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a b s t r a c t

Minimizing the grid impacts of large-scale plug-in electric vehicle (PEV) charging tends to be associated
with coordination strategies that seek to fill the overnight valley in electricity demand. However
such strategies can result in high charging power, raising the possibility of local overloads within the
distribution grid and of accelerated battery degradation. The paper establishes a framework for PEV
charging coordination that facilitates the tradeoff between total generation cost and the local costs
associated with overloading and battery degradation. A decentralized approach to solving the resulting
large-scale optimization problem involves each PEV minimizing their charging cost with respect to a
forecast price profile while taking into account local grid and battery effects. The charging strategies
proposed by participating PEVs are used to update the price profile which is subsequently rebroadcast to
the PEVs. The process then repeats. It is shown that undermild conditions this iterative process converges
to the unique, efficient (socially optimal) coordination strategy.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As the population of plug-in electric vehicles (PEVs) grows,
the electrical power drawn by chargers will begin to impact the
grid. Numerous studies have explored the potential consequences
of a high penetration of PEVs on the power grid (Denholm &
Short, 2006; Hadley & Tsvetkova, 2008; Koyanagi & Uriu, 1997;
Rahman & Shrestha, 1993; Yu, 2008). At the system-wide level,
control strategies tend to focus on filling the overnight valley in
background demand. Awider range of control objectives have been
considered at the distribution level where uncoordinated charging
may induce localized overloading, excessive losses and voltage
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problems (Clement-Nyns, Haesen, & Driesen, 2010; Fernández,
Román, Cossent, Domingo, & Frías, 2011; Galus & Andersson, 2008;
Hermans, Almassalkhi, & Hiskens, 2012; Kelly, Rowe, & Wild,
2009). It is quite uncommon, however, to find studies that also
take into account the effects of charging control on the health of
the PEV batteries. This paper addresses the need for a charging
coordination scheme which considers the tradeoffs between
system-wide economic efficiency, distribution-level limitations
and battery degradation concerns.

Charging behavior affects key battery characteristics, including
the state of health, the resistance impedance growth and the
cycle life, which are all strongly related to the energy capacity
of a battery (Bashash, Moura, Forman, & Fathy, 2011; Wang
et al., 2011). Intermittent charging may also shorten the battery
lifespan (Gan, Topcu, & Low, 2012). Optimal charging strategies
that take into account both the total energy cost and the battery
state of health have been studied for single PEVs (Bashash et al.,
2011; Cheng, Divakar, Wu, Ding, & Ho, 2011). These ideas form
the basis for the extension, undertaken in this paper, to large-scale
coordination.

Many studies have employed centralized methods for schedul-
ing the charging power of PEVs, see Clement-Nyns et al. (2010),
Galus and Andersson (2008) and Sundstrom and Binding (2010)
and references therein. However individual PEVs are likely to de-
sire autonomy, and optimizing over a large population of PEVs
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Table 1
List of key symbols.

T Charging horizon

un (unt ; t ∈ T ), charging strategy of the nth PEV over the horizon T
∥un∥1


t∈T unt , total energy delivered to the nth PEV over the horizon T

u∗∗
n Efficient charging strategy for PEV n

p∗∗ Generation marginal cost with respect to u∗∗

u∗
n(p) Optimal charging strategy of the nth PEV with respect to price profile p

will have high computational complexity. Therefore centralized
scheduling may be impractical. As an alternative, decentralized
methods preserve individual authority and distribute the compu-
tational burden (Gan, Topcu, & Low, 2013;Ma, Callaway, &Hiskens,
2013).

Time-based strategies for scheduling PEV charging have diffi-
culty effectively filling the night-time demand valley (Callaway &
Hiskens, 2011). Likewise, strategies that rely on a fixed price sched-
ule tend to result in suboptimal demand patterns. In contrast, this
paper is motivated by a real-time price model which has been
widely applied for demand response management (Mohsenian-
Rad & Leon-Garcia, 2010; Samadi, Mohsenian-Rad, Schober,Wong,
& Jatskevich, 2010) and electric vehicle charging/discharging co-
ordination (Fan, 2012; Gan, Chen, Wierman, Topcu, & Low, 2013;
Waraich et al., 2009; Wu, Mohsenian-Rad, & Huang, 2012). In
this formulation, the electricity price is given by the generation
marginal cost as a function of the total demand.

In the decentralized approach to charging coordination pro-
posed in this paper, participating PEVs simultaneously determine
their optimal charging strategy with respect to an energy price
forecast. These proposed charging strategies are used to estimate
the total demand over the charging horizon. An updated price
forecast is obtained as a weighted average of the previous price
forecast and the generation marginal cost evaluated at this latest
demand forecast. The revised price is (re)broadcast to the PEVs, and
the process repeats. This scheme is formalized in Section 4 where
it is shown that convergence is guaranteed under mild conditions.
Upon convergence, the price profile is coincident with the genera-
tionmarginal cost over the charging horizon. As a consequence, the
resulting collection of PEV charging strategies is efficient (socially
optimal). Moreover, convergence is obtained without the need for
artificial deviation costs to damp oscillations, as in Ma et al. (2013)
and Gan et al. (2013). Cost terms introduced to mitigate the ef-
fects of local demand peaks and battery degradation play the same
role as congestion pricing used for traffic control in communication
networks (Kelly, Maulloo, & Tan, 1998), which has been adopted
in Fan (2012) to schedule PEV charging.

The paper is organized as follows. Section 2 formalizes the
concept of charging strategies, and motivates the costs associated
with peak demand reduction and battery degradation. Centralized
(socially optimal) coordination of PEV charging is considered in
Section 3. A novel decentralized charging coordination algorithm
is presented in Section 4 and convergence is analyzed. Simulations
in Section 5 illustrate various characteristics of the algorithm.
Section 6 concludes the paper and discusses ongoing research.
A summary of the key notation used throughout the paper is
provided in Table 1.

2. Formulation of PEV charging coordination

2.1. Admissible charging strategies

Consider the charging control of a large population of PEVs,
N ≡ {1, . . . ,N}, over the horizon T ≡ {0, . . . , T − 1}. For each
PEV, n ∈ N , the charging power over the time period t ∈ T
is denoted by unt (with units of kW).1A charging strategy un ≡

(unt; t ∈ T ) is admissible if,

unt


≥ 0, t ∈ Tn
= 0, t ∈ T \ Tn,

(1a)

and

∥un∥1 ≡


t∈T

unt ≤ Γn, (1b)

where Tn ⊂ T is the charging horizon and Γn is the energy
capacity of the nth PEV. The parameters Tn and Γn are determined
by external factors such as driving style and vehicle type (Lee,
Bareket, & Gordon, 2012). The set of admissible charging controls
for the nth PEV is denoted by Un.

Coordination of PEV charging across a large population has
generally sought to minimize total generation cost over the
charging horizon, see for example Denholm and Short (2006), Gan
et al. (2013) and Ma et al. (2013). In contrast, the coordination
strategies developed in this paper seek to manage the tradeoff
between total generation cost and local costs arising from high
distribution-level demand and PEV battery degradation. These
latter costs will now be discussed.

2.2. Demand charge

Distribution-level impacts of PEV charging include line and
transformer overloading, low voltages and increased losses. All
these effects are a consequence of coincident high charger power
demand unt . Therefore undesirable distribution-grid effects can be
minimized by encouraging PEVs to charge at lower power levels.
This can be achieved by introducing a demand charge,

Costdemand,nt = gdemand,nt(unt) (2)

whereby PEVs incur a higher cost as their charging power
increases, i.e. gdemand,nt(·) is a strictly increasing function. This
charge is in addition to the cost of the energy delivered to the
battery, and is consistent with existing tariff structures for larger
consumers (Deliso, 2013).

2.3. Battery degradation cost

The LiFePO4 lithium-ion battery has been widely used in
a variety of electrical vehicles. A degradation cost model for
LiFePO4 battery cells is formulated in Forman, Stein, and Fathy
(2013), based on the evolution of battery cell characteristics
developed in Forman, Moura, Stein, and Fathy (2012) and Moura,
Forman, Bashash, Stein, and Fathy (2011). This degradation model
expresses the energy capacity loss per second (in Amp × Hour ×

Sec−1) of a cellwith respect to the charging current I and voltageV :

dcell(I, V ) = β1 + β2I + β3V + β4I2 + β5V 2
+ β6IV + β7V 3, (3)

with the parameters βi, i = 1, . . . , 7, specified in Forman et al.
(2013, Table I). The degradation cost for a battery cell charging at
constant I and V for a period ∆T Sec is therefore,

gcell(I, V ) = Pcell∆TVcelldcell(I, V ) (4)

where Pcell is the price ($/Wh) of battery cell capacity.
The cell voltage Vcell of a lithium-ion battery changes with its

state of charge (SoC) (Kim, Seo, Chun, Cho, & Lee, 2012; Prosini,
2005). More specifically, as the SoC of a cell varies from zero to a
very low value socℓ > 0, Vcell rises rapidly from zero to its nominal

1 If the tth time period has length ∆T , then the energy delivered over that period
is unt∆T .
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Fig. 1. Variation of the open circuit voltage of a LiFePO4-type battery cell with
respect to the SoC.

value Vnom, and remains near that value until the cell SoC reaches
a high value soch (Cheng et al., 2011; Lu, Han, Li, Hua, & Ouyang,
2013; Singh, Izadian, &Anwar, 2013). Fig. 1 provides an illustration.
Over the usable SoC range socℓ ≤ soc ≤ soch, the cell voltage
remains almost constant, Vcell ≈ Vnom.2

Assume that the battery pack of the nth PEV is composed of
Mn identical cells, with all cells having the same SoC and charging
power. At time t , each cell will have a charging current of I =

103unt/(MnVnom), with unt in kW. The battery degradation cost of
the nth PEV at time t can then be expressed as,

Costdegrad,nt = gcell,n(unt) = Mngcell


103unt

MnVnom
, Vnom


= anu2

nt + bnunt + cn (5)

with

an = 106Pcell∆Tβ4/(MnVnom)

bn = 103Pcell∆T (β2 + β6Vnom)

cn = MnPcell∆TVnom(β1 + β3Vnom + β5V 2
nom + β7V 3

nom).

This gives the monetary loss incurred by charging at a rate of unt
for the period ∆T .

3. Centralized PEV charging coordination

3.1. Formulation

The coordination problem of interest considers the tradeoff
between the total cost of supplying energy to the PEV population
and the benefit derived from doing so. The total cost is composed
of the generation cost, the demand charge discussed in Section 2.2,
and the PEV battery degradation cost formulated in Section 2.3.
Coordinationmust ensure that all charging controls are admissible,
un ∈ Un for all n ∈ N .

Given a collection of admissible charging strategies u ∈ U, the
system cost function can be expressed as,

J(u) ,

t∈T


c

dt +


n∈N

unt


+


n∈N

gnt(unt)


−


n∈N


hn (∥un∥1)


, (6)

where:
• c(·) gives the generation cost with respect to the total demand

dt +


n∈N unt , and dt denotes the aggregate inelastic base
demand at time t;

2 Accordingly, it is difficult to accurately estimate the SoC of LiFePO4 batteries
from observations of their open circuit voltage.
• gnt(unt) = gdemand,nt(unt) + gcell,n(unt) captures the demand
charge (2) and battery degradation cost (5) of the nth PEV; and,

• hn (∥un∥1) denotes the benefit function of the nth PEV with
respect to the total energy delivered over the charging horizon.
In Han, Han, and Sezaki (2010), this function has the quadratic
form,

hn (∥un∥1) = −δn(∥un∥1 − Γn)
2, (7)

with the factor δn reflecting the relative importance of
delivering the full charge to the PEV over the charging horizon.

The utility function of the nth PEV, for a charging strategy un ∈

Un, can be written,

vn(un) , hn(∥un∥1) −


t∈T

gnt(unt). (8)

The system cost J(u) given by (6) can then be rewritten:

J(u) =


t∈T

c

dt +


n∈N

unt


−


n∈N

vn(un). (9)

The individual utility function (8) is similar to that specified
in Fan (2012), where a distributed PEV charging algorithm was
developed based on congestion pricing concepts from internet
traffic control (Kelly et al., 1998).

It is commonly assumed, see Bompard, Ma, Napoli, and Abrate
(2007), Gountis and Bakirtzis (2004) and Wen and David (2001)
and references therein, that the electricity generation cost can be
approximated by the quadratic form,

c(yt) =
1
2
ay2t + byt + c, (10)

with parameters a, b and c which reflect system conditions. The
marginal generation cost, which is the derivative of generation
cost, therefore varies linearly with the total demand, p(yt) ,
c ′(yt) = ayt + b.

Centralized PEV charging coordination can be formulated as the
optimization problem:

Optimization Problem 1.

min
u∈U

J(u). (11)

The objective is to implement a socially optimal collection of
charging strategies for all PEVs, denoted by u∗∗, that minimizes the
system cost (6) or its equivalent form (9). �

The following assumptions will apply throughout the paper:

(A1) c(·) is monotonically increasing, strictly convex and differen-
tiable.

(A2) gnt(·), for all n ∈ N , t ∈ T , is monotonically increasing,
strictly convex and differentiable. �

When the benefit function takes the form (7), the solution
obtained by minimizing J(u) subject only to (1a) always satisfies
(1b), and hence is also the solution for Optimization Problem 1. To
see this, define the set of charging strategies that satisfy (1a) for
the nth PEV,

Sn ,

un ≡ (unt; t ∈ T ); s.t. constraint (1a)


,

and let S denote the collection of such sets for all n ∈ N . Consider
the optimization problem minu∈S J(u) rather than (11).

Based on Assumptions (A1, A2), the efficient (socially optimal)
charging behavior is unique and can be characterized by its
associated KKT conditions (Boyd & Vandenberghe, 2004). The
optimal solution u∗∗ is therefore given by:

∂

∂unt
J(u) ≥ 0, unt ≥ 0,

∂

∂unt
J(u)unt = 0, (12)
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Fig. 2. Aggregate demand due to the efficient charging strategies.

for all n ∈ N and t ∈ Tn, where:

∂

∂unt
J(u) = c ′


dt +


n∈N

unt


−

∂

∂unt
vn(un).

It follows from (12) that the efficient charging behavior u∗∗ is
uniquely specified by:

p∗∗

t


=

∂

∂unt
vn(u∗∗

n ), when u∗∗

nt > 0,

≥
∂

∂unt
vn(u∗∗

n ), when u∗∗

nt = 0,
(13)

where p∗∗
t = c ′


dt +


n∈N u∗∗

nt


is the generation marginal cost

over the charging horizon with respect to the efficient allocation
u∗∗.

Notice that if ∥u∗∗
n ∥1 ≥ Γn then (7) together with Assump-

tion (A2) ensure that ∂
∂unt

vn(u∗∗
n ) < 0. But p∗∗

t > 0 according to
Assumption (A1), so (13) implies that u∗∗

n = 0. Hence a contradic-
tion. Accordingly, ∥u∗∗

n ∥1 < Γn and (1b) is always satisfied.

3.2. Numerical example

This example considers coordinated charging of a population of
5000 PEVs over a common charging interval from noon on one day
to noon on the next. In accordance with (10), the generation cost
function has the quadratic form,

c(yt) = 2.9 × 10−7y2t + 0.06yt , (14)

where yt = dt +


n∈N unt . The base demand d, which is shown in
Fig. 2, is representative of a typical hot summer day.

The battery pack of each PEV is composed of LiFePO4 lithium-
ion cells which have a nominal voltage of 3.3 V and energy capacity
of 2.5 A h (Amp × Hour). These are typical values for batteries
that are used in PEVs. Assume the price of battery cell capacity
is $10/Wh. Furthermore, let all PEVs have battery capacity of
40 kWh. Then the battery degradation cost (5) for each PEV is given
(approximately) by,

gcell,n(unt) = 0.0012u2
nt + 0.11unt − 0.02.

Each PEV is subject to a quadratic demand charge gdemand,nt(unt) =

0.0018u2
nt . Thus, the local costs incurred by each PEV at time t

amount to,

gnt(unt) = 0.003u2
nt + 0.11unt − 0.02. (15)

Initially all PEVs use the same weighting factor δn = 0.03 in
their utility functionvn(un) givenby (7) and (8). Thiswill be relaxed
in later investigations.
Fig. 3. Evolution of the SoC of an individual PEV.

For simplicity, assume all PEVs have identical minimum and
maximum SoC, with socℓ = 15% and soch = 90%. The upper limit
(1b) on the energy that can be delivered to each PEV is given by,

Γn = 40(soch − socn0),

which equals 30 kWh if socn0 = socℓ = 15% for all n.
The efficient (socially optimal) charging strategies given by (11),

u∗∗
n for n ∈ N , result in the aggregate demand shown in Fig. 2.

The evolution of the SoC of one of the PEVs is shown in Fig. 3. As
a comparison, the aggregate demand of the valley-filling strategy
uvf given by Ma et al. (2013) is also shown in Fig. 2. Note that
the algorithm developed in Ma et al. (2013) enforces an equality
constraint on the energy delivered, ∥uvf

n ∥1 = Γ
vf
n , rather than

incorporating a benefit function of the form (7). Therefore, to
ensure a meaningful comparison, the total charge requirement in
the valley-filling case was set equal to the energy delivered in the
socially optimal solution, Γ vf

n = ∥u∗∗
n ∥1.

The socially optimal charging strategy given by (11) establishes
a tradeoff between the total generation cost of the system and
the local costs (demand charge and battery degradation cost)
of the PEV population. As illustrated in Fig. 2, this results in
an outcome that differs quite considerably from the valley-
filling strategy which is solely concerned with minimizing total
generation cost. This distortion away from valley-filling increases
as higherweighting is given to the local costs of the PEVpopulation.

This difference between the socially optimal and valley-filling
strategies can be quantified by considering,
t∈T

c

dt +


n∈N

u∗∗

nt


−


t∈T

c

dt +


n∈N

uvf
nt


= 211.7

n∈N


t∈T

gnt

u∗∗

nt


−


n∈N


t∈T

gnt

uvf
nt


= −671.3

where the constraint Γ
vf
n = ∥u∗∗

n ∥1 has been taken into account.
It can be seen that incorporating the local costs resulted in an
increase in generation cost of $211.7/day. However this was more
than offset by a reduction in the local costs of $671.3/day, resulting
in an overall saving of $459.6/day. As a further comparison, if
Γ

vf
n = Γn, i.e. PEVs must fully charge rather than settle for the

reduced energy delivery of ∥u∗∗
n ∥1, then adopting u∗∗ instead of uvf

would result in a cost saving of $1640.2/day.
The following investigations consider the effects of variations

in the battery degradation cost gcell,n and the benefit function hn on
the optimal charging strategies of a population of PEVs.

Fig. 4 shows the evolution of the (efficient) aggregate demand
as the battery price Pcell is varied. For this study, the demand charge
(2) was set to zero and δn = 0.03 in all cases. It can be seen
that the efficient aggregate demand approaches valley-filling as
Pcell decreases, and becomes exactly valley-filling when Pcell = 0.
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Fig. 4. Aggregate demand for efficient charging strategies as battery price Pcell
varies.

Fig. 5. Total delivered energy ∥un∥1 for an individual PEV as battery price Pcell
varies.

Fig. 6. Aggregate demand for efficient charging strategies as the benefit function
parameter δn varies.

Fig. 5 shows that the total delivered energy ∥un∥1 decreases as Pcell
increases.

Fig. 6 shows the variation in the efficient aggregate demand
as the benefit function parameter δn is varied. The general shape
of the aggregate demand remains largely unchanged. It is shown
in Fig. 7 that the total delivered energy ∥un∥1 increases with δn,
approaching the energy capacity limit Γn.

4. Decentralized charging coordination method for PEV popu-
lations

Centralized coordination is only possible when the system
operator has complete information, including the characteristics
of PEV batteries and the valuation functions of individual PEVs.
Fig. 7. Total delivered energy ∥un∥1 for an individual PEV as the benefit function
parameter δn varies.

It is unlikely, however, that individuals would be willing to share
such private information. Also, for a large population, centralized
control may be computationally infeasible. Thus, the remainder
of the paper is devoted to the development of a decentralized
coordination processwhere each PEV updates its charging strategy
with respect to a common electricity price profile, and then the
price profile is updated based on the latest charging strategies for
the population.

Decentralized coordination of PEV charging can be achieved
using an algorithm of the form:

(S1) Each PEV autonomously determines its optimal charging
strategy with respect to a given electricity price profile p ≡

(pt , t ∈ T ). This optimal strategy takes into account the
tradeoff between the electricity cost and local (demand and
battery degradation) costs over the entire charging horizon.

(S2) The electricity price profile p is updated to reflect the latest
charging strategies determined by the PEV population in (S1).

(S3) Steps (S1) and (S2) are repeated until the change in the price
profile at (S2) is negligible.

Section 4.1 establishes the optimal charging strategy u∗
n(p) of

each PEV, n ∈ N , with respect to a given price profile p. A
mechanism for updating the electricity price profile is designed
in Section 4.2. Section 4.3 then formalizes the algorithm (S1)–(S3),
establishes convergence properties, and shows that decentralized
coordination gives the socially optimal (economically efficient)
charging strategy.

