
Impact of Energy Storage on Cascade Mitigation in Multi-energy
Systems

Mads Almassalkhi, Student Member, IEEE Ian Hiskens, Fellow, IEEE

Abstract—In this paper, we establish energy-hub networks as
multi-energy systems and present a relevant model-predictive
cascade mitigation control (MPC) scheme within the framework
of energy hubs. The performance of both open- and closed-loop
mitigation schemes is investigated for various energy storage
scenarios. The results are illustrated using a small 11-hub
network and a larger 69-hub network and show that sizing and
performance ratings of energy storage devices have significant
effect on cascade mitigation control in multi-energy systems.
Specifically, we conclude that increasing energy storage capacity
and limiting the rate of energy delivery improves long-term
performance of our closed-loop MPC scheme.

Index Terms—Energy hub, model-predictive control, reliabil-
ity, energy storage, multi-energy system, random networks.

I. INTRODUCTION

RECENTLY, large-scale power grid failures have placed a
renewed focus on the reliability and optimality of energy

supply systems [1]. Such systems extend beyond electrical
power to include various energy carriers, such as natural gas,
hydro, and wind energy. In fact, coupling energy carriers may
reveal minimum cost solutions that are not apparent when each
energy system is treated separately [2]. By employing energy
hubs we move beyond the traditional view and consider large-
scale coupled energy systems (multi-energy systems).

An energy hub represents a relatively new and general
concept in power systems, where the couplings between
multiple energy networks are explicitly modeled in the form
of conversion processes [2], [3]. In addition, hub models
seamlessly allow for the inclusion of energy storage. Our
previous work [4] developed a model predictive cascade
mitigation scheme for large-scale energy-hub systems, which
shed minimal load in the process of halting the cascade. The
effectiveness of the cascade mitigation process in maximizing
economic and secure operation was due to proper management
of available energy storage. Therefore, in this paper, we are
specifically interested in the effects of different energy storage
scenarios on the cascade mitigation scheme. The scenarios will
reflect energy storage under various power and energy rating
assumptions.

Energy storage has been studied extensively in decoupled
electrical networks as a means of reducing the effect of inter-
mittent sources [5], [6], [7]. Furthermore, cascading failures
in multi-energy systems have been previously studied outside
of the scope of energy hubs, but such studies, generally,
do not consider an active role for energy storage [8], [9].
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In [10], the authors investigated expansion planning in multi-
energy systems, including natural gas underground storage, but
focused on minimizing operational costs and did not consider
contingency situations.

Employing the optimization framework developed in [11],
we construct large energy-hub systems and investigate these
systems under multi-line outages. In a general sense, power
flows across transmission lines and pipelines are compared
against proper flow limits, and when violations occur, the lines
are taken out of service. There exists a myriad of approaches
to determine when an overloaded line should be removed
from service, ranging from deterministic hard constraints with
memory, as in [12], to soft-constrained probabilistic schemes
described in [13]. Incorporation of line-tripping into our model
is accomplished by employing a mixed-integer disjunctive
model [14]. To mitigate the effects of a disturbance and prevent
cascading failures, we employ our model predictive cascade
mitigation controller [4].

Our paper is organized as follows. In Section II, we provide
an overview of energy hub concepts. The model predictive
cascade mitigation control (MPC) scheme is summarized in
Section III. In Section IV, we discuss energy storage under
the energy hub paradigm. The MPC scheme is employed
in Section V under various energy storage scenarios for
two different energy hub networks. Section VI presents the
simulation results, while Section VII concludes the paper with
remarks on future work.

II. MODEL

Multi-carrier energy networks may be formulated in dif-
ferent ways. This paper will focus the discussion on the
“hybrid energy hub” model initially developed by [2]. Under
this formulation, we allow the system operator of an energy
hub network to directly manipulate and control line-switching,
load-shedding and converter, generator, and energy storage
utilization. For mathematical details on the models in the
following sections, we refer the reader to [11].

A. Energy Hubs

Most common energy hubs consist of five simple inter-
connected elements: inputs, input-side energy storage, energy
converters, output-side energy storage, and outputs. To prop-
erly describe the flow of power through the energy hub, we
need to describe how power flows between these elements.
Energy carrier networks feed power into the hub at the input
side, where storage may be available. The power that was
not utilized for storage is dispatched into converters that
transform the energy accordingly. On the output side of the
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Fig. 1. Simple and common illustrations of energy hubs

hub, converted power may be utilized for storage or injected
into the carrier network connected to that side.

