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Abstract— Border collision bifurcations refer to situations
where a small parameter variation induces a change in the
event sequence of a hybrid system. At such a bifurcation,
the system trajectory makes tangential contact with an event
triggering hypersurface. This bounding case separates regions
of (generally) quite different dynamic behaviour. In the paper,
the conditions governing bifurcation points are formulated as
a boundary value problem. A shooting method is used to solve
that problem. The approach is applicable for general nonlinear
hybrid systems.

I. INTRODUCTION

Hybrid systems are typified by strong coupling between
continuous dynamics and discrete events. For such systems,
event triggering generally has a significant influence over
subsequent system behaviour. Therefore it is important to
identify situations where a small change in parameters alters
the event triggering pattern. Such situations include border
collision bifurcations [1], also referred to as C-bifurcations
[2] and switching time bifurcations [3], and grazing bifurca-
tions [4], [5]. Subtle differences exist between border colli-
sion and grazing bifurcations. However both phenomena are
induced by tangential contact between the system trajectory
and an event triggering hypersurface.1 Figure 1 provides an
illustration.

Referring to Figure 1, for a certain value of parameter
λ+, the system trajectory encounters an event triggering
hypersurface at a point x+. The event occurs, and the
trajectory continues accordingly. However for a small change
in parameter value, to λ−, the trajectory misses (at least lo-
cally) the triggering hypersurface, and subsequently exhibits
a completely different form of response. At a parameter
value λbc, lying between λ+ and λ−, the continuous tra-
jectory tangentially encounters the triggering hypersurface.
Behaviour beyond the point of touching xbc is generally
unpredictable, in the sense that without further knowledge
of the system, it is impossible to determine whether or not
the event triggers.2 This bounding case describes a border
collision bifurcation, with λbc referring to the critical value
of the bifurcation parameter. This paper proposes a shooting
method for locating such bifurcations.

Research supported by the National Science Foundation through grant
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1The paper focuses on this common feature. Therefore for convenience,
both phenomena will be referred to as border collision bifurcations.

2Under fairly strong assumptions, behaviour is predictable [2].

Fig. 1. Border collision bifurcation.

Previous investigations of border collision bifurcations
have focused largely on classifying the (local) consequences
of bifurcations through analysis of eigenvalue behaviour.
Efforts have been directed primarily towards periodic sys-
tems, motivated in many cases by power electronic circuit
applications. Computation of actual bifurcation points has
generally received little attention. With numerical packages
such as AUTO unable to handle non-smooth systems, ad
hoc approaches have prevailed. This paper addresses that de-
ficiency by establishing a shooting method that is applicable
for general nonlinear hybrid systems.

II. PROBLEM FORMULATION

A. Hybrid system model

A useful, non-restrictive model formulation should be,

• capable of capturing the full range of continu-
ous/discrete hybrid system dynamics,

• computationally efficient, and
• consistent with the development of a shooting method.

It is shown in [6], [7] that these specifications can be met
completely by a model that consists of a set of differential-
algebraic equations, adapted to incorporate impulsive (state
reset) action and switching of the algebraic equations. This
DA Impulsive Switched (DAIS) model can be written in the
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form,

ẋ = f(x, y) +
r∑

j=1

δ(yr,j)
(
hj(x, y) − x

)
(1)

0 = g(x, y) ≡ g(0)(x, y) +
s∑

i=1

g(i)(x, y) (2)

where

g(i)(x, y) =
{

g(i−)(x, y)
g(i+)(x, y)

ys,i < 0
ys,i > 0 i = 1, ..., s (3)

and

• x ∈ Rn are dynamic states, and y ∈ Rm are algebraic
states;

• δ(.) is the Dirac delta. Each impulse term of the
summation in (1) can be expressed in the alternative
state reset form

x+ = hj(x−, y−) when yr,j = 0 (4)

where the notation x+ denotes the value of x just after
the reset event, whilst x− and y− refer to the values of
x and y just prior to the event. This form motivates a
generalization to an implicit mapping h′

j(x
+, x−, y−) =

0.
• yr, ys are selected elements of y that trigger state reset

(impulsive) and algebraic switching events respectively;
yr and ys may share common elements.

• f, hj : Rn+m → Rn.
• g(0), g(i±) : Rn+m → Rm. Some elements of each g(.)

will usually be identically zero, but no elements of the
composite g should be identically zero. Each g(i±) may
itself have a switched form, and is defined similarly to
(2)-(3), leading to a nested structure for g.

Equations (1)-(4) are a reformulation (and slight gener-
alization) of the model proposed in [7]. All deterministic
hybrid systems can be described using this DAIS form.