4.1. Optimal response of each PEV with respect to a fixed price profile

The individual cost function of the nth PEV, under charging
strategy un ∈ Un and with respect to the price profile p, can be
written:

Jn(un; p) ,

t∈T

ptunt − vn(un). (16)

Alternatively, using (8), this cost function can be expressed in the
form:

Jn(un; p) =


t∈T


ptunt + gnt(unt)


− hn


t∈T

unt


,

where it becomes clear that the cost is composed of the total
electricity cost


t∈T ptunt , the total local cost


t∈T gnt(unt), and

the benefit derived from the total energy delivered over the
charging horizon hn


t∈T unt


.

The optimal charging strategy of the nth PEV, with respect to p,
is obtained by minimizing the cost function (16),

u∗

n(p) = argmin
un∈Un

Jn(un; p). (17)
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It will be shown in Theorem 4.1 that the optimal response of the
nth PEV has the form:

unt(p, An) =


max


0, [g ′

nt ]
−1(An − pt)


, t ∈ Tn

0, t ∈ T \ Tn
(18)

for some An, where g ′
nt is the derivative of gnt , and [g ′

nt ]
−1 is the

corresponding inverse function. Since the total charging energy is
elastic, the value of An is dependent upon the PEV specifications
and the price p, with this dependence established in Theorem 4.1.

Determining the optimal charging strategy (17) proceeds as
follows. Lemma 4.1 addresses the restricted problem of finding the
optimal charging strategy when the total delivered energy takes
a specified value, ∥un∥1 = ω, where 0 ≤ ω ≤ Γn. Lemma 4.2
considers the charging strategy in the form (18) and establishes the
relationship between the value of An and the total energy delivered
∥un(p, An)∥1. Lemma4.3 shows that the sensitivity of charging cost
to changes in ω is given by An. Finally, Theorem 4.1 brings all the
results together anddetermines the unique value ofAn that ensures
(18) is optimal in the sense of (17).

To begin with, consider the cost for the nth PEV, but excluding
hn. This can be written,

Fn(un; p) ,

t∈T


ptunt + gnt(unt)


. (19)

This function will be used to examine scenarios where the total
charging is constant, ∥un∥1 = ω. In such cases, the cost hn(∥un∥1)
can be neglected since it is equal across all such scenarios.
Accordingly, define the set of charging strategies where total
energy ω is delivered to the nth PEV as,

Un(ω) ,

un ∈ Un; s.t. ∥un∥1 = ω


. (20)

Lemma 4.1. Consider a fixed ω, with 0 ≤ ω ≤ Γn, and a fixed
p. Then un(p, An), defined in (18), is the unique charging strategy
minimizing the cost function (19) subject to the set of admissible
charging strategies Un(ω).

Proof. Define the Lagrangian function,

Ln(un, An; p) , Fn(un; p) + An(ω − ∥un∥1), (21)

with unt ≥ 0 for t ∈ T , and An the Lagrangian multiplier
associated with the constraint on total delivered energy (20). The
desired optimal strategy must satisfy the KKT conditions (Boyd &
Vandenberghe, 2004):
(i) ∂Ln

∂An
= 0.

(ii) ∂Ln
∂unt

≥ 0, unt ≥ 0, with complementary slackness.

The equality (i) recovers the constraint on total energy ∥un∥1 = ω,
while the inequalities given in (ii) can be expressed in the form,

pt + g ′

nt(unt) − An


= 0, when unt > 0
≥ 0, otherwise, (22)

which is equivalent to (18). Moreover, since Fn(un; p) is convex
with respect to un, the optimal charging strategy defined by (18)
must be unique for a given Un(ω). �

This lemma establishes theminimum (17) when un is restricted
to Un(ω), for a specified value of ω. Relaxing that restriction, by
allowing un ∈ Un, is achieved in Theorem 4.1. Before reaching that
point, it is necessary to establish some notation and intermediate
results.

For any PEV, n ∈ N , the pair of values A−
n (p) and A+

n (p) are
defined as:

A−

n (p) = max

A, such that ∥un(p, A)∥1 = 0


(23)

A+

n (p) = A, such that ∥un(p, A)∥1 = Γn. (24)
Note that the subscript n is included on A−
n for consistency, though

it is independent of n.
The following lemma establishes a few basic relationships

between the Lagrangian multiplier An and the minimizing control
strategy.

Lemma 4.2. Consider a fixed price profile p. Then:

(i) Every unt(p, An), t ∈ T , is non-decreasing with An ∈ R,
and hence ∥un(p, An)∥1 is non-decreasing with An. Furthermore,
∥un(p, An)∥1 is strictly increasing for An ≥ A−

n (p).
(ii) un(p, An) is admissible for A−

n (p) ≤ An ≤ A+
n (p), but not

admissible for any An > A+
n (p).

Proof. Property (i) holds by the specification of unt(p, An) given in
(18) and verified by Lemma 4.1, keeping in mind Assumption (A2).
From (23) and (24), ∥un(p, A−

n (p))∥1 = 0 and ∥un(p, A+
n (p))∥1 =

Γn. Therefore, since ∥un(p, An)∥1 is strictly increasing for An ≥

A−
n (p), it follows that:

• unt(p, An) ≥ 0 for all t ∈ T , and ∥un(p, An)∥1 ≤ Γn for
A−
n (p) ≤ An ≤ A+

n (p), so un(p, An) is admissible.
• ∥un(p, An)∥1 > Γn when An > A+

n (p), so un(p, An) is not
admissible.

This establishes property (ii). �

Lemma 4.2 guarantees that for a fixed p, ∥un(p, An)∥1 strictly
increases from 0 to Γn on the interval An ∈ [A−

n (p), A+
n (p)]. This

implies that ∥un(p, A)∥1 is invertible on [A−
n (p), A+

n (p)], with the
inverse denoted:

An(p, ·) : [0, Γn] → [A−

n (p), A+

n (p)]. (25)

It follows that An(p, ω) is strictly increasing with ω and,

An(p, ω) = An ⇐⇒ ∥un(p, An)∥1 = ω. (26)

The charging strategy that satisfies (18) and delivers total
energy of ω will be denoted by un(p, An(p, ω)), and therefore
∥un(p, An(p, ω))∥1 = ω.

Because of the non-negativity constraint on unt and the corre-
sponding complementary slackness requirement from Lemma 4.1,
it is not straightforward to determine a closed form expression for
the functionAn(p, ω). A valuable property ofAn(p, ω) is, however,
established in the following lemma.

Lemma 4.3. For any fixed price profile p,

d
dω

F∗

n (p, ω) = An(p, ω), with ω ∈ [0, Γn], (27)

where,

F∗

n (p, ω) , min
un∈Un(ω)

Fn(un; p). (28)

Proof. From (21), An is the Lagrangian multiplier associated with
the constraint ∥un∥1 = ω. Based on duality theory (Boyd
& Vandenberghe, 2004), the sensitivity of the minimum value
F∗
n (p, ω) with respect to changes in ω is therefore given by An. The
result follows from (26). �

It is nowpossible to establish the optimal charging strategy for a
given p. This is achieved in the following theorem,which implicitly
determines the optimal value for ω in the process.

