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Hybrid systems are typified by strong coupling between continuous dynamics and discrete events.
For such piecewise smooth systems, event triggering generally has a significant influence over sub-
sequent system behavior. Therefore, it is important to identify situations where a small change
in parameter values alters the event triggering pattern. The bounding case, which separates
regions of (generally) quite different dynamic behaviors, is referred to as grazing. At a grazing
point, the system trajectory makes tangential contact with an event triggering hypersurface. The
paper formulates conditions governing grazing points. Both transient and periodic behaviors are
considered. The resulting boundary value problems are solved using shooting methods that are
applicable for general nonlinear hybrid (piecewise smooth) dynamical systems. The grazing point
formulation underlies the development of a continuation process for exploring parametric depen-
dence. It also provides the basis for an optimization technique that finds the smallest parameter
change necessary to induce grazing. Examples are drawn from power electronics, power sys-
tems and robotics, all of which involve intrinsic interactions between continuous dynamics and
discrete events.

Keywords : Grazing; limit cycles; piecewise smooth dynamical systems; shooting methods;
continuation methods.

1. Introduction

Many systems exhibit dynamic behavior that is
best characterized by strong coupling between con-
tinuous dynamics and discrete events. Trajectories
evolve smoothly through state-space until satisfying
conditions that trigger an event. The event alters
the system description and/or induces an impul-
sive change in the state. Smooth evolution then

continues until the next event is triggered. Such sys-
tems have come to be known as hybrid systems [van
der Schaft & Schumacher, 2000; Liberzon, 2003] or
piecewise smooth dynamical systems [di Bernardo
et al., 2003].1 Examples can be drawn from a wide
range of application areas, including process con-
trol [Lennartson et al., 1996], constrained mechan-
ical systems [Brogliato, 1999], robotics [Spong &

∗Research supported by the National Science Foundation through grant ECS-0332777.
1The term hybrid systems is preferred by the control community, whereas the bifurcation community is more familiar with
piecewise smooth systems.
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Vidyasagar, 1989; Piiroinen, 2002], power sys-
tems [Hiskens, 2004], and power electronics
[Rajaraman et al., 1996; Yuan et al., 1998]. In fact,
any physical device that exhibits hysteresis, or con-
trol loop with anti-wind-up limits [Goodwin et al.,
2001], is effectively a hybrid system.

Event triggering generally has a significant
influence over subsequent system behavior. There-
fore, it is important to identify situations where a
small change in parameter values alters the event
triggering pattern. Figure 1 provides an illustration.
For a certain value of parameter θhit, the system
trajectory encounters an event triggering hypersur-
face at a point xhit. The event occurs, and the tra-
jectory continues accordingly. However for a small
change in parameter value to θmiss, the trajectory
misses (at least locally) the triggering hypersur-
face, and subsequently exhibits a completely dif-
ferent form of response. At a parameter value θg,
lying between θhit and θmiss, the continuous tra-
jectory tangentially encounters (grazes) the trig-
gering hypersurface. Behavior beyond the grazing
point xg is generally unpredictable, in the sense
that without further knowledge of the system, it
is impossible to determine whether or not the event
triggers. This bounding case typifies grazing phe-
nomena. The paper proposes a shooting method for
locating grazing points xg and the associated criti-
cal parameter value θg.

The significance of grazing can be illustrated
by considering power system protection. For a

Parameter values
Triggering hypersurface

xg

xhit

θg
θhit

θmiss

Fig. 1. Trajectory grazing triggering hypersurface.

particular set of parameters, a disturbance may
cause the system trajectory to pass close to (but
not encounter) a protection triggering characteris-
tic [Singh & Hiskens, 2001]. The protection does
not operate, no equipment is tripped, and the sys-
tem recovers. However it may require only a small
change in parameter values, such as loads, for pro-
tection to operate, perhaps leading to cascading
outages and system fragmentation [U.S.-Canada
Power System Outage Task Force, 2004]. Knowl-
edge of the grazing point would highlight system
vulnerability.

In a more general sense, grazing plays a funda-
mental role in dynamic embedded optimization of
hybrid systems. Such optimization problems incor-
porate the system dynamic description into the con-
straint set [Galán & Barton, 1998; Hiskens, 2004].
As Galán and Barton [1998] and Piccoli [1998] have
shown, even though hybrid system dynamics are
nonsmooth, the cost function is smooth away from
grazing points. This statement is expressed using
different terminology though, with Piccoli [1998]
requiring that all flows have the same history, and
Galán and Barton [1998] requiring the existence of
trajectory sensitivities (discussed later). Therefore,
away from grazing points, gradient-based optimiza-
tion techniques are appropriate. However, smooth-
ness and even continuity of the cost function is often
lost at grazing points. This introduces the need for
branch-and-bound algorithms that search over the
grazing-induced partitions of parameter space.