One simple example of an energy hub is shown in Fig-
ure 1(a) where a furnace, a transformer, and a combined heat
and power (CHP) plant are considered part of the the same
energy hub. The inputs to the hub are electrical and natural gas
power flows and the outputs are district heating and electrical
power flows. The electrical energy is converted to low-voltage
electrical energy by the transformer with some efficiency and
injected into a low-voltage grid on the output side. The natural
gas flowing into the hub can be dispatched to a furnace (for
heating) or to a CHP plant where natural gas is converted into
both low-voltage electrical energy and district heating.

To illustrate the inclusion of storage devices within the
energy hub formulation, consider Figure 1(b), wherein wind
energy acts as the hub input. The wind turbine converts
incoming wind energy into electrical energy. On the output
side, the hub contains energy storage (e.g. electrolysis +
hydrogen fuel cell storage), which is utilized by charging and
discharging the storage device (at possibly different charging
and discharging efficiencies) through a storage interface. The
electrical power that was not utilized by the output storage
device is then injected into an electrical grid or load.

B. Interconnection of Energy Hubs

Energy hubs are interconnected via multiple energy supply
networks. The previous section defined how power flows
through an energy hub, however, to describe the flow between
energy hubs, we need to consider power networks. A power
network is a collection of a set of nodes (e.g. buses) and a
set of arcs (e.g. transmission lines) that define a simple graph,
as shown in Figure 2. The nodes either consume power from
the network (i.e. loads), inject power into the network (i.e.
generators), or act as throughput nodes that neither inject nor
consume power. If we neglect power losses, we know that
the sum of power flows into the network must equal the
sum of flows out of the network. In addition, we need to
consider the power flows related to energy hub inputs and
outputs as consumers and injectors, respectively. Note that the
couplings between energy hubs and power networks take place
exclusively at the hub inputs and outputs.

Besides being connected to energy hubs, the main difference
between a simple graph and a power network lies with the
physics of the particular power flows. That is, there exists a
physical relationship between the flow across an arc and the
connected nodes. For a simple example, consider an electrical

Fig. 2. Representation of a power network as a graph

power network and the linear DC flow model:

xijfij = (θi − θj) (1)

where xij represents the reactance of arc (i, j), fij is the
power flow across said arc, and θi represents the phase angle
of node i. In (1), we see that the electrical power flowing
across any arc depends on the difference in the phase angle
between connected nodes and the reactance of the arc. This
physical relationship between nodes and arcs manifests itself
differently depending on the nature of the power network and
may be linear (e.g. DC model) or non-linear (e.g. AC model).

In this paper, for simplicity, we assume no losses in power
networks. Furthermore, since the focus is on interactions
between energy carriers, we employ the DC flow model in
electrical networks and linearize the natural gas power flows
about nominal parameter values to maintain linearity in the
representation of the energy hub networks.

C. Line-outages

The power flowing across an arc should not exceed the
recommended flow limits as it may permanently damage the
arc. Therefore, sensors are often in place to allow protective
processes to automatically take arcs out of service when the
flow exceeds the limit. For example, electrical transmission
lines have power flow limits that prevent dangerous sagging
and permanent damage. They are related to the thermal capac-
ity of the conductor and the current flowing through the line.
Generally, there is an inverse relationship between the overload
on a line and the time allowed before the line must be taken out
of service and, in most common overload scenarios, the time-
response is of the order of minutes. While implementation of
realistic line-outage models is currently a subject of ongoing
research, for this paper, we assume that lines can withstand
an overload for 5 minutes before being taken out of service.
Removing an arc from service is commonly referred to as
“tripping” the arc.

To allow the system controller to trip lines, we employ a
mixed integer disjunctive model, which ensures that tripped
lines are effectively removed from network models and that
nodes of the tripped lines do not directly affect one another.
For example, we can incorporate line-tripping into the DC flow
model by the following mixed-integer formulation:

|fij | ≤ sijuij (2)
|fijxij − (θi − θj)| ≤M(1− sij). (3)

Thus, if transmission line (i, j) is in service (sij ≡ 1), the dis-
junctive formulation enforces power flow limits (|fij | ≤ uij)



and (1), as should be expected. However, if line (i, j) is tripped
(sij ≡ 0), the formulation ensures that fij ≡ 0 and the
relationship between θi and θj in (1) becomes inactive (i.e.
|θi − θj | ≤M , where M is large).

D. Economic Dispatch in Energy Hubs

Under normal conditions, we schedule the energy hub
system on a slow timescale, which consists of one-hour time-
steps. The system is operated based on an economic dispatch
schedule computed off-line from the Multi-Period Optimal
Dispatch Formulation (MPODF) described in detail in [11].
Note that this formulation represents the steady-state system
model and takes into account transmission flow limits to
maintain system integrity and avoid line overloads. In short,
the MPODF schedule satisfies forecasted nominal demand and
minimizes the cost of generation by optimal utilization of
available hub storage and expected externally injected power
(for example wind power) from hour 1 to hour 24. The
schedule acts as a reference signal and informs the operator
of how to utilize generators, hub converters, and hub storage
devices, which lines (if any) should be taken out of service, and
how much demand can be satisfied over the entire operating
period.

At each time-step, the operator then implements the sched-
ule’s recommendations on the actual system (real-time). If
our model of the system is perfect over the entire period
(including forecasts of renewables and demand), then the line
flows will always be within their limits and the system is, in
fact, operated optimally. However, if a disturbance takes place
(e.g. a large storm) that alters the real system (e.g. a multi-line
outage), our model no longer reflect reality and the schedule’s
recommendations may be suboptimal. Furthermore, continued
implementation of the schedule, under such conditions, may
exacerbate the effects of the disturbance.

III. CASCADE MITIGATION CONTROL

Cascade failures are initiated when a disturbance takes place
that forces a redistribution of flows, which causes additional
line-overloads and, subsequently, takes more lines out of
service. If left uncontrolled, the cycle of line outages and
redistribution of flows is referred to as a cascade failure.

There are two general approaches to mitigating cascade
failures in power networks. The first method predicts potential
disturbances a priori and is based on off-line computation of
all possible or likely failures in the network. Control policies
are devised to deal with each failure. A major drawback of
this approach is that it does not scale well with the size of the
network. The second method is based on retroactive control,
whereby the uncertainty surrounding the disturbance has been
revealed and one can utilize the knowledge available about
the disturbance to determine control responses in real-time to
mitigate the effects of the disturbance. This paper focuses on
the latter approach and considers a model predictive control
scheme. The following steps describe the basic notion behind
MPC:

1) Determine a control profile that optimizes a cost crite-
rion over a prediction window,

2) Apply this profile until new process measurements be-
come available,

3) When new measurements are available, repeat step (1).

Once a multi-line outage is detected by the system monitor,
operation of the system is switched from the hourly MPODF
schedule to the fast timescale MPC scheme (one-minute time-
steps). During the fast timescale, nominal load and intermittent
power injections are fixed at their most recent slow timescale
values, and generation and storage energy delivery rates are
taken into account. In our model, if lines are still overloaded
after five minutes, they automatically trip. Therefore, our
MPC prediction window is five minutes and we assume new
measurements are available every minute. Furthermore, in
attempting to halt the cascade, we only allow load shedding at
minute 5, as a last resort to bring line flows within their limits.
Accordingly, there is no reason for our prediction window
to extend beyond minute 5 and, therefore, needs to shrinks
by one minute after every measurement update. This method
of MPC is often referred to as “fixed-point” or “shrinking-
horizon” MPC [15].

Thus, when the MPC scheme is initiated by the detected dis-
turbance (at minute 0), MPC considers a 5-minute prediction
window and determines the optimal schedule for generation
and storage over the 5-minute horizon to minimize load-
shedding at minute 5. The first instance of this schedule is
then applied to the system. At minute 1, new measurements are
acquired from the system and a 4-minute prediction window
is considered to determine a new optimal schedule over the
remaining period. The first instance of the new schedule is
applied to the system and the process is repeated. This iterative
scheme continues until minute 4, when MPC considers a 1-
minute prediction window. At that time, MPC determines the
optimal actions to take over that one remaining minute, along
with the minimal amount of load to shed to ensure line flows
are within their limits at that final time.

If the MPC model has no errors and matches the real system,
no overloads will remain, and the cascade will be halted. On
the other hand, if the MPC model is imperfect, some overloads
may remain. If so, those lines will trip, signaling MPC to
repeat the entire process. This continues until no further line
tripping occurs. At that point, the slow-timescale MPODF
is updated with the latest values for generation, storage and
load, and the optimal schedule over the remainder of the
24-hour period is determined. Note that without the look-
ahead feature of MPC, a closed-loop controller acting only
at minute 5 would shed more load, as it would not be able
to properly allocate storage utilization to overcome possible
future generator power limits. An overview of the energy hub
system operation under closed-loop control is illustrated in
Figure 3. For more details on cascade mitigation, we refer the
reader to [4].

In the case of open-loop control, the system operator
implements the MPODF schedule until a disturbance occurs.
At this time, the operator seeks only to satisfy demand and line
flows are given by the power flow solution with no regard for
line flow limits. Therefore, the open-loop control will likely
undergo cascading failures.
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Fig. 3. Operation overview of energy hub system under both normal operating
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IV. ENERGY STORAGE

During normal operation of the energy hub system, energy
storage plays a significant role in minimizing generation costs
from conventional generators, as it allows the system operator
to pre-position energy in storage during off-peak hours (and
pricing) to satisfy demand in the presence of intermittent
generation (e.g. wind power). In the previous section, we
employed a method to mitigate cascade failures in multi-
energy systems by determining proper utilization of storage
and generation. In fact, hub storage also plays a significant
role in cascade mitigation since it acts as a “buffer” against
disturbances. That is, a system operator can employ stored
energy to satisfy temporary energy shortages or overflows,
while allowing time for conventional generators to effectively
reconfigure their schedules.

Thus, the effectiveness of system operations in minimizing
costs and rejecting disturbances depends on the available
energy hub storage infrastructure. Indeed, siting, sizing, and
operational capability (e.g. power rating and standing losses)
are salient storage parameters. Siting is important for reducing
congestion during peak hours; however, the process for deter-
mining optimal location of energy hubs is non-trivial and is
not considered here. Instead, this paper will fix the location of
hubs within the system and study the effects of varying both
hub storage capacity and charge/discharge power limits on the
cascade mitigation process.

Under the energy hub paradigm, we are able to combine
multiple types of energy systems and study their combined
performance. Therefore, we need to consider multiple types of
energy storage, namely, natural gas storage, electrical storage,
and thermal storage. Note that, in this paper, we consider
energy storage to have no standing losses, constant charging
and discharging efficiencies (see Table I), and we neglect
the economics of construction, operation, and maintenance of
storage facilities. That is, energy storage represents a cost-free
service available to the system operator.

A. Natural Gas Energy Storage

The two main methods used in industry for storing natural
gas are: “packed” pipelines and underground storage facilities.
The packing of pipelines refers to the accumulation of natural
gas in pipelines. Since such practices are commonly employed
for pressure-regulation and only make up a small percentage
of natural gas storage capacity, packing of pipelines is not

TABLE I
SUMMARY OF DIFFERENT TYPES OF ENERGY STORAGE

Storage Location Charge Eff. Discharge Eff.
Natural gas Only input-side 99 % 99 %
Hydrogen Both sides 80 % 65 %
Thermal Only output-side 100 % 60 %

considered in this paper. Instead, we consider underground
storage in the form of reshaped salt caverns, which have high
throughput and can be cycled hourly for both electric and
heating loads, and aquifers, which can be regularly withdrawn
and have large capacity [16]. The energy hubs that convert
natural gas in the proposed multi-energy systems, therefore,
contain input-side storage devices that reflect highly efficient
underground storage facilities.

B. Electrical Energy Storage

With the intermittency of renewable energy (e.g. solar and
wind), effective implementation of storage is highly desirable
for improving system reliability. While pumped hydro storage
and compressed air systems provide two large-scale methods
for storing electric-ready power, our focus is mainly on dis-
tributed storage in the form of hydrogen storage. Therefore,
energy hubs that convert from electrical energy contain input-
side hydrogen storage, while hubs that convert to electrical
energy (e.g. wind) are outfitted with output-side hydrogen
storage (e.g. Figure 1(b)). Hydrogen storage requires an
electrolytic process for charging (i.e. create hydrogen) and
employs efficient fuel cells during discharging (i.e. consume
hydrogen).

