´
, Qi ≥ 0, Ri ≥ 0, i ∈ {1, M}

pmax(k) ≥ 0 and ε > 0
p ← 1, ρi ← Γε, Γ � 1
while ρi > ε for some i ∈ {1, M} and p ≤ pmax

do ∀ i ∈ {1, M}
u

p(∗)
i ∈ arg min FC-MPCi, (see (7), (24))

end (do)
for each i ∈ {1, M}

up
i = wiu

p(∗)
i + (1 − wi) up−1

i

ρi = ‖up
i − up−1

i ‖
end (for)
Transmit up

i , ∀ i ∈ {1, M} among interconnected subsys-
tems.

xp
i ← x

[u
p
1 ,u

p
2 ,...,u

p
M

];x(k))

i , ∀ i ∈ {1, M}
p ← p + 1

end (while)
Denote the cooperation-based cost function after p it-
erates by Φ([up

1,u
p
2, . . . ,u

p
M ];x(k)). Therefore,

Φ([up
1, up

2, . . . , up
M ]; x(k)) =

MX
r=1

wrΦr
`
[up

1, up
2, . . . , up

M ]; xr(k)
´

The following properties can be established for the
FC-MPC formulation (7), (24) employing Algorithm 1.

Lemma 1: Given the distributed MPC formulation
FC-MPCi defined in (7) and (24), ∀ i ∈ {1,M}, the
sequence of cost functions {Φ([up

1,u
p
2, . . . ,u

p
M ];x(k))}

generated by Algorithm 1 is a nonincreasing function
of the iteration number p.

Using Lemma 1 and the fact that Φ(·) is bounded
below assures convergence.

Lemma 2: All limit points of Algorithm 1 are optimal.
Lemma 2 implies that the solution obtained at con-

vergence of Algorithm 1 is within a pre-specified tol-
erance of the centralized MPC solution.

B. Distributed MPC control law under state feedback
Let X represent the constrained stabilizable set for

the system under the set of input constraints Ω1 ×
Ω2 × . . . × ΩM . At time k, let the FC-MPC algorithm
(Algorithm 1) be terminated after p(k) = q iterates, with

uq
i (x(k)) =

ˆ
uq

i (x(k), k)′, uq
i (x(k), k + 1)′, . . . ,

˜ ′, (8)
∀ i ∈ {1, M}

representing the solution to Algorithm 1 after q
cooperation-based iterates. The distributed MPC con-
trol law is obtained through a receding horizon im-
plementation of optimal control whereby the input
applied to subsystem i is

ui(k) = uq
i (k|k) ≡ uq

i (x(k), k). (9)

For open-loop stable systems, nominal exponential
closed-loop stability under the state feedback dis-
tributed MPC control law can be established for all
x(k) ∈ X and all p(k) > 0 (see [1] for details).

V. DISTRIBUTED MPC FOR UNSTABLE/INTEGRATING
SYSTEMS

For A containing unstable or integrating modes, a
terminal state constraint that forces the unstable modes
to the origin at the end of the control horizon is nec-
essary to ensure closed-loop stability in the distributed
MPC framework. Let XN denote the N-step constrained
stabilizable set for the system. It is assumed that x(k) ∈
XN . The real Schur decomposition of A is defined as

A = [Us Ue]

»
As A

Ae

– »
Us

′
Ue

′
–

in which As and Ae represent the stable and unstable
eigenvalue blocks of A respectively.

For unstable or integrating systems, the terminal
state constraint Ue

′x(k + N |k) =
∑

i Uei
′xi(k + N |k) =∑

i βi
′xi = 0 is necessary to ensure closed-loop stability.