Grazing phenomena have been widely inves-
tigated recently, particularly with reference to
periodic systems [Dankowicz et al., 2002; Chin
et al., 1995; Fredriksson & Nordmark, 1997]. In
that context, grazing is closely related to border-
collision bifurcations [di Bernardo et al., 2001;
Nusse et al., 1994; Yuan et al., 1998], also known as
C-bifurcations [di Bernardo et al., 1999]. Transient
grazing is considered in [Rajaraman et al., 1996;
Jalali et al., 1996], where switching-time bifur-
cations are analyzed. These investigations have
focused largely on classifying the (local) conse-
quences of grazing through normal form analysis,
particularly for periodic systems. Computation of
actual grazing points has received less attention.
With numerical packages such as AUTO [Doedel
et al., 1998] generally unsuited to nonsmooth sys-
tems,2 ad hoc approaches have prevailed. This paper

2A related package called SlideCont [Dercole & Kuznetsov, 2005] does address nonsmooth systems, but in the context of using
a Filippov approach to describe sliding mode behavior. Grazing conditions are not considered.
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addresses that deficiency by establishing a shoot-
ing method that is applicable for general nonlinear
hybrid (piecewise smooth) dynamical systems.

The paper is organized as follows. Section 2 con-
siders the modeling of hybrid systems. Section 3
provides background material for trajectory sensi-
tivities and limit cycles. Conditions governing tran-
sient grazing are developed in Sec. 4, and adapted
to periodic systems in Sec. 5. The grazing point for-
mulation is extended to a continuation process in
Sec. 6. Section 7 develops an optimization technique
for finding the smallest parameter change neces-
sary to induce grazing. Conclusions are provided in
Sec. 8.

2. Hybrid System Representation

2.1. Model

As mentioned previously, hybrid system behavior
is characterized by continuous and discrete states,
continuous dynamics, discrete events (triggers), and
mappings that define the evolution of discrete states
at events. Numerous formal models exist for rig-
orously describing hybrid system dynamics. Exam-
ples include petri nets [David & Alla, 1992] and
hybrid automata [van der Schaft & Schumacher,
2000]. However, those representations are not
immediately amenable to numerical implementa-
tion. A useful, nonrestrictive model formulation
should be,

• capable of capturing the full range of continuous/
discrete hybrid system dynamics,

• computationally efficient, and
• consistent with the development of shooting

methods.3

As shown in [Hiskens & Pai, 2000; Hiskens, 2004],
these specifications can be met completely by a
model that consists of a set of differential-algebraic
equations, adapted to incorporate impulsive (state
reset) action and switching of the algebraic equa-
tions. This DA Impulsive Switched (DAIS) model
can be written in the form,

ẋ = f(x, y) +
mr∑
j=1

δ(yr[j])(hj(x, y) − x) (1)

0 = g(x, y) ≡ g(0)(x, y) +
ms∑
i=1

g(i)(x, y) (2)

where

g(i)(x, y) =

{
g(i−)(x, y)
g(i+)(x, y)

ys[i] < 0
ys[i] > 0

i = 1, . . . ,ms

(3)

and

• x ∈ R
n are dynamic states, and y ∈ R

m are alge-
braic states;

• δ(·) is the Dirac delta. Each impulse term of the
summation in (1) can be expressed in the alter-
native state reset form

x+ = hj(x−, y−) when yr[j] = 0 (4)

where the notation x+ denotes the value of x just
after the reset event, while x− and y− refer to the
values of x and y just prior to the event. This form
motivates a generalization to an implicit mapping
h′

j(x
+, x−, y−) = 0.

• Subscripts r[j], s[i] index elements of y that trig-
ger the jth state reset (impulsive) event and
ith algebraic switching event, respectively. (This
refers to the ith modeled event, not the event that
occurs ith in the time sequence.)

• f, hj : R
n+m → R

n.
• g(0), g(i±) : R

n+m → R
m. Some elements of each

g(·) will usually be identically zero, but no ele-
ments of the composite g should be identically
zero. Each g(i±) may itself have a switched form,
and is defined similarly to (2)–(3), leading to a
nested structure for g.

A nonautonomous version of the DAIS model
follows from explicit inclusion of time t in f , g,
and h. Alternatively time can be modeled as a
state, with dynamics ẋt = 1 and initial condition
xt(0) = t0. This monotonic state xt may compli-
cate analysis of periodic systems. If so, periodic
xt can be achieved using a reset equation of the
form (4),

x+
t = x−

t − T when xt = t0 + T,

where T is the period.
A compact development of the equations

describing grazing phenomena results from incorpo-
rating parameters p ∈ R

� into the dynamic states
x. (Numerical implementation is also simplified.)
This is achieved by introducing trivial differential

3Shooting methods couple Newton’s method with numerical integration, see [Stoer & Bulirsch, 1993]. Such methods are
discussed in detail later in the paper.
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equations

ṗ = 0 (5)

into (1), and results in the natural partitioning

x =
[

x

p

]
, f =

[
f

0

]
, hj =

[
hj

p

]
(6)

where x are the true dynamic states, and p are
parameters.

