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Abstract

Non-smooth nonlinearities have a significant influence
within many power system controllers, and hence af-
fect overall system dynamic behaviour. This paper fo-
cusses on the output limiters of power system stabiliz-
ers (PSSs). Even though these limits play an important
role in the response of generators to large disturbances,
only ad hoc tuning procedures have been available.
Therefore a systematic, optimization-based approach
is proposed in this paper. Dynamic behaviour is im-
proved by minimizing the deviation of generator angles
and terminal voltages from their post-disturbance val-
ues. The algorithm builds on techniques for efficiently
computing trajectory sensitivities for hybrid systems.

1 Introduction

Many power system controllers are influenced by hard
(non-smooth) nonlinearities, such as deadbands, hys-
teresis and saturation limits. Some devices, for ex-
ample braking resistors, behave in an inherently non-
smooth fashion, whilst others may have non-smooth
control regimes, e.g., bang-bang control of FACTS de-
vices. Often there is scope for tuning parameters re-
lated to these hard nonlinearities to improve system dy-
namic performance. However tuning procedures have
not been straightforward, with ad hoc approaches often
adopted.

Generator excitation systems play a fundamental role
in power system control. Figure 1 provides a (slightly)
simplified block diagram representation of a typical ex-
citation system. Subsystems include automatic voltage
regulator (AVR), exciter and power system stabilizer
(PSS) [1]. Two important hard nonlinearities are ap-
parent:

• non-windup limits on the exciter output, con-
straining the generator field voltage Efd,

• windup limits on the PSS output VPSS.
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Figure 1: PSS/AVR block representation.

The former represent saturation limits of the exciter
amplifier. They are physical limits, and so are not
tunable. The PSS output limits, on the other hand,
are tunable. This paper focusses on tuning these lat-
ter limits to optimize post-disturbance behaviour. The
performance criteria that form the basis for this opti-
mization are presented later.

The primary role of PSSs is to provide damping in the
presence of small disturbances. Controller tuning fo-
cusses on determining the gain and phase shift that are
appropriate under those conditions. Therefore PSSs
often have a detrimental affect on stability immedi-
ately following large disturbances. Typically, during
the transient period, PSSs act to force the field voltage
Efd in an unhelpful direction [2]. There is also the con-
cern that the PSS may cause an unacceptably high gen-
erator terminal voltage [3]. PSS output limiters there-
fore seek to reduce the influence of PSSs during the
transient phase, whilst allowing them to actively damp
subsequent oscillations.

Various rules of thumb have been established for choos-
ing maximum and minimum limit values that achieve
the desired goals [2, 3]. However no systematic tun-
ing process exists. This paper addresses that need by
establishing a procedure for optimally tuning the lim-
its. In fact, it will be shown that transient performance
can also be improved by appropriate choice of limits.
A caveat is required though. Due to the nonlinear na-
ture of power system dynamics, values that are opti-
mal for one disturbance scenario may be suboptimal for
others. However the procedure presented in the paper
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at least provides a systematic approach for addressing
each case. It then becomes a matter of qualitatively
assessing the outcomes of the various cases to achieve
overall robustness.

2 Modelling

The discussion of Section 1 indicates that power sys-
tems commonly exhibit a mix of continuous time
dynamics, discrete-time and discrete-event dynamics,
switching action and jump phenomena. It is shown
in [4, 5] that such systems, known generically as hy-
brid systems, can be modelled by a set of differential-
algebraic equations, adapted to incorporate impulsive
(state reset) action and switching of the algebraic equa-
tions. This DA Impulsive Switched (DAIS) model can
be written in the form,

ẋ = f(x, y) +
e∑

j=1

δ(ye,j)
(
hj(x, y) − x

)
(1)

0 = g(x, y) ≡ g(0)(x, y) +
d∑

i=1

g(i)(x, y) (2)

where

g(i)(x, y) =
{

g(i−)(x, y)
g(i+)(x, y)

yd,i < 0
yd,i > 0 i = 1, ..., d

(3)

and

• δ(.) is the Dirac delta. Each impulse term of the
summation in (1) can be expressed in the alter-
native state reset form

x+ = hj(x−, y−) when ye,j = 0 (4)

where the notation x+ denotes the value of x just
after the reset event, whilst x− and y− refer to
the values of x and y just prior to the event.
This form motivates a generalization to an im-
plicit mapping h′

j(x
+, x−, y−) = 0.

• x ∈ �
n includes continuous dynamic states, for

example generator angles, velocities and fluxes;
discrete dynamic states, such as transformer tap
positions and protection relay logic states; and
parameters λ such as generator reactances, con-
troller gains and limiter values1.

• y ∈ �
m are algebraic states, e.g., load bus voltage

magnitudes and angles.