Using (6) and (29), we define ∀ i ∈ {1,M}

Si =

MX

j=1

βj
′Eji , s ≡ s(x(k)) =

MX

j=1

βj
′gj (10)

The terminal state constraint Ue
′x(k + N |k) = 0 can

therefore be re-written as
MX

j=1

Sjuj + s = 0 (11)

An exact penalty approach is employed to enforce
the coupled input constraint (11). The FC-MPC opti-
mization problem for each subsystem i ∈ {1,M} is
written as

min
ui,v

1

2
ui

′Ru
i ui + γ

′
v +

0
@ MX

j=1

Eji
′ X

s �=j

Mjs

X
l �=i

(Eslu
p−1
l + gs)

+
MX

j=1

Eji
′
Qj

X
l �=i

(Ejlu
p−1
l + gj) + Si

′
Γ

X
j �=i

“
Sju

p−1
j + s

”1
A ′

ui

subject to
ui(j|k) ∈ Ωi, k ≤ j ≤ k + N − 1 (12a)

− v ≤ Siui +
X
j �=i

Sju
p−1
j + s ≤ v (12b)

in which
Ru

i = Ri + Si
′ΓSi, Γ = δI,

γ = σ[1, 1, . . . , 1]′, σ, δ � 1

and the terminal penalty Q (see (30)) is given by
UsΣUs

′, and is obtained as the solution to the central-
ized Lyapunov equation

As
′Σ A − Σ = −Us

′QUs (13)

At time k = 0, a feasible input trajectory for each
subsystem is generated by solving a linear program.
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Closed-loop stability for the nominal system can be
established for all x(k) ∈ XN and all p(k) > 0. However,
as a consequence of the coupled constraint (11), the
solution obtained at convergence of Algorithm 1 can
no longer be guaranteed to be optimal.

VI. DISTRIBUTED STATE ESTIMATION FOR FC-MPC

All the states of a system are seldom measured.
Estimating the states of the system from available mea-
surements constitutes a key component of any realistic
MPC formulation. Theory for centralized estimation
is well understood. For many large, networked sys-
tems, organizational and geographic constraints may
preclude the use of centralized estimation strategies.
A plant decomposition algorithm for parallel state es-
timation was proposed in [13]. A decentralized state
estimation strategy for large-scale state estimation was
described in [14].

The conditional density of the subsystem state xi,
given the set of measurements yi, ∀ i ∈ {1,M} is
assumed to be normally distributed. For each sub-
system i, the vectors wxi ∼ N(0, Qxi) ∈ Rnwi and
νi ∼ N(0, Rvi) ∈ Rzi denote the zero-mean disturbances
on the subsystem model state equation and output
equation respectively. Gi ∈ Rni×nwi denotes the shaping
matrix for the state disturbance wxi . The state and
output equation for each subsystem i ∈ {1,M} is
written as

xi(k + 1) = Aiixi(k) + Biiui(k)

+
X
j �=i

[Aijxj(k) + Bijuj(k)] + Giwxi
(14a)

yi(k) = Ciixi(k) + νi (14b)

At time k, let x̂i(k|k − 1) represent an estimate of
the states of subsystem i given measurements up to
and including time k − 1, obtained using a distributed
estimation strategy. The observer predictor equation for
subsystem i is written as

bxi(k + 1|k) = Aiibxi(k|k − 1) + Biiui(k) +
X
j �=i

»
Aij bxj(k|k − 1)

+ Bijuj(k)

–
+ Lii

»
yi(k) − Cibxi(k|k − 1)

–

+
X
j �=i

Lij

»
yj(k) − Cj bxj(k|k − 1)

–
(15)

Define

L =

2
6664

L11 L12 . . . L1M
L21 L22 . . . L2M

...
. . .

. . .
...

LM1 LM2 . . . LMM

3
7775 Ai =

2
6664

0 A12 . . . A1M
A21 0 . . . A2M

...
. . .

. . .
...

AM1 AM2 . . . 0

3
7775

Ad = diag(A11, A22, . . . , AMM ) A = Ad + Ai

Bd = diag(B11, B22, . . . , BMM ) Cd = C

Since (A,C) is detectable, a gain matrix L may be
selected to ensure the desired degree of estimator
convergence. Let x̂∗

i , i ∈ {1,M} denote the optimal
state estimate (centralized Kalman filter) and let L∗
represent the corresponding steady-state centralized
Kalman predictor gain (optimal).