Away from events, system dynamics evolve
smoothly according to the familiar differential-
algebraic model

ẋ = f(x, y) (7)
0 = g(x, y) (8)

where g is composed of g(0) together with appropri-
ate choices of g(i−) or g(i+), depending on the signs
of the corresponding elements of ys[i]. At switching
events (3), some component equations of g change.
To satisfy the new g = 0 constraints, algebraic
variables y may undergo a step change. Impulse
events (1) (equivalently reset events (4)) force a
discrete change in elements of x. Algebraic vari-
ables may again step to ensure g = 0 is always
satisfied.

The flows of x and y are defined as

x(t) = φ(x0, t) =
[

φ(x0, t)
p

]
(9)

y(t) = ψ(x0, t) (10)

where x(t) and y(t) satisfy (1)–(3), along with
initial conditions,

φ(x0, t0) = x0 (11)

g(x0, ψ(x0, t0)) = 0. (12)

The partitioning of φ in (9) is in accordance
with (6).

2.2. Example 1 (Modeling)

The simple static var compensator (SVC) of Fig. 2
provides a practical illustration of the DAIS model
formulation. This example will be revisited later
to examine various algorithms for locating graz-
ing phenomena. The parameters of this model
are taken from [Jalali et al., 1996]. For clarity of
presentation we consider only a single thyristor,
whereas [Jalali et al., 1996] used a back-to-back
pair.

Resistor Rs and inductor Ls characterize the
transformer and source impedance, while Rr and
Lr are the resistance and inductance of the inductor
coil in series with the thyristor switch. The thyris-
tor conducts current iLr only in the forward direc-
tion. It turns on when triggered by a firing pulse at
firing angle α, and continues to conduct while iLr

remains positive. It turns off (commutates) when
iLr becomes zero. The thyristor is assumed ideal,
so detailed nonlinearities in the on/off process are
neglected.

Rr ,Lr

Rs ,Ls

C

(a)

Firing angle, α

+ − + −

Ls=0.195 mHRs=0.9 mΩ Rr=31.3 mΩ Lr=1.66 mH

vLrvLs

iLs iLr

vcC=1.5 mFVs= sin ωt

(b)

Fig. 2. Static var compensator (SVC). (a) One-line diagram. (b) Circuit representation.
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The model consists of differential equations

d

dt




xt

iLs

iLr

vc

xrr

xstat




=




1

vLs

Ls

vLr

Lr

ic
C

0
0




(13)

together with algebraic equations

0 = RsiLs + vLs + vc − sin(ωxt) (14)

0 = iLs − ic − iLr (15)

yon =
ωxt

π
− xrr − α

180
(16)

vLr = 0
yoff = −1

}
xstat < 0

(thyristor open circuit)
(17)

vc − RriLr − vLr = 0
yoff = iLr

}
xstat > 0

(thyristor conducting)
(18)

and state reset equations

x+
rr = x−

rr + 2
x+

stat = x−
stat + 2

}
when yon = 0

(19)
x+

stat = x−
stat − 2 when yoff = 0.

(20)

Model behavior can be best explained by refer-
ring to Fig. 3. Assume that initial time xt = 0,
and the thyristor is in blocking (open circuit) mode,
that is xstat = −1. Initially xrr = 0, so according to
(16), the turn-on indicator yon < 0. Subsequently
yon increases linearly with time until a reset event
(19) is triggered when yon = 0. At that event, the
thyristor status xstat toggles from −1 to +1, i.e.
from blocking to conducting. Also, a step occurs in
xrr, forcing yon < 0 again. While the thyristor is
conducting, the turn-off indicator yoff monitors the

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−2.5

−2

−1.5
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−0.5
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1.5

Time (sec)

Thyristor current, i
Lr

Source voltage

Thyristor status, x
stat

Thyristor trigger, y
on

Firing angle, α = 120o

Fig. 3. SVC model behavior.

thyristor current iLr. If iLr drops to zero, reset event
(20) toggles xstat from +1 to −1, and the thyristor
self commutates (blocks).

In order to motivate later grazing analysis,
Fig. 4 shows thyristor current iLr for various values
of firing angle. It can be seen that as the firing angle
increases from α = 120◦ to 125◦, the dip during
the first conduction period distorts towards zero.
Somewhere between 125◦ and 130◦, the increasing
distortion causes the current to fall to zero, and
the thyristor prematurely commutates. The piv-
otal case, separating the two qualitatively different
forms of behavior, corresponds to grazing. As the
firing angle increases further, another grazing situa-
tion occurs between 130◦ and 135◦, with premature
commutation occurring during the second conduc-
tion period.

2.3. