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Abstract

Limit cycles are common in hybrid systems. However
the non-smooth dynamics of such systems makes stabil-
ity analysis difficult. This paper uses recent extensions
of trajectory sensitivity analysis to obtain the charac-
teristic multipliers of non-smooth limit cycles. The sta-
bility of a limit cycle is determined by its characteristic
multipliers. The concepts are illustrated using a com-
pass gait biped robot example.

1 Introduction

Hybrid systems are characterized by interactions be-
tween continuous (smooth) dynamics and discrete
events. Such systems are common across a diverse
range of application areas. Examples include power
systems [1], robotics [2, 3], manufacturing [4] and air-
traffic control [5]. In fact, any system where saturation
limits are routinely encountered can be thought of as
a hybrid system. The limits introduce discrete events
which (often) have a significant influence on overall be-
haviour.

Many hybrid systems exhibit periodic behaviour. Dis-
crete events, such as saturation limits, can act to trap
the evolving system state within a constrained region
of state space. Therefore even when the underlying
continuous dynamics are unstable, discrete events may
induce a stable limit set. Limit cycles (periodic behav-
iour) are often created in this way. Other systems, such
as robot motion, are naturally periodic. An example
that builds on the analysis of a biped robot [3, 6] is
presented in Section 5.

Limit cycles can be stable (attracting), unstable (re-
pelling) or non-stable (saddle). The stability of peri-
odic behaviour is determined by characteristic (or Flo-
quet) multipliers. A periodic solution corresponds to
a fixed point of a Poincaré map. Stability of the peri-
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odic solution is equivalent to stability of the fixed point.
The characteristic multipliers are the eigenvalues of the
Poincaré map linearized about the fixed point. Sec-
tion 4 reviews the connection between this linearized
map and trajectory sensitivities.

Poincaré maps have been used to analyse the stabil-
ity of limit cycles in various forms of hybrid systems.
However calculation of the underlying trajectory sen-
sitivities has relied upon particular system structures,
see for example [7, 8], or numerical differencing1, for
example [6]. This paper uses a recent generalization
of trajectory sensitivity analysis [9] to efficiently deter-
mine the stability of limit cycles in hybrid systems.

A hybrid system model is given in Section 2. Section 3
develops the associated variational equations. This is
followed in Section 4 by a review of stability analysis
of limit cycles. An example is considered in Section 5.
Conclusions and extensions are presented in Section 6.

2 Model

Deterministic hybrid systems can be represented by
a model that is adapted from a differential-algebraic
(DAE) structure. Events are incorporated via impul-
sive action and switching of algebraic equations, giving
the DA Impulsive Switched (DAIS) model

ẋ = f(x, y) +
e∑

j=1

δ(ye,j)
(
hj(x, y) − x

)
(1)

0 = g(x, y) ≡ g(0)(x, y) +
d∑

i=1

(
g(i−)(x, y) + u(yd,i)

(
g(i+)(x, y) − g(i−)(x, y)

))

(2)

where
1Each initial state of the system is perturbed. The difference

between the perturbed and unperturbed trajectories is divided by
the magnitude of the change in the initial state. This procedure
is tedious, as it must be repeated for every state. It is also prone
to numerical errors.
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• x ∈ R
n are dynamic states and y ∈ R

m are alge-
braic states;

• δ(.) is the Dirac delta;

• u(.) is the unit-step function;

• f, hj : Rn+m → R
n ;

• g(0), g(i±) : Rn+m → R
m ; some elements of each

g(.) will usually be identically zero, but no ele-
ments of the composite g should be identically
zero; the g(i±) are defined with the same form as
g in (2), resulting in a recursive structure for g;

• yd, ye are selected elements of y that trigger alge-
braic switching and state reset (impulsive) events
respectively; yd and ye may share common ele-
ments.

he impulse and unit-step terms of the DAIS model
an be expressed in alternative forms:

• Each impulse term of the summation in (1) can
be expressed in the state reset form

x+ = hj(x−, y−) when ye,j = 0 (3)

where the notation x+ denotes the value of x just
after the reset event, whilst x− and y− refer to
the values of x and y just prior to the event.

