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Abstract

Stability limits place restrictions on the economic operation of power systems. Calculation
of these limits is therefore very important, but has traditionally been quite difficult. This
paper proposes an iterative algorithm for determining parameter values that result in marginal
stability of a system. (A system is marginally stable for a particular disturbance if the post-
disturbance trajectory lies on the stability boundary.) The algorithm is based on Gauss-
Newton solution of a nonlinear least-squares problem. Gradient information is provided by
trajectory sensitivities.

1 Introduction

In many power systems, the maximum power transfer across the network is limited by stability con-
siderations. If the transfer level is raised too high, instability may occur for certain disturbances.
To minimize this risk, operators are guided by constraints which ensure that if certain prescribed
large disturbances occur, for example faults or generator tripping, then the system will continue
to operate in a desirable fashion. A good knowledge of these stability constraints is very impor-
tant. If the constraints are underestimated, then systems tend to be operated over-conservatively,
with an associated economic penalty. However should the constraints be overestimated, then the
system may well be operated in a vulnerable state without a clear understanding of the risk.
Unfortunately the computation of these stability limits is difficult though.

Underlying the calculation of stability limits is the need to find a loading condition (set of
parameters) at which the disturbed system is marginally stable. This set of parameters may include
the generation schedule, loads, and controller setpoints, for example. Generally it is necessary to
consider many disturbance scenarios, with a critical loading condition being calculated for each
case. A comparison of those critical loading conditions provides the overall limiting case.

The concept is straightforward, but implementation is difficult. It is not easy to find a mar-
ginally stable system. Lyapunov-based direct methods provide a useful approach [1]. However
modelling restrictions limit their application and accuracy. Otherwise, no systematic approach
has been available. Hence stability limits are generally determined off-line, for a limited set of
operating conditions and disturbance scenarios. The results of these studies are then used on-line
to guide operators.

This paper proposes a novel approach to finding parameter values that induce marginally stable
system behaviour.

It is shown in the paper that the proposed algorithm is applicable (under fairly mild assump-
tions) to systems that exhibit nonlinear, non-smooth behaviour. In the context of power systems,
numerous devices induce such behaviour, including generators, controller limits and arbitrarily
complicated protection characteristics. An appropriate model is discussed in Section 2, along with
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some useful background system theory, and an overview of trajectory sensitivities. The proposed
algorithm is described in Section 3, and examples are explored in Section 4. Conclusions are given
in Section 5.

2 Background

2.1 Model

Power systems frequently exhibit a mix of continuous time dynamics, discrete-time and discrete-
event dynamics, switching action and jump phenomena. A useful, non-restrictive model formula-
tion should therefore be,

• capable of capturing this full range of continuous/discrete hybrid system dynamics,

• computationally efficient, and

• consistent with the development of shooting-type methods.

It is shown in [2] that these specifications can be met by a model that consists of a set of differential-
algebraic equations, adapted to incorporate impulsive (state reset) action and switching of the
algebraic equations. This DA Impulsive Switched (DAIS) model can be written in the form,

ẋ = f(x, y) +
r∑

j=1

δ(yr,j)
(
hj(x, y) − x

)
(1)

0 = g(x, y) ≡ g(0)(x, y) +
s∑

i=1

g(i)(x, y) (2)

where

g(i)(x, y) =
{

g(i−)(x, y)
g(i+)(x, y)

ys,i < 0
ys,i > 0 i = 1, ..., d (3)

and

• x ∈ �
n are dynamic states, and y ∈ �

m are algebraic states;

• δ(.) is the Dirac delta. Each impulse term of the summation in (1) can be expressed in the
alternative state reset form

x+ = hj(x−, y−) when yr,j = 0 (4)

where the notation x+ denotes the value of x just after the reset event, whilst x− and y−

refer to the values of x and y just prior to the event. This form motivates a generalization
to an implicit mapping h′

j(x
+, x−, y−) = 0.

• ys, yr are selected elements of y that trigger algebraic switching and state reset (impulsive)
events respectively; ys and yr may share common elements.

• f, hj : �n+m → �
n .

• g(0), g(i±) : �n+m → �
m . Some elements of each g(.) will usually be identically zero, but no

elements of the composite g should be identically zero. Each switched g(i±) may itself have
a switched form, and is defined similarly to (2). This allows a nested structure for g.
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Equations (1)-(3) are a reformulation (and slight generalization) of the model proposed in [3].
It can be convenient to establish the partitions

x =


 x

x̄
λ


 , f =


 f

0
0


 , hj =


 x

h̄j

λ


 (5)

where x are the continuous dynamic states, x̄ are discrete states, and λ are parameters. This
partitioning of the differential equations f ensures that away from events, x evolves according to
ẋ = f(x, y), whilst x̄ and λ remain constant. Similarly, the partitioning of the reset equations hj

ensures that x and λ remain constant at reset events, but the discrete states x̄ are reset to new
values given by x̄+ = h̄j(x−, y−).

Away from events, system dynamics evolve smoothly according to the familiar differential-
algebraic model

ẋ = f(x, y) (6)
0 = g(x, y) (7)

where g is composed of g(0) together with appropriate choices of g(i−) or g(i+), depending on the
signs of the corresponding elements of ys. At switching events (3), some component equations
of g change. To satisfy the new g = 0 constraints, algebraic variables y may undergo a step
change. Impulse events (1) (alternatively reset events (4)) force a discrete change in elements of
x̄. Algebraic variables may again step to ensure g = 0 is always satisfied.

The flows of x and y are defined as

x(t) = φx(x0, t) (8)
y(t) = φy(x0, t) (9)

where x(t) and y(t) satisfy (1)-(3), along with initial conditions,

φx(x0, t0) = x0 (10)

g
(
x0, φy(x0, t0)

)
= 0. (11)

2.2 System theory

2.2.1 Marginally stable trajectories

Formulation of the proposed algorithm for computing marginally stable trajectories is based on
some important assumptions:

A1. The limit set for the system is composed only of isolated points. (The limit set is the set of
points to which the system converges in either forward or backward time.) This assumption
excludes the existence of limit cycles, or other more exotic limit behaviour, for example Zeno
effects.

A2. Trajectories φx, φy depend continuously on initial conditions (and hence parameters). This
holds if:

• f, g of the DAE systems (6)-(7) that describe behaviour over periods between events are
continuous with continuous first partial derivatives, and algebraic singularity is avoided
[4],

• trajectories intersect event triggering hypersurfaces transversally [3, 5], and

• state mappings at events are continuous with continuous first partial derivatives.

These properties are true for many hybrid system application areas, including power systems.
Furthermore, they ensure well defined trajectory sensitivities, which underlie the proposed
algorithm. Trajectory sensitivities are considered briefly in Section 2.3.
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Under those assumptions, the stability boundary is composed of the closure of the stable
manifolds of type-1 unstable equilibrium points (UEPs) that lie on the boundary [6]. In other
words, if a disturbance to the system is critically cleared, the trajectory will lie on the stable
manifold of a type-1 UEP, and approach that UEP in infinite time. A trajectory that is nearly
critically cleared, whether stable or unstable, will pass close to that UEP. But generally the UEP
is unknown. Energy function methods require a knowledge of this ‘controlling UEP’ [1]. The
proposed algorithm does not.

Equilibria of the system (6)-(7) satisfy f(x, y) = 0 with (7) necessarily satisfied everywhere.
Therefore proximity to equilibria can be established using the quadratic cost function

J (x, y) =
1
2
f(x, y)tWf(x, y) (12)

where W is a diagonal matrix used to weight the relative importance of the components of f . Near
an equilibrium point, the cost J (x, y) becomes small. By monitoring J (x, y) along a trajectory,
points that are local minima can be found. Many of these points indicate proximity to equilibria.

The proposed algorithm is based on the idea that J (x, y) defines a hypersurface in the variables
t (time) and x0 (initial conditions and parameters). Starting from a local minimum in J on the
initial trajectory, t and x0 can be varied to minimize J over that hypersurface. As J is minimized,
the minimum point moves closer towards a UEP, and hence the trajectory moves closer to passing
through that UEP. More complete details are given in Section 3. The examples of Section 4
illustrate these concepts.