C. Thermal Energy Storage

Under the energy hub paradigm, both natural gas and
electrical energy can be converted into thermal energy to
satisfy district heating loads. This inherent energy flexibility
improves system reliability and by employing thermal energy
storage within the hub, we can satisfy distributed thermal loads
from stored thermal energy, which reduces network congestion
that tends to arise during peak demand. There exists a wide
range of thermal energy storage solutions ranging from molten
salt to gas-fired and electric storage heaters. However, for this
paper, we will just consider a general form of thermal storage
that supplies each heating load. The thermal storage device is
employed on the output-side of hubs which convert electrical
and natural gas energy into heating. We assume a loss-less
conversion of natural gas and electrical energy into thermal
storage and attribute thermal energy losses to the discharging
process.

Note that the efficiencies in Table I represent optimistic
scenarios to give best-case performance of a multi-energy
system with storage.

V. SIMULATION

The formulation of cascade mitigation in energy hub net-
works described in [4] and summarized in Section III, permits
the construction of arbitrarily large interconnected energy



TABLE II
TOPOLOGICAL CHARACTERISTICS OF THE 11-HUB ENERGY NETWORK

Network 〈k〉 N E G D

Electrical 1.67 6 5 1 3
Gas 1.67 6 5 3 1
Wind 0 2 0 2 0
Heat 0 4 0 0 4

TABLE III
TOPOLOGICAL CHARACTERISTICS OF THE 69-HUB ENERGY NETWORK

Network 〈k〉 N E G D

Electrical 3.07 60 92 20 15
Gas 3.00 60 90 12 21
Wind 0 18 0 18 0
Heat 0 22 0 0 22

hub networks. Together with CPLEX and MATLAB, we can
implement our model predictive cascade mitigation scheme
outlined in Figure 3.

In this paper, we analyze the performance of the MPC
scheme under different energy storage scenarios. That is, we
investigate how the availability (i.e. capacity) and performance
(i.e. charge/discharge power limits) of energy storage devices
impact the amount of load shed.

To achieve this we employ the random grid generating
techniques proposed in [17] to construct two multi-energy
systems - a small 11-hub system and a larger 69-hub system -
and subject each to a multi-line outage. The parameters used
to construct the power grids are given in [4, Table II]. The
small energy hub system is shown in Figure 4. Due to the
size of electrical and natural gas networks and the random
interconnectivity with energy hubs, a meaningful visualization
of the larger energy hub system is not straightforward and
is excluded. The smaller simple system allows us to better
describe how storage is utilized to mitigate cascade failure;
however, the larger system is useful to include in the discus-
sion, as it exhibits meaningful cascade behavior.

The topological characteristics of our systems are given in
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Fig. 4. Network representation of small 11-hub system.

TABLE IV
CONVERSION EFFICIENCIES BETWEEN ENERGY TYPES

From \ To Electric Gas Wind Heat

Electric − − − 0.75
Gas 0.70 − − 0.90
Wind 1.00 − − −

Tables II and III. The values N , E, G, and D represent the
number of nodes, arcs, generators, and loads, respectively,
while 〈k〉 is the average nodal degree. The wind and heat
networks have no arcs and consist exclusively of generators
and loads, respectively. We employed 11 energy hubs in the
small system and 69 energy hubs in the large system to couple
the four different energy networks. The energy hubs are used
to connect from the electrical network to heating loads (via
resistor heating), from the gas network to electrical (via gas
turbines) and heat networks (via furnaces), and from the wind
network to the electrical network (via turbines). All other
network couplings, for example from gas to wind and from
heat to electric, are excluded in this simulation.

Table IV shows the energy conversion efficiencies employed
in our simulation. Note that the efficiency between wind
energy and electric energy is set to 1.0, because we only
consider injected power from the wind generators and the lossy
conversion between wind speed and electricity production is
assumed to have already taken place. All hubs connecting the
wind network to the electrical network have output storage,
while applicable input and output hub storage is added ran-
domly to all of the remaining hubs.