A. Distributed estimation with local measurements
Let (Aii, Cii) detectable for each i ∈ {1,M}. As-

sume that the subsystems are completely decoupled
i.e., Aij = Bij = 0. For each decoupled subsystem

i ∈ {1,M}, it is possible to construct local, steady-state
observers of the form

bxd
i (k + 1|k) = Aiibxd

i (k|k − 1) + Biiui(k)

+ Ld
ii

h
yi(k) − Ciibxd

i (k|k − 1)
i

(16a)

in which Ld
ii = AiiPiiCii

′ `
Rvi + CiiPiiCii

′´−1
, (16b)

Pii = GiQxiGi
′ + AiiPiiAii

′ − Ld
iiCiiPiiAii

′ (16c)

and x̂d
i represents an estimate of the subsystem

states using the decentralized estimation strategy. Since
(Aii, Cii) detectable, (Aii − Ld

iiCii) is stable.
Let Ld = diag(Ld

11, L
d
22, . . . , L

d
MM ), ed

i (k) = xi(k) −
x̂d

i (k|k − 1) and e(k) = [e1(k)′, e2(k)′, . . . , eM (k)]′. For
the decoupled system (Ad,Bd, Cd), the set of decen-
tralized steady-state estimators are stable and optimal.
However, in general, Aij , Bij �= 0. Stability of the set
of decentralized steady-state estimators is assured iff
|λmax(H(Ld))| < 1 in which λmax denotes the maximum
eigenvalue and

H(Ld) = (Ad − LdCd) + Ai (17)

The observer predictor equation for subsystem i is

bxi(k + 1|k) = Aiibxi(k|k − 1) + Biiui(k) +
X
j �=i

[Aij bxj(k|k − 1)

+ Bijuj(k)] + Ld
ii [yi(k) − Ciibxi(k|k − 1)] (18)

B. Distributed estimation with measurement exchange
The advantage of the approach in Section VI-A is that

it requires only local measurements for subsystem state
estimation. In many situations, however, it may not
be possible to find a Ld that satisfies |λmax(H(Ld))| <
1 and gives an acceptable degree of estimator con-
vergence. The following lemma establishes a design
procedure for distributed estimation. A similar design
procedure for distributed state estimation for continu-
ous time systems is described in [15].

Lemma 3: Let (A,C) be detectable and let (Aii, Cii)
detectable for each i ∈ {1,M}. The set of steady-state
subsystem-based distributed observers given by (15)
with

• Lii = Ld
ii (from (16))

• Pii obtained as the solution to the Riccati equa-
tion (16)

• Lij = AijCjj
′(CjjCjj

′)−1

for all i, j ∈ {1,M}, j �= i, is stable. Further, the
estimator error e(k) decays to zero at the same rate
as that for the set of decentralized steady-state estima-
tors (16) designed for the system (Ad,Bd, Cd) in which
the interconnections are identically zero.

C. Suboptimality and convergence
Lemma 4: Given (A,C) detectable and τi(k) =

x̂i(k|k − 1) − x̂∗
i (k|k − 1), in which x̂i(k|k − 1) is the

subsystem state estimate obtained using the distributed
estimation strategy described in either Section VI-A or
Section VI-B, then τi(k) → 0,∀ i ∈ {1,M} exponen-
tially.

Remark 1: The distributed estimation strategies of
Sections VI-A, VI-B are both suboptimal estimation
strategies. In general, it is not possible to a priori estab-
lish which suboptimal distributed estimation strategy
will yield superior estimates. However, using Lemma 4,
we know that the subsystem state estimates obtained
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using either distributed estimation procedure (Sec-
tion VI-A or VI-B) converge to the optimal subsystem
state estimates (obtained using a centralized Kalman
filter, for example) exponentially.