A compact development of trajectory sensitivities3 results
from incorporating parameters λ into the dynamic states x.
This is achieved by introducing trivial differential equations
λ̇ = 0 into (1). This results in the natural partitioning

x =

⎡
⎣ x

x̄
λ

⎤
⎦ , f =

⎡
⎣ f

0
0

⎤
⎦ , hj =

⎡
⎣ x

h̄j

λ

⎤
⎦ (5)

where x are the continuous dynamic states, x̄ are discrete
dynamic states, and λ are parameters. This partitioning of
the differential equations f ensures that away from events,
x evolves according to ẋ = f(x, y), whilst x̄ and λ remain
constant. Similarly, the partitioning of the reset equations hj

ensures that x and λ remain constant at reset events, but the
states x̄ are reset to new values given by x̄+ = h̄j(x−, y−).

3Details are summarized in the appendix.

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

ẋ = f(x, y) (6)

0 = g(x, y) (7)

where g is composed of g(0) together with appropriate
choices of g(i−) or g(i+), depending on the signs of the
corresponding elements of ys. At switching events (3), some
component equations of g change. To satisfy the new g = 0
constraints, algebraic variables y may undergo a step change.
Impulse events (1) (alternatively reset events (4)) force a
discrete change in elements of x̄. Algebraic variables may
again step to ensure g = 0 is always satisfied.

The flows of x and y are defined as

x(t) = φx(x0, t) (8)

y(t) = φy(x0, t) (9)

where x(t) and y(t) satisfy (1)-(3), along with initial condi-
tions,

φx(x0, t0) = x0 (10)

g
(
x0, φy(x0, t0)

)
= 0. (11)

B. Border collision bifurcations

A border collision bifurcation is characterised by a trajec-
tory (flow) of the system touching a triggering hypersurface
tangentially. Let the target hypersurface be described by

b(x, y) = 0 (12)

where b : Rn+m → R. Vectors that are normal to b are
therefore given by ∇b =

[
∂b
∂x

∂b
∂y

]t

≡ [bx by]t, and the

tangent hyperplane is spanned by vectors [ut vt]t that satisfy

[bx by]
[

u
v

]
= 0. (13)

The vector [ẋt ẏt]t is directed tangentially along the flow,
so it must satisfy (13) at a border collision bifurcation.
Furthermore, differentiating (7) and substituting (6) gives,

0 =
∂g

∂x
ẋ +

∂g

∂y
ẏ (14)

⇒ 0 = gxf(x, y) + gyv (15)

where for notational convenience v replaces ẏ.
A single degree of freedom is available for varying pa-

rameters to find a bifurcation value. Recall from (5) that
parameters λ are incorporated into the initial conditions x0.
Therefore the single degree of freedom can be achieved by
parameterization x0(θ), where θ is a scalar.

Border collision bifurcation points are therefore described
by combining together the flow definition (8) (appropriately
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parameterized by θ), algebraic equations (7), target hypersur-
face (12), and tangency conditions (13),(15), to give

φx(x0(θ), t) − x = 0 (16)

g(x, y) = 0 (17)

b(x, y) = 0 (18)[
bx by

gx gy

] [
f(x, y)

v

]
= 0. (19)

This set of equations may be written compactly as

F (x, y, θ, t, v) = F (z) = 0 (20)

where F : Rn+2m+2 → Rn+2m+2 and z = [xt yt θ t vt]t.
Solution of (20) can be achieved using Newton’s method.
The solution process involves numerical simulation to obtain
the flow (16). A discussion of the resulting shooting method
follows.

III. SHOOTING METHOD

A. Algorithm

Numerical solution of (20) using Newton’s method
amounts to iterating on the standard update formula

zk+1 = zk − (
DF (zk)

)−1
F (zk) (21)

where DF is the Jacobian matrix

DF =

⎡
⎢⎢⎢⎢⎣

−I 0 Φx
dx0
dθ f 0

gx gy 0 0 0
bx by 0 0 0

f tbxx + bxfx + vtbyx f tbxy + bxfy + vtbyy 0 0 by

f̂ tgxx + gxfx + v̂tgyx f̂ tgxy + gxfy + v̂tgyy 0 0 gy

⎤
⎥⎥⎥⎥⎦ .

(22)

with

f̂ =

⎡
⎢⎢⎢⎢⎢⎣

f
f

f
. . .

f

⎤
⎥⎥⎥⎥⎥⎦
∈ Rmn×m

v̂ =

⎡
⎢⎢⎢⎢⎢⎣

v
v

v
. . .

v

⎤
⎥⎥⎥⎥⎥⎦
∈ Rm2×m

gxx =

⎡
⎢⎢⎢⎢⎣

∂2g1
∂x2

∂2g2
∂x2

...
∂2gm

∂x2

⎤
⎥⎥⎥⎥⎦ ∈ Rmn×n, gyx =

⎡
⎢⎢⎢⎢⎢⎣

∂2g1
∂y∂x

∂2g2
∂y∂x

...
∂2gm

∂y∂x

⎤
⎥⎥⎥⎥⎥⎦
∈ Rm2×n

gyy =

⎡
⎢⎢⎢⎢⎢⎣

∂2g1
∂y2

∂2g2
∂y2

...
∂2gm

∂y2

⎤
⎥⎥⎥⎥⎥⎦
∈ Rm2×m, gxy =

⎡
⎢⎢⎢⎢⎢⎣

∂2g1
∂x∂y

∂2g2
∂x∂y

...
∂2gm

∂x∂y

⎤
⎥⎥⎥⎥⎥⎦
∈ Rmn×m.