• The contribution of each g(i±) in (2) can be ex-
pressed as

g(i)(x, y) =
{

g(i−)(x, y)
g(i+)(x, y)

yd,i < 0
yd,i > 0 i = 1, ..., d

with (2) becoming

0 = g(x, y) ≡ g(0)(x, y) +
d∑

i=1

g(i)(x, y). (4)

This form is often more intuitive than (2).

t can be convenient to establish the partitions

x =


 x

z
λ


 , f =


 f

0
0


 , hj =


 x

hj

λ


 (5)

here

• x are the continuous dynamic states, for example
generator angles, velocities and fluxes;

• z are discrete dynamic states, such as transformer
tap positions and protection relay logic states;

• λ are parameters such as generator reactances,
controller gains and switching times.
775
The partitioning of the differential equations f en-
sures that away from events, x evolves according to
ẋ = f(x, y), whilst z and λ remain constant. Sim-
ilarly, the partitioning of the reset equations hj en-
sures that x and λ remain constant at reset events, but
the dynamic states z are reset to new values given by
z+ = hj(x

−, y−).

The model can capture complex behaviour, from hys-
teresis and non-windup limits through to rule-based
systems [1]. A more extensive presentation of this
model is given in [9].

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

ẋ = f(x, y) (6)
0 = g(x, y) (7)

where g is composed of g(0) together with appropriate
choices of g(i−) or g(i+), depending on the signs of the
corresponding elements of yd. At switching events (2),
some component equations of g change. To satisfy the
new g = 0 equation, algebraic variables y may undergo
a step change. Reset events (3) force a discrete change
in elements of x. Algebraic variables may also step at a
reset event to ensure g = 0 is satisfied with the altered
values of x.

The flows of x and y are defined respectively as

x(t) = φx(x0, t) (8)
y(t) = φy(x0, t) (9)

where x(t) and y(t) satisfy (1),(2), along with initial
conditions,

φx(x0, t0) = x0 (10)
g(x0, φy(x0, t0)) = 0. (11)

3 Trajectory Sensitivities

Sensitivity of the flows φx and φy to initial conditions
x0 are obtained by linearizing (8),(9) about the nominal
trajectory,

∆x(t) =
∂φx(x0, t)

∂x0
∆x0 (12)

∆y(t) =
∂φy(x0, t)

∂x0
∆x0. (13)

The time-varying partial derivative matrices given in
(12),(13) are known as trajectory sensitivities, and can
be expressed in the alternative forms

∂φx(x0, t)
∂x0

≡ xx0(t) ≡ Φx(x0, t) (14)

∂φy(x0, t)
∂x0

≡ yx0(t) ≡ Φy(x0, t). (15)



The form xx0 , yx0 provides clearer insights into the de-
velopment of the variational equations describing the
evolution of the sensitivities. The alternative form
Φx(x0, t), Φy(x0, t) highlights the connection between
the sensitivities and the associated flows. It is shown in
Section 4 that these sensitivities underlie the lineariza-
tion of the Poincaré map, and so play a major role in
determining the stability of periodic solutions.

Away from events, where system dynamics evolve
smoothly, trajectory sensitivities xx0 and yx0 are ob-
tained by differentiating (6),(7) with respect to x0.
This gives

ẋx0 = fx(t)xx0 + fy(t)yx0 (16)
0 = gx(t)xx0 + gy(t)yx0 (17)

where fx ≡ ∂f/∂x, and likewise for the other Jacobian
matrices. Note that fx, fy, gx, gy are evaluated along
the trajectory, and hence are time varying matrices. It
is shown in [9, 10] that the numerical solution of this
(potentially high order) DAE system can be obtained
as a by-product of numerically integrating the original
DAE system (6),(7). The extra computational cost is
minimal.

Initial conditions for xx0 are obtained from (10) as

xx0(t0) = I

where I is the identity matrix. Initial conditions for
yx0 follow directly from (17),

0 = gx(t0) + gy(t0)yx0(t0).