1Incorporating parameters λ into the state x allows a con-
venient development of trajectory sensitivities, discussed later.
To ensure parameters remain fixed at their initial values, the
corresponding differential equations (1) are defined as λ̇ = 0.

• yd, ye are selected elements of y that trigger alge-
braic switching and state reset (impulsive) events
respectively; yd and ye may share common ele-
ments.

• f, hj : �n+m → �
n .

• g(0), g(i±) : �n+m → �
m . Some elements of each

g(.) will usually be identically zero, but no ele-
ments of the composite g should be identically
zero. The g(i±) are defined like g in (2), allowing
a recursive structure for g.

Equations (1)-(4) are a reformulation (and slight gen-
eralization) of the model proposed in [4].

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

ẋ = f(x, y) (5)
0 = g(x, y) (6)

where g is composed of g(0) together with appropriate
choices of g(i−) or g(i+), depending on the signs of the
corresponding elements of yd. At switching events (3),
some component equations of g change. To satisfy the
new g = 0 constraints, algebraic variables y may un-
dergo a step change. Impulse events (1) (alternatively
reset events (4)) force a discrete change in the elements
of x that correspond to discrete states. Algebraic vari-
ables may again step to ensure g = 0 is always satisfied.

The flows of x and y are defined as

x(t) = φx(x0, t) (7)
y(t) = φy(x0, t) (8)

where x(t) and y(t) satisfy (1)-(3), along with initial
conditions,

φx(x0, t0) = x0 (9)

g
(
x0, φy(x0, t0)

)
= 0. (10)

3 Optimal tuning

3.1 Objective
Optimal controller tuning, the focus of this paper, is
one application of optimization in the analysis of power
system dynamics. Numerous other applications arise
naturally, for example determining the optimal loca-
tion, amount and switching times for load shedding
[6, 7]. Most problems can be formulated using a Bolza
form of objective function

min
λ,tf

J (x, y, λ, tf ) (11)
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Figure 2: Generator angle and terminal voltage.

where

J = ϕ
(
x(tf ), y(tf ), λ, tf

)
+

∫ tf

t0

ψ
(
x(t), y(t), λ, t

)
dt,

also λ are the design parameters, i.e., the parameters
adjusted to achieve the objective, and tf is the final
time.

The objective of controller tuning is to force the sys-
tem to recover to the post-disturbance stable operating
point as quickly as possible. Generator angles δ typi-
cally enable a good assessment of that recovery. An il-
lustration is provided by Figure 2. During the transient
period following a large disturbance, significant angle
deviation is an indicator of marginal system stability.
After the initial transients have subsided, prolonged
angle fluctuations indicate poor damping. Therefore
controller parameters that minimize angle deviation ef-
fectively maximize system recovery.

Angle regulation is achieved through control of the gen-
erator field voltage Efd. However variation of Efd also
directly affects the generator terminal voltage Vt, as
shown in Figure 2. Often improved angle regulation is
achieved at the expense of degraded voltage regulation.
The conflicting requirements of improved angle behav-
iour without voltage degradation can be achieved via
the minimization

min
λ

J (λ) (12)

where

J (λ) =
∫ tf

t0

[
δ(λ, t) − δs

Vt(λ, t) − Vt,s

]t

W

[
δ(λ, t) − δs

Vt(λ, t) − Vt,s

]
dt.

(13)

Note that:

• For the design situation considered in this paper,
the optimization parameters λ are the upper and

lower limits on the PSS output, Vmax and Vmin

respectively in Figure 1.

• The dependence of generator angles δ(λ, t) and
terminal voltages Vt(λ, t) on parameters λ is pro-
vided by the flows (7),(8).

• The post-fault steady state values of δ and Vt are
given by δs and Vt,s respectively.

• The diagonal matrix of weighting factors W ac-
counts for the different scaling in δ and Vt. It also
provides a mechanism for balancing the conflict-
ing requirements of angle and voltage regulation.

3.2 Events
The solution of (11) for hybrid systems may be com-
plicated by discontinuous behaviour at events. How-
ever these complications largely disappear under the
assumption that the order of events does not change as
λ and tf vary. This assumption is common throughout
the literature, though it is expressed in various ways:
transversal crossings of triggering hypersurfaces are as-
sumed in [8], existence of trajectory sensitivities (de-
fined in the following section) is assumed in [9], and
[10] assumes all flows have the same history. All state-
ments are equivalent.

Under that assumption, and other mild assumptions,
[10] concludes that if J is continuous in its arguments
then a solution to (11) exists. Further, [9] shows that if
J is a smooth function of its arguments, then it is con-
tinuously differentiable in terms of λ and tf . The min-
imization can therefore be solved using gradient-based
methods. Trajectory sensitivities, the subject of the
following section, underlie the gradient information.

If the event ordering assumption is not satisfied, J may
be discontinuous. The optimization problem then takes
on a combinatorial nature, as each continuous section
of J must be searched for a local minimum.