Theorem 4.1. Assume hn(ω) is continuously differentiable, increas-
ing and concave on 0 ≤ ω ≤ Γn. Define,

fn(p, ω) , An(p, ω) − h′

n(ω) (29)
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with An(p, ·) given by (25), and

A∗

n(p) =


An(p, Γn), if fn(p, Γn) ≤ 0
An(p, 0), if fn(p, 0) ≥ 0
An(p, ω∗), if fn(p, ω∗) = 0

(30)

where 0 < ω∗ < Γn. Then the charging strategy un(p, A∗
n(p)) defined

in (18) uniquely minimizes the cost function (16) with respect to a
given p, i.e. u∗

n(p) = un(p, A∗
n(p)).

Proof. Recall that

Jn(un; p) = Fn(un; p) − hn(ω),

for all un ∈ Un(ω). Then,

min
un∈Un

Jn(un; p) = min
un∈Un


Fn(un; p) − hn(∥un∥1)


= F∗

n (p, ω∗) − hn(ω
∗),

where ω∗ is the total charging energy that minimizes the cost
function Jn(·; p). Note that ω∗ is constrained to 0 ≤ ω∗

≤ Γn. For
0 < ω∗ < Γn, the optimal energy demand ω∗ is implicitly defined
by the stationarity condition,

d
dω


F∗

n (p, ω) − hn(ω)


ω=ω∗ = fn(p, ω∗) = 0 (31)

where Lemma 4.3 has been used to establish the first equality.
Moreover, h′

n(ω) decreases onω, since hn is assumed to be concave,
and An(p, ω) is strictly increasing with ω. Therefore, if a solution
for (31) exists over 0 < ω∗ < Γn, then it must be unique.

If (31) cannot be satisfied for 0 < ω < Γn then no station-
ary point exists over that open interval. Consequently, the cost
F∗
n (p, ω) − hn(ω) must exhibit monotonic behavior over 0 < ω <

Γn. If the cost strictly increases with ω, so An(p, ω) − h′
n(ω) =

fn(p, ω) > 0 for 0 < ω < Γn, then the minimum cost solu-
tion will occur at the lower end, ω∗

= 0. Similarly, if the cost
is strictly decreasing with ω, so the derivative fn(p, ω) < 0 over
0 < ω < Γn, then the minimum cost solution will occur at the
upper end, ω∗

= Γn. �

4.2. Price profile update mechanism

If the price profile p was equal to the optimal (efficient)
generation marginal cost p∗∗ given by (13), then the collection of
PEV charging strategies u∗(p) ≡


un(p, A∗

n(p)), n ∈ N

given by

(18) and (30) would be efficient. However, this optimal price p∗∗

cannot be determined a priori. Hence there is a need for an update
mechanism that guarantees convergence of the price profile to the
efficient marginal cost p∗∗. Consider the scheme,

p+

t (p) = pt + η

c ′


dt +


n∈N

u∗

nt(p)


− pt

, t ∈ T (32)

where η > 0 is a fixed parameter, and u∗
n(p), defined in (17), is the

optimal charging strategy for the nth PEV with respect to p.
Given a system price profile p over the charging horizon T , if pt

is lower than the generationmarginal cost c ′

dt +


n∈N u∗

nt(p)

at

time t , the system will set a higher price p+

t to encourage PEVs to
reduce their charging demand at that time. Likewise, if pt is higher
than the marginal cost c ′, the system will set a lower system price
p+

t to encourage PEVs to increase their charging demand at that
time.

Notice that the price update mechanism (32) can be written in
the form,

p+
= (1 − η)p + ηP (p),

where

Pt(p) = c ′


dt +


n∈N

u∗

nt(p)


, t ∈ T .
This price update iteration takes the form of the Krasnoselskij
iteration (Berinde, 2007; Grammatico, Parise, Colombino, &
Lygeros, 0000), and is therefore guaranteed to converge to a
fixed point of P (·) for any η ∈ (0, 1) if P (·) is non-expansive.
Corollary 4.1 establishes a more general sufficient condition under
which the system converges to the unique price profile p∗∗ which
is the efficient marginal cost.

4.3. Decentralized coordination of PEV charging

It is now possible to formalize a decentralized coordination
algorithm for determining the optimal charging strategy for a
population of PEVs.

Algorithm 1 (Decentralized Coordination).

• Specify the aggregate base demand d;
• Define an εstop to terminate iterations;
• Initialize ε > εstop and an initial price profile p(0);
• Set k = 0;
• While ε > εstop

. Determine the optimal charging profile u(k+1)
n w.r.t. p(k) for all

n ∈ N PEVs simultaneously by minimizing the individual cost
function (16),

u(k+1)
n (p(k)) , argmin

un∈Un


t∈T

p(k)
t unt − vn(un)


;

. Determine p(k+1) from p(k) and u(k+1)

p(k)


using (32),

p(k+1)
t = p(k)

t + η

c ′


dt +


n∈N

u(k+1)
nt


− p(k)

t


,

for all t ∈ T ;
. Update ε := ∥p(k+1)

− p(k)
∥1;

. Update k := k + 1. �

If Algorithm1 converges, this decentralized processwill achieve
the efficient solution. Iterations could, however, be oscillatory or
even divergent. In order to establish convergence, it is useful to
define νnt as the Lipschitz constant for the function [g ′

nt ]
−1(·) over

the interval [g ′
nt(0), g

′
nt(Γn)], with

ν = max
n∈N ,t∈T

νnt , (33)

and to define κ as the Lipschitz constant for c ′(·) over the typical
range in the total demand. The following intermediate result is also
required.

Lemma 4.4. Assume the terminal valuation function hn is increasing
and strictly concave. Then,

∥u∗

n(p) − u∗

n(ϱ)∥1 ≤ 2ν∥p − ϱ∥1 (34)

where ∥.∥1 denotes the l1 norm of the associated vector.
The proof of Lemma 4.4 is given in Appendix A. �

It is now possible to establish the convergence properties of
Algorithm 1, and hence of the decentralized coordination process.

Corollary 4.1 (Convergence of Algorithm 1). Suppose α ≡ |1 −

η| + 2Nκνη < 1 and consider any initial charging price p(0).
Then Algorithm 1 converges to the efficient solution u∗∗ which is
specified in (13). Moreover, for any ε > 0, the system converges to
a price profile p, such that ∥p − p∗∗

∥1 ≤ ε, in K(ε) iterations, with

K(ε) =


1

ln(α)


ln(ε) − ln(T ) − ln(ϱmax)


, (35)

where ϱmax denotes the maximum possible price, and ⌈x⌉ represents
the minimal integer value larger than or equal to x.
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Remarks:

(i) In practice, convergence to the desired tolerance ε requires
many fewer iterations than the upper bound established in
(35). Typical convergence behavior is illustrated in Section 5.

(ii) The upper bound on the iteration count, K(ε), is of order
O(|ln(ε)|), and is independent of the size of the PEVpopulation.
The choice of α is influenced by the PEV population size, with
the condition α < 1 requiring that N < 1

2κν
. Notice from (10),

though, that κ(N) ∈ O( 1
N2 ) because the generation cost c(·)

must remain finite as the PEV population N grows. Therefore
this necessary condition on N is not restrictive.