Equations (16),(17) describe the evolution of the sen-
sitivities xx0 and yx0 between events. However at an
event, the sensitivities are generally discontinuous. It
is necessary to calculate jump conditions describing the
step change in xx0 and yx0 . For clarity, consider a sin-
gle switching/reset event, so the model (1),(2) reduces
(effectively) to the form

ẋ = f(x, y) (18)

0 =
{

g−(x, y)
g+(x, y)

s(x, y) < 0
s(x, y) > 0 (19)

x+ = h(x−, y−) s(x, y) = 0. (20)

Let (x(τ ), y(τ )) be the point where the trajectory en-
counters the triggering hypersurface s(x, y) = 0, i.e.,
the point where an event is initiated. This point is
called the junction point and τ is the junction time. It
is assumed the encounter is transversal.

Just prior to event triggering, at time τ−, we have

x− = x(τ−) = φx(x0, τ
−)

y− = y−(τ−) = φy(x0, τ
−)

where

g−(x−, y−) = 0.
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Similarly, x+, y+ are defined for time τ+, just after the
event has occurred. It is shown in [9] that the jump
conditions for the sensitivities xx0 are given by

xx0(τ
+) = h∗

x xx0(τ
−) − (

f+ − h∗
x f−)

τx0 (21)

where

h∗
x =

(
hx − hy(g−y )−1g−x

)∣∣
τ−

τx0 = −
(
sx − sy(g−y )−1g−x

)∣∣
τ− xx0(τ

−)(
sx − sy(g−y )−1g−x

)∣∣
τ− f−

f− = f(x(τ−), y−(τ−))
f+ = f(x(τ+), y+(τ+)).

The assumption that the trajectory and triggering hy-
persurface meet transversally ensures a non-zero de-
nominator for τx0 . The sensitivities yx0 immediately
after the event are given by

yx0(τ
+) = − (

g+
y (τ+)

)−1
g+

x (τ+)xx0(τ
+).

Following the event, i.e., for t > τ+, calculation of
the sensitivities proceeds according to (16),(17) until
the next event is encountered. The jump conditions
provide the initial conditions for the post-event calcu-
lations.

4 Limit Cycle Analysis

Stability of limit cycles can be determined using
Poincaré maps [11, 12]. This section provides a brief re-
view of these concepts, and establishes the connection
with trajectory sensitivities.

A Poincaré map effectively samples the flow of a pe-
riodic system once every period. The concept is illus-
trated in Figure 1. If the limit cycle is stable, oscilla-
tions approach the limit cycle over time. The samples
provided by the corresponding Poincaré map approach
a fixed point. A non-stable limit cycle results in diver-
gent oscillations. For such a case the samples of the
Poincaré map diverge.

To define a Poincaré map, consider the limit cycle Γ
shown in Figure 1. Let Σ be a hyperplane transversal
to Γ at x∗.2 The trajectory emanating from x∗ will
again encounter Σ at x∗ after T seconds, where T is
the minimum period of the limit cycle. Due to the
continuity of the flow φx with respect to initial condi-
tions, trajectories starting on Σ in a neighbourhood of
x∗ will, in approximately T seconds, intersect Σ in the
vicinity of x∗. Hence φx and Σ define a mapping

xk+1 = P (xk) := φx(xk, τr(xk)). (22)

2The fixed point x∗ can be located using shooting methods
[12], even for hybrid systems. Trajectory sensitivities provide the
gradient information required by these Newton-based methods.
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Figure 1: Poincaré map.

where τr(xk) ≈ T is the time taken for the trajectory to
return to Σ. Complete details can be found in [11, 12].

Stability of the Poincaré map (22) is determined by
linearizing P at the fixed point x∗, i.e.,

∆xk+1 = DP (x∗)∆xk. (23)

From the definition of P (x) given by (22), it follows
that DP (x∗) is closely related to the trajectory sensi-
tivities ∂φx(x∗,T )

∂x∗ ≡ Φx(x∗, T ). In fact, it is shown in
[11] that

DP (x∗) =
(

I − f(x∗, y∗)σt

f(x∗, y∗)tσ

)
Φx(x∗, T ) (24)

where σ is a vector normal to Σ.