VII. DISTRIBUTED MPC UNDER OUTPUT FEEDBACK
Let the states of each subsystem i ∈ {1,M} be

estimated using distributed observers designed us-
ing the approach described in either Section VI-A or
Section VI-B. At time k, let the FC-MPC algorithm
(Algorithm 1) be terminated after p(k) = q iterates.
For notational convenience, we write x̂i(k) ≡ x̂i(k|k).
The solution to Algorithm 1 after q cooperation-based
iterates is represented as

uq
i (bx(k)) =

ˆ
uq

i (bx(k), k)′, uq
i (bx(k), k + 1)′, . . . ,

˜ ′, (19)
∀ i ∈ {1, M}

The input injected into each subsystem i,under the
output feedback distributed MPC control law, is

ui(k) = ul
i(k|k) ≡ ul

i(bx(k), k). (20)

Exponential stability of the closed-loop system under
the output feedback distributed MPC control law is
assured by the following theorem, which requires that
the local observers are exponentially stable but makes
no assumptions on the optimality of the obtained state
estimates.

Theorem 1: Given Algorithm 1 and the distributed
MPC formulation (7), (24) with N ≥ 1. Let the sub-
system states be estimated using a set of distributed
steady-state observers designed using the approach
described in either Section VI-A or VI-B. If A is stable,
Q is obtained from (31), the distributed control law
defined in (20) and

Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi > 0

Ri(0) = Ri(1) = · · · = Ri(N − 1) = Ri > 0

∀ i ∈ {1, M}
then the origin is an exponentially stable equilibrium
for the closed-loop system

x(k + 1) = Ax(k) + Bu(bx(k))

in which

u(bx(k)) =
h
u

p(k)
1 (bx(k), k)′, . . . , up(k)

M (bx(k), k)′
i
′

for all x̂(k) ∈ X and all p(k) = 1, 2, . . .
A similar result can be established for systems with

unstable/integrating modes employing the FC-MPC
framework under output feedback. The details are
omitted due to space constraints.

VIII. DISTURBANCE MODELING FOR FC-MPC
Disturbance models are employed to eliminate

steady-state offset in the presence of nonzero mean,
constant disturbances. Inclusion of disturbance models
is a prerequisite in any practical MPC implementation.
Presently, the constant output disturbance model is the
most widely used disturbance model to achieve zero
steady-state offset [16], [17]. However, inspite of its sim-
plicity, the output disturbance model may lead to poor
closed-loop performance. Output disturbance models
are also unsuitable for use in plants with integrating
modes as the effects of the augmented disturbance and
the plant integrating mode cannot be distinguished.

The idea of using a input disturbance model to elim-
inate steady-state offset was first proposed by [18] for
the linear quadratic regulator (LQR).

For single MPCs [19], [20] derive conditions that
permit zero off-set control, using suitable disturbance
models, in the presence of unmodelled effects and/or
nonzero mean disturbances. In a distributed MPC
framework, many choices of disturbance models are
possible. From a practitioner’s standpoint, it is usually
convenient to use local integrating disturbances.

For each subsystem i ∈ {1,M}, the subsystem state
vector x̂i is augmented with the integrating disturbance
vector d̂i. The augmented subsystem model for subsys-
tem i is»bxibdi

–
(k + 1) = eAii

»bxibdi

–
(k) + eBiiui(k) +

X
j �=i

» eAij

»bxjbdj

–
(k) + eBijuj(k)

–
(21a)

yi(k) = eCii

»bxibdi

–
(k) (21b)

in which

eAii =

„
Aii Bd

ii
0 I

« eAij =

„
Aij 0
0 0

«

eBii =

„
Bii
0

« eBij =

„
Bij
0

«
eCii =

`
Cii P d

ii

´ ∀ i, j ∈ {1, M}, j �= i

in which d̂i ∈ Rndi , Bd
ii ∈ Rni×ndi , P d

ii ∈ Rzi×ndi . The
pair (Bd

ii, P
d
ii) represent the input–output disturbance

models for subsystem i.
Lemma 5: For each subsystem i ∈ {1,M}, let

(Aii, Cii) be detectable. The augmented model (Ãii, C̃ii)
is detectable if

rank

»
I − Aii −Bd

ii
Cii P d

ii

–
= ni + ndi

(22)

and ndi ≤ zi.
Zero off-set steady-state tracking performance can

be established in the FC-MPC framework using the
following lemma.