Proof of Corollary 4.1. Consider a pair of price profiles p and ϱ,
and the respective updated price profiles p+ and ϱ+ given by (32).
Then,

∥p+
− ϱ+

∥1

=


t∈T

pt + η


c ′


dt +


n∈N

u∗

nt(p)


− pt


−


ϱt + η


c ′


dt +


n∈N

u∗

nt(ϱ)


− ϱt


=


t∈T

η
c ′


dt +


n∈N

u∗

nt(p)


− c ′


dt +


n∈N

u∗

nt(ϱ)


+ (1 − η)(pt − ϱt)


≤ η


t∈T

c ′


dt +


n∈N

u∗

nt(p)


− c ′


dt +


n∈N

u∗

nt(ϱ)


+ |1 − η| × ∥p − ϱ∥1. (36)

Also, given the definition of κ , it follows that,
t∈T

c ′


dt +


n∈N

u∗

nt(p)


− c ′


dt +


n∈N

u∗

nt(ϱ)


≤ κ


t∈T

 
n∈N

u∗

nt(p) −


n∈N

u∗

nt(ϱ)


≤ κ


t∈T


n∈N

u∗

nt(p) − u∗

nt(ϱ)


= κ

n∈N


t∈T

u∗

nt(p) − u∗

nt(ϱ)


= κ

n∈N

∥u∗

n(p) − u∗

n(ϱ)∥1

≤ 2κν

n∈N

∥p − ϱ∥1 (37)

= 2Nκν∥p − ϱ∥1 (38)

where the inequality (37) invokes Lemma 4.4. Inequalities (36) and
(38) together imply,

∥p+
− ϱ+

∥1 ≤ (|1 − η| + 2Nκνη)∥p − ϱ∥1. (39)

If |1 − η| + 2Nκνη < 1, then,

∥p+
− ϱ+

∥1 < ∥p − ϱ∥1, (40)

so the price update operator p+(p) specified in (32) is a contraction
map. Hence by the contraction mapping theorem (Smart, 1974),
the system price p(k) converges to a unique price profile p∗ from
any initial price profile p(0). At the converged price, p+(p∗) = p∗,
and so (32) implies,

c ′


dt +


n∈N

u∗

nt(p
∗)


= p∗

t , for all t ∈ T . (41)
The price converges to the generation marginal cost over the
charging horizon.

It will now be shown that u∗(p∗) is the efficient (socially
optimal) charging strategy thatminimizes the central optimization
problem (11). Let ω∗

= ∥u∗(p∗)∥1. If 0 < ω∗ < Γn then by
Theorem 4.1, A∗

n(p
∗) = h′

n(ω
∗). According to Lemma 4.1,

p∗

t + g ′

nt(u
∗

nt(p
∗)) − h′

n(ω
∗)


= 0, if u∗

nt(p
∗) > 0

≥ 0, otherwise

so (13) is satisfied.
If ω∗

= 0 then by Theorem 4.1, A∗
n(p

∗) ≥ h′
n(ω

∗). Also, in this
case, u∗

nt(p
∗) = 0 for all t ∈ T . Therefore, from Lemma 4.1,

p∗

t + g ′

nt(u
∗

nt(p
∗)) ≥ A∗

n(p
∗) ≥ h′

n(ω
∗)

which again satisfies (13).
Suppose ω∗

= Γn, then by Theorem 4.1, A∗
n(p

∗) ≤ h′
n(ω

∗) = 0.
There must exist at least one instant t ∈ Tn where u∗

nt > 0. At such
an instant, Lemma 4.1 implies,

p∗

t + g ′

nt(u
∗

nt(p
∗)) − A∗

n(p
∗) = 0

⇒ p∗

t + g ′

nt(u
∗

nt(p
∗)) ≤ 0

and so p∗
t < 0 because g ′

nt(u
∗
nt(p

∗)) > 0 according to
Assumption (A2). However this is not possible, as Assumption (A1)
ensures that p∗

t > 0 for all t ∈ T . Hence, ω∗ < Γn, which is
consistent with the efficient solution.

Therefore the collection of optimal PEV charging strategies is
efficient, u∗

= u∗∗, with respect to the converged price p∗
= p∗∗.

Given α ≡ |1 − η| + 2Nκνη < 1, (39) implies,

∥p(k)
− p∗∗

∥1 ≤ αk
∥p(0)

− p∗∗
∥1.

With p(0)
t , p∗∗

t ∈ [0, ϱmax] for all t ∈ T , this gives,

∥p(k)
− p∗∗

∥1 ≤ αkTϱmax,

which implies that ∥p(k)
− p∗∗

∥1 ≤ ε for k satisfying (35). �

5. Numerical illustrations

5.1. Convergence

This section provides an illustration of Algorithm 1 using
parameter values that match those of Section 3.2. For the
generation cost function (14), the marginal cost is given by,

p(yt) = c ′(yt) = 5.8 × 10−7yt + 0.06.

The corresponding Lipschitz constant is κ = 5.8×10−7. From (15),
the Lipschitz constant for [g ′

nt ]
−1(·) is ν = 1/0.006 = 166.7. Given

these values,

α ≡ |1 − η| + 2Nκνη = |1 − η| + 0.967η,

which is less than 1 whenever 0 < η < 1.017. Thus by Corol-
lary 4.1, the system is guaranteed to converge to the efficient solu-
tion for all η ∈ (0, 1.017). It is straightforward to show that α is a
minimum when η = 1, giving α = 0.967 < 1.

With α = 0.967, T = 24 and ϱmax = 0.3, Algorithm 1 will
converge to a price profile p∗, such that ∥p∗

−p∗∗
∥1 < ε = 0.0001,

in less than K = 334 iterations, according to (35). Fig. 8 shows the
evolution of ∥p(k)

− p∗∗
∥1, with η = 1, from an initial price profile

p(0)
t = c ′(dt) for all t ∈ T , i.e. zero charging load. It can be seen

that convergence to the desired tolerance is achieved in about 10
iterations, which is much less than the theoretical upper bound of
334.

As η increases over the range 0 < η ≤ 1, the value of α
decreases, with (39) suggesting faster convergence of Algorithm 1.
Fig. 9 shows this to be the case. Further increasing η results in α
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Fig. 8. Convergence of ∥p(k)
− p∗∗

∥1 for Algorithm 1, with η = 1.

Fig. 9. Evolution of ∥p(k)
−p∗∗

∥1 for values of η that satisfy the sufficient condition
of Corollary 4.1.

Fig. 10. Evolution of ∥p(k)
− p∗∗

∥1 , with the sufficient condition of Corollary 4.1
not satisfied for η > 1.017.

increasing, with convergence only guaranteed while η < 1.017.
Nevertheless, as shown in Fig. 10, the algorithmmay still converge
even when this sufficient condition is violated. It is also apparent,
however, that larger values of η result in non-convergence, with
oscillations occurring when η = 2.

The price profile updates achieved by Algorithm 1 are shown
in Fig. 11, while Fig. 12 shows the corresponding total aggregate
demand at each iteration. Note that the converged case in Fig. 12
corresponds exactly to the socially optimal strategy in Fig. 2.