It remains to determine the number of parameters that should be varied to move a trajectory
so that it becomes coincident with the stability boundary. This is addressed in the following
subsection.

2.2.2 Parameter dimension

Recall that x ∈ �
n , so the state-space1 has dimension n. The stable manifold of a type-1 UEP

therefore has dimension n − 1. (It can be thought of as being defined by a single equation in n
unknowns.) If p parameters are allowed to vary then the stable manifold, denoted S(x, λ), becomes
an (n + p − 1)-manifold in (n + p)-space.

Now consider the system flow φx(x0, t). For constant parameters, φx(x0, t) is a 1-manifold,
parameterized by time, that exists in state-space. The dimension of this manifold increases by one
for each free parameter. Define F(x, λ) as the (p+1)-manifold, in (n+ p)-space, that corresponds
to p free parameters.

The intersection S(x, λ)∩F(x, λ) is therefore generically a p-manifold in (n+p)-space [7]. Now
we desire this intersection to be a single isolated trajectory that lies on the stability boundary. So
the intersection must be a 1-manifold, implying p = 1. Hence a single parameter should be varied
in order to obtain a marginally stable system.
Comments:

• There is no guarantee that S and F will intersect for all choices of the single free parame-
ter. However if they do intersect, then generically the intersection will be a single isolated
trajectory that approaches the UEP.

• If more than one parameter is varied, then a continuum of marginally stable trajectories will
usually result.

2.3 Trajectory sensitivities

Trajectory sensitivities provide a way of quantifying the variation of a trajectory due to small
changes in parameters and/or initial conditions [8]. This section summarizes the main concepts.
Complete details can be found in [3].

1The algebraic states y can be thought of as implicit functions of x, and so do not influence the state-space
dimension.
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To obtain the sensitivity of the flow φx, φy to initial conditions, and hence to parameter vari-
ations, the Taylor series expansion of (8)-(9) is formed. Neglecting higher order terms gives

δx(t) =
∂φx(x0, t)

∂x0
δx0 � Φx(t)δx0 (13)

δy(t) =
∂φy(x0, t)

∂x0
δx0 � Φy(t)δx0. (14)

It is important to keep in mind that x0 incorporates λ, so sensitivity to x0 includes sensitivity
to λ. Equations (13)-(14) provide the changes δx(t), δy(t) in a trajectory, at time t, for a given
(small) change in initial conditions δx0 = [δxt

0 δx̄t
0 δλt]t.

Full details of the variational equations describing the evolution of the trajectory sensitivities for
the DAIS model (1)-(3) are provided in [3]. An important conclusion is that trajectory sensitivities
are defined for complex event driven behaviour. Furthermore, it is shown that the sensitivities
can be calculated efficiently as a by-product of using an implicit numerical integration technique,
such as trapezoidal integration, to produce the nominal system trajectory [3, 9].

3 Algorithm

3.1 Development

The algorithm is based on minimizing the quadratic cost function J (x, y) given by (12). Notice
though from (8)-(9) that x and y are functions of x0 and t. It was shown in Section 2.2.2 that
this optimization problem has isolated solutions if a single parameter is varied. Therefore x0

(the initial conditions and system parameters) is parameterized by a scalar parameter α. This
parameterization is discussed further in Section 3.2.