The matrix Φx(x∗, T ) is exactly the trajectory sensitiv-
ity matrix after one period of the limit cycle, i.e., start-
ing from x∗ and returning to x∗. This matrix is called
the Monodromy matrix. It is shown in [11] that for
an autonomous system, one eigenvalue of Φx(x∗, T ) is
always 1, and the corresponding eigenvector lies along
f(x∗, y∗). The remaining eigenvalues of Φx(x∗, T ) co-
incide with the eigenvalues of DP (x∗), and are known
as the characteristic multipliers mi of the periodic so-
lution. The characteristic multipliers are independent
of the choice of cross-section Σ. Therefore, for hybrid
systems, it is often convenient to choose Σ as a trigger-
ing hypersurface corresponding to a switching or reset
event that occurs along the periodic solution.

Because the characteristic multipliers mi are the eigen-
values of the linear map DP (x∗), they determine the
stability of the Poincaré map P (xk), and hence the
stability of the periodic solution. Three cases are of
importance:

1. All mi lie within the unit circle, i.e., |mi| < 1, ∀i.
The map is stable, so the periodic solution is sta-
ble.

2. All mi lie outside the unit circle. The periodic
solution is unstable.
7

γ

Figure 2: Compass gait biped robot.

3. Some mi lie outside the unit circle. The periodic
solution is non-stable.

Interestingly, there exists a particular cross-section Σ∗,
such that

DP (x∗)ζ = Φx(x∗, T )ζ (25)

where ζ ∈ Σ∗. This cross-section Σ∗ is the hyperplane
spanned by the n − 1 eigenvectors of Φx(x∗, T ) that
are not aligned with f(x∗, y∗). Therefore the vector σ∗

that is normal to Σ∗ is the left eigenvector of Φx(x∗, T )
corresponding to the eigenvalue 1. The hyperplane Σ∗

is invariant under Φx(x∗, T ), i.e., Φx(x∗, T ) maps vec-
tors ζ ∈ Σ∗ back into Σ∗.

5 Example

5.1 Model
A model of the compass gait biped robot is discussed
in detail in [3, 6]. A summary is included here for com-
pleteness. The biped robot can be treated as a double
pendulum, with point masses mH and m concentrated
at the hips and legs respectively. Figure 2 provides a
schematic representation and identifies other important
parameters, lengths a and b, and incline angle γ. The
robot configuration is described by the support angle θs

and the non-support angle θns. The dynamic equations
describing the robot can be written

M(θ)θ̈ + N(θ, θ̇)θ̇ +
1
a
g(θ) = 0 (26)

where θ = [θns θs]t. The state vector is therefore x =
[θns θs θ̇ns θ̇s]t ∈ R

4 . The matrices of (26) are given
by,

M(θ) =
[

β2 −(1 + β)β cos θd

−(1 + β)β cos θd (1 + β)2(µ + 1) + 1

]

N(θ, θ̇) =
[

0 (1 + β)βθ̇s sin θd

−(1 + β)βθ̇ns sin θd 0

]

g(θ) =
[

gβ sin θns

−((µ + 1)(1 + β) + 1)g sin θs

]
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where θd = θs − θns, β = b/a, µ = mH/m, and g = 9.8
is the gravitational constant. The model can be sim-
ply manipulated into the form (1), though the impulse
effects are added below.

An event occurs when the non-support (swinging) leg
collides with the ground. This establishes the trigger-
ing condition

θns + θs + 2γ = 0. (27)

At the event, the non-support leg becomes the support
leg, and vice-versa. Velocities θ̇ns and θ̇s undergo step
changes to ensure conservation of momentum through
the collision. The resulting reset equations can be writ-
ten

[
θ

θ̇

]+

=




[
0 1
1 0

]
0

0 Q+(θ−d )−1Q−(θ−d )


 [

θ

θ̇

]−

(28)

where

Q+(θd) =
 β

(
β − (1 + β) cos θd

)
(1 + β)

(
(1 + β) − β cos θd

)
... + 1 + µ(1 + β)2

β2 −β(1 + β) cos θd




Q−(θd) =
[ −β −β +

(
µ(1 + β)2 + 2(1 + β)

)
cos θd

0 −β

]
.