5.2. Heterogeneity

To consider the effect of heterogeneity in the PEV population,
suppose that the initial value of each PEV’s SoC, socn0, satisfies a
Gaussian distribution N(µ, ϱ) where µ = 50% and ϱ = 0.1,
Fig. 11. Price profile updates achieved by Algorithm 1.

Fig. 12. Total demand at each iteration of Algorithm 1.

Fig. 13. Total demand at each iteration of Algorithm 1 for a heterogeneous PEV
population.

which is consistent with Luo, Hu, Song, Xu, and Lu (2013a,b). The
total aggregate demand at each iteration of the update procedure
is shown in Fig. 13. By adopting the proposed decentralized
algorithm, the process converges to the efficient solution in a few
iterations. Moreover, Fig. 14 illustrates the converged charging
strategies for a sample of the heterogeneous PEVs.

5.3. Comparison with the algorithm of Gan et al. (2013)

The relative performance of Algorithm 1 will be illustrated
through a comparison with the optimal decentralized charging
algorithm of Gan et al. (2013) (referred to as GTL). The optimal
charging strategy attained by the GTL algorithm is valley filling
since the objective is to minimize the electricity cost over the
charging horizon, and there are no battery degradation or demand
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Fig. 14. Optimal charging strategies for individuals within a heterogeneous PEV
population.

Fig. 15. Evolution of ∥p(k)
− p∗∗

∥1 for the GTL algorithm for different values of γ .

costs involved. Also, GTL assumes that all PEVs are fully charged by
the end of the charging period.

In order to provide a meaningful comparison with Algorithm 1,
theGTL algorithmmust bemodified to take into account PEVutility
(8). Accordingly, the optimal charging profile of each PEV is given
by,

u(k+1)
n (u(k)

n , p(k)) , argmin
un∈Un


t∈T


p(k)
t unt + gnt(unt)


+

1
2
∥un − u(k)

n ∥
2
− hn


t∈T

unt


. (42)

The parameter values from Section 5.1 have again been used for
generation cost and EV charging characteristics.

The GTL algorithm defines a parameter γ which governs the
update process at each iteration,

p(k+1)
t = γ c ′


dt +


n∈N

u(k+1)
nt


.

Fig. 15 shows the evolution of ∥p(k)
− p∗∗

∥1 for different values of
γ . Compared with Fig. 9, Algorithm 1 provides faster convergence
than the GTL algorithm.

The analysis in Gan et al. (2013) shows that convergence to
the optimal strategy is guaranteed as the number of iterations
approaches infinity. In contrast, Corollary 4.1 guarantees that
Algorithm1will converge to an ε-optimal strategy in nomore than
K(ε) iterations.

Next, the influence of the battery and demand charges on
convergence performance will be demonstrated. This is achieved
by setting gnt(·) to zero in (42). Fig. 16 shows the evolution of
∥p(k)

− p∗∗
∥1 for the GTL algorithm in this case. Comparison with

Fig. 15 suggests that inclusion of the battery and demand costs
tends to improve the convergence performance.
Fig. 16. Evolution of ∥p(k)
− p∗∗

∥1 for the GTL algorithm without battery and
demand costs.

6. Conclusions

A price-based strategy for coordinating the charging of a
large population of PEVs has been formulated. The cost function
underpinning the strategy establishes a tradeoff between the
cost of energy and costs associated with battery degradation. It
also introduces a charge that penalizes high demand, thereby
mitigating occurrences of high coincident charging on local
distribution grids. A decentralized scheme is proposed where all
PEVs simultaneously update their optimal charging strategies with
respect to a common price profile, and then the price profile is
updated using these latest proposed charging strategies. The paper
establishes sufficient conditions that ensure this iterative process
converges to the unique efficient collection of charging strategies.
At convergence, the price profile coincides with the generator
marginal cost.

Appendix. Proof of Lemma 4.4

Recall that u∗
n(p), u

∗
n(ϱ) ∈ Un represent the optimal response

of the nth PEV with respect to price profiles p and ϱ respectively,
u∗

n(p) , min
un∈Un

Jn(un; p), u∗

n(ϱ) , min
un∈Un

Jn(un; ϱ).

Also, by Theorem 4.1,
u∗

n(p) = un(p, A∗

n(p)), u∗

n(ϱ) = un(ϱ, A∗

n(ϱ)).

For later analysis, it is useful to define another charging strategy
for the nth PEV,
ϑn(p, ϱ) ≡ un(ϱ, A∗

n(p)), (43)
which is the charging strategy satisfying (18) with respect to ϱ
and A∗

n(p). Note that ϑn(p, ϱ) may not satisfy the admissibility
constraint (1a). However, ϑn(p, ϱ) will only be used as a medium
to establish a relationship between the pair of admissible charging
strategies u∗

n(p) and u∗
n(ϱ).

It is sufficient to show (34) if the following inequalities hold:

|u∗

nt(p) − ϑnt(p, ϱ)| ≤ ν|pt − ϱt |, ∀t ∈ T (44)
∥u∗

n(p) − u∗

n(ϱ)∥1 ≤ 2∥u∗

n(p) − ϑn(p, ϱ)∥1. (45)

These relationships will be verified in Appendices A.1 and A.2
respectively.

A.1. Verifying (44)

Firstly, consider the case where u∗
nt(p), ϑnt(p, ϱ) > 0. It follows

from (18), Theorem 4.1 and (43) that:

|u∗

nt(p) − ϑnt(p, ϱ)|

=
[g ′

nt ]
−1(A∗

n(p) − pt) − [g ′

nt ]
−1(A∗

n(p) − ϱt)


≤ ν|pt − ϱt |,
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where the inequality holds by the specification of ν given in (33).
Following similar analysis, (44) holds for the other cases.

A.2. Verifying (45)

The proof of (45) will be established by considering three cases.

Case 1: ∥ϑn(p, ϱ)∥1 = ∥u∗
n(p)∥1

Let ∥u∗
n(p)∥1 = ω̄ so that,

∥ϑn(p, ϱ)∥1 = ∥un(ϱ, A∗

n(p))∥1 = ω̄.

Then (26) implies A(ϱ, ω̄) = A∗
n(p). From (29),

fn(ϱ, ω̄) = A(ϱ, ω̄) − h′

n(ω̄)

= A∗

n(p) − h′

n(ω̄) = fn(p, ω̄).

It may be concluded from (30) that A∗
n(ϱ) = A∗

n(p), and so
ϑn(p, ϱ) = un(ϱ, A∗

n(ϱ)) = u∗
n(ϱ). Consequently,

∥u∗

n(p) − u∗

n(ϱ)∥1 = ∥u∗

n(p) − ϑn(p, ϱ)∥1

≤ 2∥u∗

n(p) − ϑn(p, ϱ)∥1.

Case 2: ∥ϑn(p, ϱ)∥1 > ∥u∗
n(p)∥1.

The first step is to show that,

∥ϑn(p, ϱ)∥1 ≥ ∥u∗

n(ϱ)∥1 ≥ ∥u∗

n(p)∥1. (46)

This is achieved using proof by contradiction. Three subcases will
be considered: (2A) ∥u∗

n(p)∥1 = Γn, (2B) 0 < ∥u∗
n(p)∥1 < Γn, and

(2C) ∥u∗
n(p)∥1 = 0.