The matrices gxx, gyx, gxy and gyy are usually extremely
sparse. It has been found that often the error introduced into
DF by ignoring them has negligible effect on convergence.
However situations can arise where these terms are vital for
reliable convergence. This is the case, for example, when
the trajectory has multiple turning points (peaks and troughs)
in the vicinity of the border hypersurface. The example of
Section IV provides an illustration. Two approaches have
been used to obtain the second derivative terms:

1) Numerical differencing. Many simulators allow direct
computation of gx and gy .4 Numerical differencing
of gx and gy is straightforward, but not particularly
efficient for high dimensional systems.

2) Direct computation. By utilizing an object oriented
modelling structure [8], second derivative terms occur
only within components. There are no terms introduced
by inter-component dependencies. Explicit formulae
for second derivative terms can be established for each
component model. The sparse matrices can then be
efficiently constructed.

The entry Φx in (22) gives the sensitivity of the flow (8)
to perturbations in initial conditions x0,

Φx(t) ≡ ∂φx

∂x0
(x0, t).

The variational equations describing the evolution of tra-
jectory sensitivities Φx, Φy are given in Appendix A. Note
that these quantities are defined for non-smooth trajectories
generated by hybrid systems [7].

Care must be taken in evaluating the terms of (20)
and (22) that relate to trajectory solution. The flow term
φx(x0(θk), tk) of

F1(xk, θk, tk) = φx(x0(θk), tk) − xk

4These quantities are required for implicit numerical integration.
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evaluates, via numerical integration, to the value of x at time
tk along the trajectory that has initial value x0(θk). Likewise,
the terms Φx and f in the first row of DF should also be
evaluated at time tk along that trajectory.

B. Initialization of variables

As with all iterative procedures, solution of (21) requires
a good initial guess z0. In terms of the original system
variables, initial (approximate) border collision bifurcation
values of x0, y0, θ0, t0, and v0 are required. These can be
obtained from normal simulation.

Referring to Figure 1, parameter values that are near the
bifurcation value result in trajectories that either, 1) encounter
the target hypersurface, or 2) just miss the hypersurface.
Therefore the trajectory induced by parameter θ0 should be
monitored for,

1) the first point where b(x, y) = 0, i.e., an intersection
with the target hypersurface, or

2) an appropriate local minimum of b(x, y), i.e., a point
where the trajectory passes close by the target hyper-
surface. This point is given by db

dt = 0, which implies
bxẋ + by ẏ = 0. Substituting for ẏ from (14), and using
(6), gives

db

dt
= (bx − byg−1

y gx)f(x, y) = 0.

In both cases, the identified point directly provides initial
values for x0, y0, and t0. The corresponding value of v0 can
be obtained from (15) as

v0 = −g−1
y gxf(x0, y0)

with all partial derivatives evaluated at x0, y0.

IV. EXAMPLE

The single machine infinite bus power system of Figure 2
was used to test the algorithm developed in Section III.
The generator was accurately represented by a sixth order
machine model, viz., a two axis model with two windings
in each axis [9], and the generator excitation system was
modelled according to Figure 3. Note that the output limits on
the field voltage Efd are anti-wind-up limits, whilst the limits
on the stabilizer output VPSS are clipping limits. Therefore
even though this example utilizes a simple network structure,
it exhibits nonlinear, non-smooth, hybrid system behaviour.
Larger systems are no more challenging.

A single phase fault was applied at the generator terminal
bus at 0.05 sec. The fault was cleared, without line tripping,
at 0.28 sec. The aim of the exercise was to determine
the maximum value of the field voltage limit Efdmax that
ensured the initial terminal voltage overshoot did not rise
above the threshold value of 1.2 pu. (The target hypersurface
was therefore Vt − 1.2 = 0.) This threshold is indicative of
over-voltage protection. Excursions above that value could
trigger protection and ultimately trip the generator.

AVR

Exciter

PSS

~

VtV∞
Efd

Fig. 2. Single machine infinite bus system.

Vmax

Vmin

1+sT1

1+sT2

sTw

1+sTw
KPSS ∆ω

VPSS

1

1+sTR

1+sTC

1+sTB

KA

1+sTA
Σ Efd

Vref

Vt
−

+

+

Efdmax

Efdmin

Fig. 3. Excitation system (AVR/PSS) representation.