The cost function J can be reformulated as

J (α, t) =
1
2
f(φx(x0(α), t), φy(x0(α), t))tWf(φx(x0(α), t), φy(x0(α), t))

=
1
2
f̃(α, t)tWf̃(α, t). (15)

The aim of the algorithm is to find values of α and t that minimize (15).
Let z = [α t]t. Then (15) may be rewritten

J (z) =
1
2
f̃(z)tWf̃(z). (16)

This unconstrained minimization can be achieved using a Gauss-Newton iterative method [10].
Iterations follow the scheme2(

∇f̃(zk)tW∇f̃(zk)
)

∆zk = ∇f̃(zk)tWf̃(zk) (17)

zk+1 = zk − ak∆zk (18)

where ak is an acceleration factor,

∇f̃ =

[
∂f̃

∂α

∂f̃

∂t

]
(19)

2Equation (17) could be solved directly by inverting ∇f̃ tW∇f̃ . However faster and more numerically robust
algorithms are available [11].
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and

∂f̃

∂α
=

∂f

∂x

∂φx

∂x0

∂x0

∂α
+

∂f

∂y

∂φy

∂x0

∂x0

∂α

= (fxΦx + fyΦy)
∂x0

∂α
(20)

∂f̃

∂t
=

∂f

∂x

∂φx

∂t
+

∂f

∂y

∂φy

∂t

= fxẋ + fy ẏ. (21)

Notice the role played by trajectory sensitivities Φx, Φy in (20). The vector ∂x0
∂α is discussed in

Section 3.2. By assumption, the algebraic equations (7) are satisfied everywhere, so that

gxẋ + gy ẏ = 0
⇒ ẏ = −(gy)−1gxẋ.

Substituting into (21) gives

∂f̃

∂t
=

(
fx − fy(gy)−1gx

)
ẋ

=
(
fx − fy(gy)−1gx

)
f̃(α, t). (22)

To obtain f̃(zk) and ∇f̃(zk), the simulation is run for a time tk, where zk = [αk tk]t. As
mentioned in Section 2.3, the trajectory sensitivities required for ∇f̃ are computed as a by-product
of the simulation, and so introduce negligible extra computational cost. Equations (17)-(18) are
then solved to update the estimate of αk and tk.

Iterations of the Gauss-Newton method cease when either f̃(zk) ≈ 0 or when ∇f̃(zk)tWf̃(zk) ≈
0. The former case corresponds to an equilibrium point lying on the trajectory. If that point is
not the stable equilibrium point (SEP), then a marginally stable trajectory has been located, i.e.,
parameter values that cause the trajectory to run to a UEP have been identified. (Note that
because a UEP can only be approached in infinite time, the optimal value of t given by the Gauss-
Newton method will theoretically approach infinity. However in practice, iterations are halted
before t grows too large.) It is possible that this UEP does not lie on the stability boundary.
However it has been found that the algorithm usually converges to an appropriate type-1 UEP.
This is a consequence of initiating the algorithm at a stable parameter set.

The second condition corresponds to local extrema. It is not clear that such points have any
physical significance, though they certainly influence the convergence behaviour of the algorithm.
It has been found that the algorithm can become trapped at such points, though often they are
in close proximity to the desired UEP. (The examples of Section 4 illustrate this phenomenon.)
Re-initialization at a slightly perturbed point is usually sufficient for progression to an improved
solution.

3.2 Parameterization of x0

The scalar parameter α describes the way in which x0, the initial conditions and system parame-
ters, are to be varied in order to find a marginally stable system trajectory. A single element of
x0 may be varied independently, in which case ∂x0

∂α is a vector of zeros except for a single nonzero
entry in the appropriate location. Alternatively α may influence a few elements of x0. Then ∂x0

∂α
specifies a direction vector in x0-space.

Typically, in studies of power system dynamic behaviour, the pre-disturbance system lies at a
stable equilibrium point. Variation of α may well shift that equilibrium point. From (6)-(7), and
using the fact that f = [f t 0t 0t]t, the starting equilibrium point is described by

0 = f(x0(α), y0)

0 = g(x0(α), y0).

6



Differentiating gives

0 = f
x

∂x0

∂α
dα + f

y
dy0

0 = gx
∂x0

∂α
dα + gydy0

and further manipulation yields

0 =
(
f

x
− f

y
(gy)−1gx

) ∂x0

∂α
= f∗

x

∂x0

∂α
. (23)

Note that f∗
x

is not square. Recall that x = [xt x̄t λt]t, so (23) can be rewritten

0 = f∗
x

∂x0

∂α
+ f∗

x̄

∂x̄0

∂α
+ f∗

λ

∂λ

∂α
.