Lemma 6: Given (A,B) stabilizable and let ∀ i ∈
{1,M}

• (Aii, Cii), (Ãii, C̃ii) detectable
• ndi

= zi

If the closed-loop system under FC-MPC is stable
and none of the input constraints are active at steady
state, then the FC-MPCs with distributed steady-state
observers, designed using the approach described in
either Section VI-A or VI-B, and local disturbance
models track their respective output targets with zero
steady-state offset.

IX. EXAMPLES

A. Performance comparison
The examples use the cumulative stage cost as an

index for comparing the performance of different con-
troller paradigms. Accordingly, define

Λ =
1

t

t−1X
k=0

MX
i=1

1

2

ˆ
xi(k)′Qixi(k) + ui(k)′Riui(k)

˜
. (23)
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Fig. 1. Change in tie line power flow (∆P 12
tie) and load reference

setpoint for area 1 (∆Pref1 ). FC-MPC (dm) employs the distributed
estimation strategy described in Section VI-B.

TABLE I
PERFORMANCE OF DIFFERENT CONTROL FORMULATIONS W.R.T.

CENT-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100.

Λ ∆Λ%
cent-MPC 0.64 −

standard AGC ∞
decent-MPC 0.97 51.6

FC-MPC (1 iterate) 0.643 0.49
(centralized estimation)
FC-MPC (dm, 1 iterate) 0.644 0.52

(distributed estimation (VI-B))

B. Two area power system network

A power system AGC example with two control
areas interconnected through a tie line is considered. In
the distributed MPC framework, each control area em-
ploys a MPC to reject disturbances due to load fluctua-
tions. The MPCs drive the frequency and tie line power
flow deviations (∆ωi, ∆P ij

tie) to zero by manipulating
the load reference setpoint ∆Prefi . The performance
of the different MPC frameworks is compared against
standard AGC. In particular, the performance of stan-
dard AGC (with anti-reset windup), centralized MPC
(cent-MPC), decentralized MPC (decent-MPC) and FC-
MPC is assessed when a 25% load disturbance affects
area 2.

Each MPC uses an observer to estimate the rele-
vant states from noisy measurements and an input
disturbance model to eliminate steady-state offset. In
the FC-MPC framework, the distributed controller is
defined by terminating Algorithm 1 after 1 iterate.
The performance of the different control frameworks
rejecting the tie line power flow transients and the
corresponding load reference input profile for area 1

is shown in Fig. 1. The closed-loop performance of the
different control formulations are compared in Table I.
In this case, the stability condition |λmaxH(Ld)| < 1
is satisfied and the distributed estimation strategy of
Section VI-A may be used. However, for this example,
we will use the distributed state estimation strategy of
Section VI-B for estimating subsystem states in the FC-
MPC framework (FC-MPC (dm)).

Under the influence of the load disturbance, the
inputs under standard AGC saturate at their bound
constraints and the resulting system exhibits closed-
loop unstable behavior. The FC-MPC framework, ter-
minated after 1 cooperation-based iterate, and employ-
ing a centralized Kalman filter achieves performance
that is within 0.5% of the optimal, centralized MPC
performance. If the subsystem states are estimated us-
ing the distributed estimation strategy of Section VI-B,
the performance loss (relative to centralized MPC) in-
curred with the FC-MPC formulation terminated after
1 cooperation-based iterate is ∼ 0.52%. In fact, the per-
formance of the FC-MPC framework with distributed
estimation is almost indistinguishable from that of
centralized MPC. For the sake of comparison, the set
of distributed estimators designed using Section VI-
A results in a performance loss of ∼ 0.6% relative to
centralized MPC.