Case (2A): ∥u∗
n(p)∥1 = Γn.

The charging strategyϑn(p, ϱ) is not admissible since the
total charging demand ∥ϑn(p, ϱ)∥1 > Γn. Because u∗

n(ϱ)
must be admissible, ∥u∗

n(ϱ)∥1 cannot exceed ∥u∗
n(p)∥1 =

Γn. Therefore ∥u∗
n(ϱ)∥1 < ∥ϑn(p, ϱ)∥1 which implies, by

Lemma 4.2, that

A∗

n(ϱ) < A∗

n(p). (47)

To show that ∥u∗
n(ϱ)∥1 = ∥u∗

n(p)∥1, assume ∥u∗
n(ϱ)∥1 <

∥u∗
n(p)∥1. Then by (30) and the assumed condition

∥u∗
n(p)∥1 = Γn, it follows that,

h′

n(ω)|ω=∥u∗
n(ϱ)∥1 ≤ A∗

n(ϱ) (48a)

h′

n(ω)|ω=∥u∗
n(p)∥1 ≥ A∗

n(p). (48b)

From (47) and (48),

h′

n(ω)|ω=∥u∗
n(ϱ)∥1 < h′

n(ω)|ω=∥u∗
n(p)∥1 ,

which implies, by the concavity of hn, that ∥u∗
n(ϱ)∥1 >

∥u∗
n(p)∥1. However this contradicts the assumption

∥u∗
n(ϱ)∥1 < ∥u∗

n(p)∥1. Hence,

∥ϑn(p, ϱ)∥1 > ∥u∗

n(ϱ)∥1 = ∥u∗

n(p)∥1 = Γn.

Case (2B): 0 < ∥u∗
n(p)∥1 < Γn.

The desired result will be achieved by showing
∥ϑn(p, ϱ)∥1 ≥ ∥u∗

n(ϱ)∥1 in (2B.1), and ∥u∗
n(ϱ)∥1 ≥

∥u∗
n(p)∥1 in (2B.2).

(2B.1) Suppose that,

∥ϑn(p, ϱ)∥1 < ∥u∗

n(ϱ)∥1. (49)

Then ∥u∗
n(ϱ)∥1 > 0 because ∥ϑn(p, ϱ)∥1 > 0. Also,

Lemma 4.2 implies A∗
n(p) < A∗

n(ϱ). Together with 0 <
∥u∗

n(p)∥1 < Γn and (30), this gives,

h′

n(ω)|ω=∥u∗
n(p)∥1 = A∗

n(p)
< A∗

n(ϱ) ≤ h′

n(ω)|ω=∥u∗
n(ϱ)∥1 . (50)
However, (49) and ∥ϑn(p, ϱ)∥1 > ∥u∗
n(p)∥1 together

imply ∥u∗
n(ϱ)∥1 > ∥u∗

n(p)∥1, and so,

h′

n(ω)|ω=∥u∗
n(ϱ)∥1 ≤ h′

n(ω)|ω=∥u∗
n(p)∥1 (51)

by the concavity of hn. This contradicts (50), indicating
that the original assumption (49) was incorrect. Hence,
∥ϑn(p, ϱ)∥1 ≥ ∥u∗

n(ϱ)∥1.
(2B.2) Suppose that

∥u∗

n(ϱ)∥1 < ∥u∗

n(p)∥1. (52)

Then ∥u∗
n(ϱ)∥1 < Γn, and ∥u∗

n(ϱ)∥1 < ∥ϑn(p, ϱ)∥1
because ∥ϑn(p, ϱ)∥1 > ∥u∗

n(p)∥1. Hence, by Lemma 4.2,
A∗
n(ϱ) < A∗

n(p). Together with 0 < ∥u∗
n(p)∥1 < Γn and

(30), this gives,

h′

n(ω)|ω=∥u∗
n(ϱ)∥1 ≤ A∗

n(ϱ)

< A∗

n(p) = h′

n(ω)|ω=∥u∗
n(p)∥1 . (53)

However, given the concavity of hn, (52) implies,

h′

n(ω)|ω=∥u∗
n(ϱ)∥1 > h′

n(ω)|ω=∥u∗
n(p)∥1 , (54)

which contradicts (53). Hence, ∥u∗
n(ϱ)∥1 ≥ ∥u∗

n(p)∥1.
Case (2C): ∥u∗

n(p)∥1 = 0.
Because u∗

n(ϱ) is an admissible strategy, ∥u∗
n(ϱ)∥1 ≥

∥u∗
n(p)∥1 = 0. Suppose that,

∥ϑn(p, ϱ)∥1 < ∥u∗

n(ϱ)∥1. (55)

Then ∥u∗
n(ϱ)∥1 > 0. Also, Lemma 4.2 implies A∗

n(p) <
A∗
n(ϱ). Together with ∥u∗

n(p)∥1 = 0 and (30), this gives,

h′

n(ω)|ω=∥u∗
n(p)∥1 ≤ A∗

n(p)
< A∗

n(ϱ) ≤ h′

n(ω)|ω=∥u∗
n(ϱ)∥1 . (56)

However, (55) together with ∥ϑn(p, ϱ)∥1 > ∥u∗
n(p)∥1

imply ∥u∗
n(ϱ)∥1 > ∥u∗

n(p)∥1, giving,

h′

n(ω)|ω=∥u∗
n(p)∥1 ≥ h′

n(ω)|ω=∥u∗
n(ϱ)∥1 , (57)

by the concavity of hn. This contradicts (56), indicat-
ing that the assumption (55) was incorrect. Hence,
∥ϑn(p, ϱ)∥1 ≥ ∥u∗

n(ϱ)∥1.

Case 2 summary: It has been shown in Cases (2A)–(2C) that (46)
holds. Because ∥ϑn(p, ϱ)∥1 ≥ ∥u∗

n(ϱ)∥1, Lemma 4.2 implies that
A∗
n(ϱ) ≤ A∗

n(p), and therefore that,

0 ≤ u∗

nt(ϱ) ≤ ϑnt(p, ϱ), (58)

for all t ∈ T . Hence,

0 ≤ ∥ϑn(p, ϱ) − u∗

n(ϱ)∥1

= ∥ϑn(p, ϱ)∥1 − ∥u∗

n(ϱ)∥1 by (58)
≤ ∥ϑn(p, ϱ)∥1 − ∥u∗

n(p)∥1 by (46)
≤ ∥ϑn(p, ϱ) − u∗

n(p)∥1 (59)

where the final inequality is due to the reverse triangle inequality.
Therefore,

∥u∗

n(p) − u∗

n(ϱ)∥1

≤ ∥ϑn(p, ϱ) − u∗

n(p)∥1 + ∥ϑn(p, ϱ) − u∗

n(ϱ)∥1

≤ ∥ϑn(p, ϱ) − u∗

n(p)∥1 + ∥ϑn(p, ϱ) − u∗

n(p)∥1

= 2∥u∗

n(p) − ϑn(p, ϱ)∥1,

where the first inequality is due to the triangle inequality and the
second is from (59).
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Case 3: ∥ϑn(p, ϱ)∥1 < ∥u∗
n(p)∥1.

Following a similar approach to that adopted for Case 2, it can
again be shown that (45) holds. �
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