The x0 are dependent variables, whilst x̄0 and λ are independent variables. The required ∂x0
∂α can

be found using

∂x0

∂α
= −(f∗

x
)−1

(
f∗

x̄

∂x̄0

∂α
+ f∗

λ

∂λ

∂α

)
(24)

where ∂x̄0
∂α and ∂λ

∂α are independent, and hence specified.
Note that for some choices of α, such as fault clearing time or machine inertia, ∂x0

∂α will be
zero. But for choices such as load level or generator mechanical torque, ∂x0

∂α will reflect the change
in the equilibrium point.

3.3 Variation of multiple parameters

As indicated in Section 2.2.2, variation of a single parameter results in an isolated marginally stable
trajectory. Accordingly, variation of multiple parameters leads to a continuum of marginally stable
trajectories. The proposed algorithm cannot directly compute such a continuum. However it can
be embedded within higher level applications that deal with multiple parameter variation. These
include:

Continuation methods. If two parameters are allowed to vary, the set of parameters that induce
marginal stability forms a curve (1-manifold) in parameter space. Such curves are used widely
in power system operations, where they have become known as nomograms. The algorithm
proposed in Section 3.1 finds points along that curve. Simple parameter variation strategies
can be used to move from point to point around such a curve.

Optimization. Variation of more than two parameters is typically associated with dynamic-
embedded optimization problems, where the objective is to maximize or minimize a cost
function subject to marginal stability of the system. In the context of power systems, this
type of problem arises, for example, when determining minimum cost generation schedules
of stability-constrained systems. Solution of these problems involves coupling the marginal
stability algorithm with a strategy for determining a cost-minimizing direction.

4 Examples

The algorithm of Section 3 is illustrated using a power system of the form shown in Figure 1. Both
generators were represented by a two axis (fourth order) machine model [12]. In all cases, the
system was disturbed by the application of a three phase fault at the terminal bus of Generator 1.

Two studies are presented. In the first, the calculation of the critical fault clearing time is
considered. The second study explores the maximum loading of the generators.
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Figure 1: Two machine infinite bus system.

Initial Iterations (sec) Actual
guess (sec) 1 2 3 value (sec)

0.4000 0.3011 0.2940 0.2931 0.2866

Table 1: Estimates of tf .

4.1 Critical clearing time

For this study, the fault-on time tf was chosen as the unknown parameter α that was varied to
minimize the cost function J given by (15). The fault switching mechanism, and hence tf , was
incorporated into the DAIS model (1)-(3), by introducing the equations

ẋt = 1, xt,0 = 0
0 = (xt − tinit)(xt − (tinit + tf )) − ys

where xt is a timer, and tinit is the time at which the fault is initiated. The algebraic variable ys

is negative during the fault-on period, and positive otherwise. It is used to switch an algebraic
equation, as in (3). When ys is negative, fault current is added to the net current injection at the
faulted bus. Using this formulation, tf can be treated like any other parameter. Variation of tf
does not affect other initial conditions though, so ∂x0

∂α in (20), (23) is a vector of zeros except for
a 1 in the location corresponding to tf .

In this investigation an initial guess of tf = 0.40 sec was used. It can be seen from the phase
portrait of Figure 2 that the system was clearly unstable for this initial guess. Subsequent Gauss-
Newton iterations using (17)-(18) are given in Table 1. The final estimate of tf = 0.2931 sec
compares well with the actual critical value of t∗f = 0.2866 sec obtained by repetitive simulation.
The iterations are illustrated in Figure 2. (Note that this figure is only a two dimensional projection
of the eight dimensional state-space.) The figure shows the trajectories corresponding to the initial
guess, the iterations and final estimate, and the actual critical value.

Figure 2 shows that behaviour becomes rather complicated as the critical parameter value is
approached. This is reflected in the cost function J as multiple local minima. In this case the
algorithm converged to a nearby local minimum rather than the desired minimum corresponding
to the UEP. However from a practical perspective, the error in the final estimate of tf is incon-
sequential, as accuracy to two decimal places is more than sufficient. If desired, an improved final
estimate could be obtained by restarting the iterative solution process.