The system is assigned 24 one-hour time-intervals, cor-
responding to one complete day of operation. For the fast
timescale, network arcs are allowed to be overloaded for no
longer than 5 minutes before being tripped automatically. The
consumer demand is set to peak near midday, while wind
power is available mostly in the early and later parts of the
day. The cost of generation (electric and natural gas) is set to
vary linearly with forecast demand, so generation near midday
is more expensive than during the earlier or later parts of the
day. Electric generation is set to be more costly than natural
gas. Finally, the disturbance occurs between hours 7 and 8 and
consists of simultaneous outage of multiple lines. For the 11-
hub example, the disturbance takes out three lines, while the
larger network experiences a simultaneous outage of four lines.

VI. SIMULATION RESULTS

The two systems described in Section V are simulated
according to the flow diagram in Figure 3 for various energy
storage scenarios. The energy storage scenarios are considered
by varying storage capacity and storage power limits from the
nominal values by a given factor. For example, for scenario
(capacity, power) = (0.25, 0.10), energy storage capacity is at
25% of nominal and power limits are 10% of nominal.

We are interested in comparing how different energy storage
scenarios affect the average load shed over the 24 hour period.
In particular, we will consider the systems with “no” (0),
“some” (≈ 0.25), “nominal” (1.0), and “a lot” (10) of storage



TABLE V
MPC ENERGY SCENARIO RESULTS FOR 11-HUB SYSTEM

Avg. load Capacity
shed (%) 0 0.25 1.0 10

0.10 12.7 10.6 9.1 8.7
Power 1.0 12.7 10.8 9.0 9.2

5.0 12.7 10.8 10.6 10.6

TABLE VI
OPEN-LOOP ENERGY SCENARIO RESULTS FOR 11-HUB SYSTEM

Avg. load Capacity
shed (%) 0 0.25 1.0 10

0.10 32.3 30.6 28.9 28.5
Power 1.0 32.3 32.3 30.1 29.8

5.0 32.3 32.3 31.9 10.4

capacity, while we consider the systems subject to “small”
(0.10), “nominal” (1.0), and “large” (5≥) power limits.

A. Small System

In the nominal case, the 11-hub system from Figure 4
undergoes a disturbance that results in the outage of lines 2,
5, and 8. The loss of the three lines leaves line 9 (natural
gas) with a significant overload, which must be cleared to
avoid tripping the line. Under the MPC scheme, generators
are reconfigured (considering power limits), storage is utilized,
and minimal load is shed over the 5-minute interval to avoid
tripping line 9. The MPODF schedule is updated to reflect the
multi-line outage and some load (≈20%) must be shed until
wind-power becomes available towards the end of the day. In
the open-loop nominal case, line 9 is not protected and trips
after 5 minutes, which leaves the system in a weak state and
heavy load-shedding (≈50%) takes place. For details on the
nominal case, we refer the reader to [4].

The results of the 11-hub system are shown in Tables V
and VI. Increasing storage capacity generally reduces the
amount of load shed and improves performance of cascade
mitigation, which is expected, since more energy can be stored
and is available to inject into the system upon the disturbance.
However, the general trend suggests that lowering power limits
improves performance. The reason behind this trend is that
the MPC scheme does not care about the state of the system
beyond the halting of the cascade and will maximally utilize
(free) stored energy to satisfy demand and avoid shedding
load. However, with small power limits, the amount of stored
energy is effectively rationed during the cascade mitigation
process and some conventional generation is needed to satisfy
demand and halt the cascade. This balance between generation
and energy utilization allows MPC to halt the cascade and best
positions the multi-energy system to satisfy load demand over
the subsequent period (following the cascade).