Equation (28) matches the form (3). The event trig-
gering state ye follows from (27) as ye = θns + θs + 2γ.

5.2 Results
Parameter values of β = 1, µ = 2, a = 0.5 and γ = 3o

were used for the base case. Two views of the corre-
sponding limit cycle are shown in Figure 3. The left
figure shows the limit cycle in terms of states θns, θs,
θ̇ns and θ̇s. The right view shows the behaviour of each
leg through a full cycle. Recall that each leg acts as the
support leg for half the cycle, and the non-support leg
for the other half cycle. Therefore a complete walk-
ing cycle (right view) is formed from the limit cycle
of the states (left view). It follows that the period of
the walking cycle is twice the period of the state limit
cycle.

The triggering hypersurface corresponding to the
ground collision provides a convenient cross-section
Σ for defining a Poincaré map. Consider the point
x∗ = [0.2188 − 0.3236 − 1.8056 − 1.4939]t on the
limit cycle immediately prior to the switching event.
Based on this choice for x∗, the eigenvalues of the tra-
jectory sensitivity matrix Φx(x∗, T ) after one period of
the limit cycle are

0.9992, −0.2035 ± j0.5430, 0.1315. (29)
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Figure 3: Base case limit cycle.

The eigenvector corresponding to the (near) unity
eigenvalue is

ev1 = [0.1518 0.1256 0.8856 0.4206]t

= −0.0842f(x∗, y∗).

Therefore, as anticipated, the eigenvector correspond-
ing to the unity eigenvalue is aligned with f(x∗, y∗).
The other eigenvalues are the characteristic multipliers
for this limit cycle. Their magnitudes are less than one,
confirming that the limit cycle is stable. These results
are in agreement with the characteristic multipliers ob-
tained in [6]. Note though that the multipliers in [6]
correspond to a walking cycle, which consists of two
cycles of the states. In that case the multipliers are
the eigenvalues of Φx(x∗, 2T ) = Φx(x∗, T )2, i.e., the
eigenvalues are the square of the values given in (29).

As the angle of incline γ increases, robot behaviour
undergoes a sequence of period doubling bifurcations
[3]. Efficient computation of trajectory sensitivities, as
proposed in Section 3, makes it feasible to track charac-
teristic multipliers through these bifurcations. Figure 4
shows the locus of the multipliers as the first bifurca-
tion is approached. Beginning from γ = 3o, the com-
plex multipliers merge at γ = 4.07o, then split along
the real axis. The bifurcation occurs at an incline an-
gle of γ = 4.37o, at which point one of the multipliers
equals −1. Beyond that critical parameter value, the
single-period limit cycle becomes unstable, with behav-
iour repeating every two cycles.

Figure 5 shows behaviour for an incline of γ = 4.4o,
i.e., just beyond the period-doubling bifurcation. The
double period is evident in the state trajectories in the
left figure. The corresponding view of leg behaviour
is shown in the right view. Each leg now follows a
(slightly) different trajectory, i.e., the robot limps!
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Figure 5: Double period limit cycle.

6 Conclusions

Hybrid systems frequently exhibit periodic behaviour.
However the non-smooth nature of such systems com-
plicates stability analysis. Those complications have
been addressed in this paper through application of a
generalization of trajectory sensitivity analysis.

Deterministic hybrid systems can be represented by a
set of differential-algebraic equations, modified to in-
corporate impulse (state reset) action and constraint
switching. The associated variational equations es-
tablish jump conditions that describe the evolution of
sensitivities through events. These equations provide
insights into expansion/contraction effects at events.
This is a focus of future research.

Standard Poincaré map results extend naturally to hy-
brid systems. The Monodromy matrix is obtained by
evaluating trajectory sensitivities over one period of the
(possibly non-smooth) cyclical behaviour. One eigen-
value of this matrix is always unity. The remaining
eigenvalues are the characteristic multipliers of the pe-
riodic solution. Stability is ensured if all multipliers lie

7

inside the unit circle. Instability occurs if any multi-
plier lies outside the unit circle.
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