Further illustration is provided by Figure 3, where the cost function J is plotted against time.
It is clear that for the initial parameter guess, J had only a single minimum, near 1 sec. However
as the parameter estimate was progressively improved, a local minimum developed near 1.5 sec.
The solution process in this case locked onto that local minimum. By restarting the process from
the deeper minimum at 2.4 sec, an improved estimate of tf = 0.2878 sec could be obtained.

A simple process for choosing the acceleration factor a was used throughout this sequence of
studies. A more sophisticated choice of a may well have resulted in direct convergence to the
improved estimate of tf . Further investigations are required.
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Figure 2: Phase portrait view of trajectories, study A.

4.2 Critical generator loading

The aim of this study was to determine the values of generator mechanical torques Tm that
corresponded to the system being marginally stable, given the fault scenario described earlier. In
this case the fault-on time was held fixed at 0.3 sec. This study therefore effectively determined
the maximum power that could be delivered by the generators whilst still ensuring stability for
the specified fault condition.

An initial guess of Tm = 0.72 pu was used for both generators. Also, Tm was varied in unison
at the two generators during the iterations. (This was not a limitation of the algorithm, but rather
assisted in presentation clarity.) The phase portrait of Figure 4 shows the system response for the
base case. The system was clearly stable. The Gauss-Newton algorithm proceeded to estimate a
critical value of Tm = 0.7934 pu. Repeated simulations indicated that the actual critical value (to
four decimal places) was Tm = 0.7930 pu. Figure 4 shows the trajectories corresponding to the
estimated and actual critical values. There is clear propinquity.

Notice in Figure 4 that the trajectories for Tm = 0.72 pu and Tm = 0.7934 pu start at different
points. (The starting points are marked by a ‘◦’.) This occurs because variation of Tm alters the
operating point, i.e., the initial point x0. The dependence of x0 on the parameter α is reflected
through ∂x0

∂α , in accordance with (24).
Convergence from the initial guess for Tm to the final estimate took 11 iterations, though

convergence of Tm was virtually achieved in 3 iterations. The iterations are shown by ‘×’ in the
contour plot of Figure 5. This plot shows contours of the cost function J for various values of
Tm and time t. (Recall from (15) that J is a function of α and t, with α in this case driving
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Figure 3: Cost function J versus time.

Tm.) An interesting decoupling can be observed in the convergence process. Over the first three
iterations, Tm made significant progress towards its final value, reaching 0.7980 pu compared with
the critical value of 0.7930 pu. On the other hand, the optimization variable t changed little over
the initial iterations, but experienced greater change over the latter phase. As Tm is the variable
of primary interest, with t only playing an auxiliary role, convergence could be truncated after the
third iteration.

It is interesting to note that the first iteration step is very small. This is because the cost
function is quite flat near the initial parameter guess. In fact that initial point in near a saddle in
J . If the algorithm was started from a guess of Tm ≈ 0.7 pu, subsequent iterations would move
away from the desired minimum, towards a minimum corresponding to the stable equilibrium
point.

5 Conclusions

The paper develops an iterative approach to finding parameter values that result in marginally
stable system behaviour for a specified disturbance. This approach is based on the fact that
trajectories which lie on the stability boundary must approach an unstable equilibrium point.
The algorithm varies parameters to minimize a cost function which is a measure of the distance
from equilibria. By minimizing this cost function, trajectories move closer to passing through a
UEP, and hence move closer to lying on the stability boundary.

Two studies have illustrated the algorithm. In the first, the fault-on time was chosen as the
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parameter of interest. The second study found the generator loading condition that corresponded
to the transient stability limit. Rapid computation of such dynamically-induced maximum loading
conditions allows more accurate assessment of the risks of instability. On-line implementation
would assist in safely maximizing power system utilization, with consequent economic benefits.

Applications that involve variation of multiple parameters can be built from the marginal
stability algorithm. Extensions required for continuation methods and optimization problems
have been considered in the paper.
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