Results of the iterative process are given in Table I, and
presented graphically in Figures 4 and 5. It can be seen that
convergence was effectively achieved after four iterations.
This is an encouraging result, as an onerous test condition
was chosen. Referring to Figure 4, it can be seen that the
voltage trajectory is quite flat over the first extended peak,
and actually consists of two peaks separated by a shallow
trough. The solution set formulation (16)-(19) also describes
troughs, so this example has three solutions in quite close
proximity. This situation indicates proximity to a saddle-node
bifurcation [10], and the Jacobian DF is accordingly quite
ill-conditioned. However convergence was still reliable.

V. CONCLUSIONS

Hybrid systems, where discrete events have a significant
influence over system behaviour, are susceptible to border
collision bifurcations. This form of bifurcation refers to the
situation where the system trajectory is tangential to an event
triggering hypersurface, i.e., the encounter is not transversal,
as required for well-defined behaviour.

TABLE I

ITERATION RESULTS.

Iteration
Bifurcation Values

Param, Efdmax Time, t∗

0 5.80 1.12
1 3.15 1.28
2 4.37 1.19
3 4.72 1.20
4 4.78 1.21
5 4.78 1.21
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Fig. 4. Terminal voltage, Vt.
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Fig. 5. Generator field voltage, Efd.

Border collision bifurcation points can be described by
a set of nonlinear, algebraic equations. Iterative solution
via Newton’s method requires numerical integration of the
system trajectory, and therefore has the form of a shoot-
ing method. The associated Jacobian incorporates trajectory
sensitivities, which can be efficiently computed along with
the trajectory. The shooting method is therefore practical for
arbitrarily large hybrid systems.
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APPENDIX

VARIATIONAL EQUATIONS

Away from events, where system dynamics evolve
smoothly, the sensitivities Φx and Φy are obtained by dif-
ferentiating (6)-(7) with respect to x0. This gives

Φ̇x = fx(t)Φx + fy(t)Φy (23)

0 = gx(t)Φx + gy(t)Φy (24)

where fx ≡ ∂f/∂x, and likewise for the other Jacobian
matrices. Note that fx, fy , gx, gy are evaluated along the
trajectory, and hence are time-varying matrices. It is shown
in [7], [11], [12] that the solution of this (potentially high
order) linear, time-varying DAE system can be obtained as
a by-product of solving the original DAE system (6)-(7).

Initial conditions for Φx are obtained from (10) as

Φx(t0) = I
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where I is the identity matrix. Initial conditions for Φy follow
directly from (24),

0 = gx(t0) + gy(t0)Φy(t0).

Equations (23)-(24) describe the evolution of the sensi-
tivities Φx and Φy between events. However at an event,
the sensitivities are often discontinuous. It is necessary to
calculate jump conditions describing the step change in Φx

and Φy. For clarity, consider a single switching/reset event,
so the model (1)-(4) effectively reduces to the form

ẋ = f(x, y) (25)

0 =
{

g−(x, y)
g+(x, y)

s(x, y) < 0
s(x, y) > 0 (26)

x+ = h(x−, y−) s(x, y) = 0. (27)

(The switching hypersurface s has been made explicit to
clearly identify its role in the jump conditions.)

Let (x(τ ), y(τ )) be the point where the trajectory encoun-
ters the hypersurface s(x, y) = 0, i.e., the point where an
event is triggered. This point is called the junction point and
τ is the junction time. Assume that the trajectory encounters
this triggering hypersurface transversally.

Just prior to event triggering, at time τ−, x and y are given
by

x− ≡ x(τ−) = φx(x0, τ
−)

y− ≡ y(τ−) = φy(x0, τ
−)

where

g−(x−, y−) = 0.

Similarly, x+, y+ are defined for time τ+, just after the event
has occurred. It is shown in [7] that the jump conditions for
the sensitivities Φx are given by

Φx(τ+) = h∗
x Φx(τ−) − (

f+ − h∗
x f−)

τx0 (28)

where

h∗
x =

(
hx − hy(g−y )−1g−x

)∣∣
τ−

τx0 = −
(
sx − sy(g−y )−1g−x

)∣∣
τ− Φx(τ−)(

sx − sy(g−y )−1g−x
)∣∣

τ− f−

f− ≡ f(x(τ−), y−(τ−))
f+ ≡ f(x(τ+), y+(τ+)).

The sensitivities Φy immediately after the event are given by

Φy(τ+) = − (
g+

y (τ+)
)−1

g+
x (τ+)Φx(τ+).

Following the event, i.e., for t > τ+, calculation of the
sensitivities proceeds according to (23)-(24), until the next
event is encountered. The jump conditions provide the initial
conditions for the post-event calculations.

5519