C. Four area power system network
We consider an example with four interconnected

control areas as shown in Fig. 2. Power flow through
tie line connections 1 − 2, 2 − 3, 3 − 4 are the sources
of interactions between the control areas. The per-
formance of cent-MPC, decent-MPC and FC-MPC are
analyzed when there is a 25% load increase in area 2
and a simultaneous 25% load drop in area 3. For the
distributed MPC framework, two cases are considered.
In the first case, the states of the system are estimated
using a centralized Kalman filter and in the second
case, the states of each subsystem are estimated us-
ing the distributed estimation methodology described
in Section VI-A (FC-MPC (lm)). The latter case is a
feasible framework for distributed estimation since the
stability condition |λmaxH(Ld)| < 1 is satisfied. Another
advantage of the estimation strategy of Section VI-
A is that only local measurements are required to
estimate subsystem states. In both cases, Algorithm 1 is
terminated after 1 cooperation-based iterate. An input
disturbance model is used in each MPC to eliminate
steady-state offset. The load reference setpoint (Pref) in
each area is manipulated to reject the load disturbances
and drive the deviation in frequencies and tie line
power flows to zero.

CONTROL AREA 2 CONTROL AREA 3

P23
tie

CONTROL AREA 1
CONTROL AREA 4

P34
tie

P12
tie

Fig. 2. Four area power network.
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TABLE II
PERFORMANCE OF DIFFERENT CONTROL FORMULATIONS W.R.T.

CENT-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100.

Λ ∆Λ%
cent-MPC 0.24 −

decent-MPC ∞
FC-MPC (1 iterate) 0.26 8

(centralized estimation)
FC-MPC (lm, 1 iterate) 0.28 15.5

(distributed estimation (VI-A)
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Fig. 3. Change in tie line flow (∆P 23
tie), and load reference setpoint

for area 1 (∆Pref1 ). FC-MPC (lm) employs the distributed estimation
strategy described in Section VI-A.

The performances of the different control frame-
works rejecting the tie line power flow transients be-
tween areas 2 and 3 and the corresponding load refer-
ence input profile for area 1 are shown in Fig. 3. A
closed-loop performance comparison of the different
MPC frameworks is given in Table II. We observe from
Fig. 3 that the system is unstable under decentralized
MPC. The performance of the FC-MPC framework with
centralized estimation is within 8% of centralized MPC
performance. The performance loss, relative to central-
ized MPC, incurred by the FC-MPC framework em-
ploying the distributed estimation strategy described
in Section VI-A is ∼ 16%.

D. Two area power system network with FACTS device
In this example, a two area network interconnected

through a tie line is considered. A FACTS device is em-
ployed by area 1 to manipulate the effective impedance
of the tie line and control power flow between the
two control areas. The performance of the cent-MPC,
decent-MPC and FC-MPC formulations rejecting a 25%
increase in load of area 2 is investigated. The FC-
MPC algorithm is terminated after 1 cooperation-based
iterate and efficacy of the two distributed estimation

TABLE III
PERFORMANCE OF DIFFERENT CONTROL FORMULATIONS W.R.T.

CENT-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100.

Λ ∆ × 102Λ%
cent-MPC 1.9 −

decent-MPC 2.6 37
FC-MPC (dm, 1 iterate) 2.1 1.83

(distributed estimation (VI-B)
FC-MPC (lm, 1 iterate) 1.93 0.84

(distributed estimation (VI-A)
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∆X12
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decent-MPC

FC-MPC (lm, 1 iterate)
FC-MPC (dm, 1 iterate)

Fig. 4. Relative phase difference (∆δ1−∆δ2), and change in FACTS
impedance (∆X12). FC-MPC (lm) and FC-MPC (dm) employ the
distributed estimation frameworks described in Section VI-A and
Section VI-B respectively.

strategies described in Section VI is evaluated. In all
cases, an input disturbance model is employed.