3.3 Trajectory sensitivities
Trajectory sensitivities provide a way of quantifying the
variation of a trajectory resulting from (small) changes
to parameters and/or initial conditions [4, 11]. To ob-
tain the sensitivity of the flows φx and φy to initial
conditions x0, the Taylor series expansions of (7),(8)
are formed. Neglecting higher order terms gives

∆x(t) =
∂φx(t)
∂x0

∆x0 ≡ Φx(t)∆x0 (14)

∆y(t) =
∂φy(t)
∂x0

∆x0 ≡ Φy(t)∆x0. (15)

Recall that x0 incorporates parameters λ, so sensitiv-
ity to initial conditions x0 includes parameter sensi-
tivity. Equations (14)-(15) describe the changes ∆x(t)
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and ∆y(t) in a trajectory, at time t along the trajec-
tory, for a given (small) change in initial conditions
∆x0. The time-varying partial derivatives Φx and Φy

are known as trajectory sensitivities. The variational
equations describing the evolution of these sensitivities
are developed in [4], with a summary provided in [12].

Along smooth sections of the trajectory, the trajectory
sensitivities evolve according to a linear time-varying
differential-algebraic system. For large systems, these
equations have high dimension. However the compu-
tational burden is minimal when an implicit numerical
integration technique such as trapezoidal integration is
used to generate the trajectory [4, 13].

3.4 Implementation
Implementation of the minimization (12),(13) is quite
straightforward, even though the cost is obtained by
integrating over the system flow (trajectory). The sim-
plest way of obtaining J is to introduce a new state
variable xcost, with ẋcost equal to the integrand of (13).
Then xcost(tf ) = J , and the trajectory sensitivities,
calculated with respect to λ, directly provide the gra-
dient

∇J = Φxcost
(tf ). (16)

Note that through appropriate implementation of tra-
jectory sensitivities, as described in [4, 13], negligible
extra computation is required in determining (16).

Efficient computation of ∇J ensures that numerous
gradient-based minimization algorithms are available
for solving (12). Steepest descent [14] is the sim-
plest to implement, thought is often slow to converge.
The cost function (13) has the form of a continuous-
time nonlinear least-squares problem. A corresponding
continuous-time adaptation of the Gauss-Newton algo-
rithm [14] is also appropriate, and can be simply and
efficiently implemented.

4 Example

4.1 System description
The single machine infinite bus power system of Fig-
ure 3 will be used to illustrate the optimal tuning
process developed in Section 3. Even though this ex-
ample utilizes a simple network structure, the tuning
algorithm is applicable to arbitrarily large and compli-
cated systems. More importantly, the generator is ac-
curately represented by a sixth order machine model,
viz., a two axis model with two windings in each axis
[15], and the generator excitation system is modelled
according to Figure 1.

AVR

Exciter

PSS

~

VtV∞
Efd

Figure 3: Single machine infinite bus system.

Table 1: Optimization results.

Case
Values

Vmax Vmin Cost, J
Initial values 0.10 -0.10 6.2026
Optimal values 0.11 -0.33 5.2746

4.2 Results
A single phase fault was applied at the generator ter-
minal bus at 0.05 sec. The fault was cleared, without
line tripping, at 0.25 sec. The initial values of the PSS
limits are given in Table 1. The corresponding gener-
ator angle and terminal voltage trajectories are shown
in Figure 2.

The optimal tuning process described in Section 3 was
used to determine PSS output limit values that mini-
mized angle deviation without degrading terminal volt-
age response. The optimal values are given in Table 1.
It can be seen that Vmax has changed very little, but
Vmin moved quite significantly. The effect of this opti-
mal tuning was rather dramatic. Figures 4 and 5 show
that damping improvement and voltage regulation have
been achieved. Note that a lowering of Vmin is quite
counter-intuitive; manual tuning would likely not even
search in that direction for improved response.

For completeness, the behaviour of the PSS output
VPSS and field voltage Efd are shown in Figures 6 and
7 respectively. The effects of the change in PSS limits
is quite evident.

5 Conclusions

Non-smooth nonlinearities often have a significant in-
fluence on power system dynamic behaviour. This pa-
per has addressed the systematic tuning of parameters
related to hard nonlinearities. The focus has been on
power system stabilizer (PSS) output limits.

The objective of controller tuning is to force the sys-
tem to recover to the post-disturbance stable operating
point as quickly as possible. Generator angles typically
provide a good indication of that recovery. Therefore
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Figure 4: Generator angle response.
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Figure 5: Generator terminal voltage response.

the tuning process is based on minimizing angle devia-
tion over the post-fault period. Often improved angle
response is achieved at the expense of degraded volt-
age regulation. A cost function that captures these
conflicting requirements has been established. A sim-
ple yet illustrative example has highlighted the benefits
of systematic tuning.
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