In the open-loop case, the amount of load shed under
scenario (10, 5.0) is relatively low, because line 9 is “acci-
dentally” not overloaded at minute 5. The term “accidentally”
is used since the open-loop controller attempts to satisfy all
demand at the lowest cost with no regard for flow limits.
Furthermore, for the (10, 5.0) scenario, the open-loop case

TABLE VII
MPC ENERGY SCENARIO RESULTS FOR 69-HUB SYSTEM

Avg. load Capacity
shed (%) 0 0.20 1.0 10

0.10 1.1 0.9 0.5 0.4
Power 1.0 1.1 1.0 0.7 0.5

10 1.1 1.0 0.7 0.7

TABLE VIII
OPEN-LOOP ENERGY SCENARIO RESULTS FOR 69-HUB SYSTEM

Avg. load Capacity
shed (%) 0 0.20 1.0 10

0.10 23.8 24.7 23.7 19.9
Power 1.0 23.8 23.1 23.7 14.9

10 23.8 23.1 24.8 29.4

sheds marginally less load than the MPC scheme over the
24-hour period. This is because, in our optimization, we do
not penalize the spilling of wind power, which means that
the MPC scheme can use available energy storage and wind
power at the same cost. Thus, stored energy in the future (i.e.
beyond the 5-minute prediction window) has no value to the
MPC controller. MPC employs available energy storage and
spills wind power, while the open-loop case utilizes available
wind-power. The MPC response is optimal over the 5-minute
period, however with the cascade halted, it leaves the system
with less energy stored. This results in a marginal increase in
load-shedding over the remaining hours.

B. Large system

The trends from the 11-hub system apply to the 69-hub
system as well, and the results are provided in Tables VII
and VIII. As storage capacity increases and power limits
decrease, the performance of MPC increases for the same
reasons mentioned above.

In the open-loop case, the trend is not as strong, but
nonetheless discernible. While the complexity of the network
obfuscates the subtleties of the result, it is worth noting that for
the scenario without storage (i.e. zero capacity), the amount
of load shed is similar to low- and medium-capacity scenarios
(0.2, ∗) and (1.0, ∗).

The behavior of both the open-loop system and the MPC
cascade mitigation scheme are depicted in Figures 5 and 6,
for energy scenarios (0, 10), (0.20, 10), (1.0, 10), and (10,10).
(Note that thicker lines represent higher capacity scenarios).
In fact, for scenarios (∗, 10), the open-loop system generally
sheds more and more load as storage capacity increases. This
is because the open-loop case is uncontrollable in the sense
that it does not regard line-flow limits and, for larger systems,
this results in significant line tripping as seen in Figure 5(a).
At high power limits and with increasing storage capacity, the
open-loop controller will inject more stored energy into the
system (Figure 5(c)), which, coupled with non-trivial gener-
ation levels (Figure 6), results in line tripping (Figure 5(a))
and fragmentation of the system. The fragmentation leads
renewables to become isolated from loads, which is evident
in the open-loop case in Figure 5(b), since the increase in



available wind power (in evening and at night) is unable to
recover shed load. The fragmentation is most severe in the
highest capacity case, where available wind-power is separated
from loads and can only be utilized to aimlessly increase
energy storage levels.

Note that “No Disturbance” cases represent optimal energy
management. However, in the absence of a disturbance, we
still need to shed some nominal load when wind-power reaches
its nadir and no more power can be injected by conventional
generation without exceeding flow limits.

Furthermore, it is worth noticing that the zero-capacity MPC
scheme (0, ∗) sheds only 1.1% of total load while the optimal
MPC storage configuration (10, 0.1) sheds 0.4% of total load.
Therefore, one should ask if the investment made in storage
devices is worth the marginally improved cascade mitigation
performance (a 0.7% reduction in load shed). Indeed, with an
open-loop minimal load shed of 14.9%, the MPC scheme with-
out storage may be a sufficient cascade mitigation solution.
However, other factors, such as intermittency and congestion
reduction, suggest the need for considering distributed storage
devices in the investment process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed multi-energy systems and a
model-predictive cascade mitigation control scheme, within
the context of energy hubs. We investigated the performance of
the MPC and open-loop schemes under various energy storage
scenarios for both small and large multi-energy systems. The
results show that sizing and performance ratings of energy
storage devices have significant effects on cascade mitigation
control in multi-energy systems. Specifically, we conclude that
increasing storage capacity improves performance of our MPC
scheme, but that power must be carefully regulated. This is
because MPC has a tendency to over-exploit stored energy to
the detriment of long-term energy requirements.

Further studies will improve upon the line outage model to
include probabilistic outage rates determined by cumulative
line overloads. In addition, we will couple the MPC scheme
and the MPODF schedule to allow for optimal cascade mitiga-
tion. Finally, we will include siting of energy storage devices
to study the optimal location of energy hubs to reduce network
congestion.
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