The relative phase deviation in the two areas and
the change in impedance due to the FACTS device
under the different MPC frameworks is shown in Fig. 4.
A closed-loop performance comparison of the differ-
ent MPC frameworks rejecting the load disturbance
is given in Table III. Under decentralized MPC, the
incurred performance loss, relative to centralized MPC,
is ∼ 37%. With the distributed estimation strategy of
Section VI-B, the performance loss drops to ∼ 1.9%.
For this system, |λmaxH(Ld)| < 1 and hence the dis-
tributed estimation framework of Section VI-A can
be employed. This distributed estimation framework
results in performance that is within 1% of centralized
MPC performance.

X. CONCLUSIONS
Centralized MPC is not well suited for control of

large-scale, geographically expansive systems such as
power systems. However, the performance benefits
obtained with centralized MPC can be realized through
distributed MPC strategies. Such strategies rely on de-
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composition of the overall system into interconnected
subsystems, and iterative exchange of information be-
tween these subsystems. An MPC optimization prob-
lem is solved within each subsystem, using an estimate
of the current subsystem state and the latest available
external state estimate.

For consistency with the distributed control philoso-
phy, the estimation process must also be distributed
across the subsystems. If a certain (easily verifiable)
condition is satisfied, local measurements are sufficient
for observer stability. Otherwise, a stable observer can
always be designed by exchanging measurements be-
tween adjacent subsystems. Both estimation strategies
are suboptimal, but the estimates generated converge
exponentially to the optimal estimates. Furthermore,
use of either observer, in conjunction with the defined
distributed MPC control law under output feedback,
guarantees nominal closed-loop stability for all values
of the iteration number. This feature allows the prac-
titioner to terminate the distributed MPC algorithm at
the end of the sampling interval, even if convergence
is not achieved. A disturbance modeling framework
for achieving zero-offset control in the presence of
nonzero mean disturbances and modeling errors has
been established.

In this paper, a number of power system examples
have applied distributed output feedback MPC to au-
tomatic generation control (AGC). MPC outperforms
standard AGC, due to its ability to account for pro-
cess constraints. The distributed MPC framework also
allows coordination of FACTS controls with AGC.

XI. ACKNOWLEDGMENT

The authors gratefully acknowledge the financial
support of the industrial members of the Texas-
Wisconsin Modeling and Control Consortium, and NSF
through grant #CTS-0456694.

APPENDIX

A. FC-MPC optimization for stable power systems

FC-MPCi �

min
ui

1

2
ui

′Riui +

0
@ MX

j=1

Eji
′ X

s �=j

Mjs

X
l�=i

(Eslu
p−1
l + gs)

+

MX
j=1

Eji
′Qj

X
l�=i

(Ejlu
p−1
l + gj)

1
A ′ui

(24a)

subject to
ui(j|k) ∈ Ωi, k ≤ j ≤ k + N − 1 (24b)

in which

Ri = wiRi +

MX
j=1

wjEji
′QjEji +

MX
j=1

Eji
′ X

s �=j

MjsEsi (25)

Qi = diag
`
Qi(1), . . . , Qi(N − 1), Qii

´
(26)

Mij = diag
`
0, . . . , 0, Qij

´
(27)

Ri = diag (Ri(0), Ri(1), . . . , Ri(N − 1)) (28)

gi =

MX
j=1

fijxj(k) (29)

and

Q =

2
66664

Q11 Q12 . . . . . . Q1M

Q21 Q22 . . . . . . Q2M

...
...

. . .
. . .

...
QM1 QM2 . . . . . . QMM

3
77775 (30)

is a suitable terminal penalty matrix. Restricting atten-
tion to open-loop stable systems simplifies the choice
of Q. For each i ∈ {1,M}, let Qi(0) = Qi(1) = . . . =
Qi(N−1) = Qi. The terminal penalty Q can be obtained
as the solution to the centralized Lyapunov equation

A′ Q A − Q = −Q (31)

in which Q = diag(w1Q1, w2Q2, . . . , wMQM ).
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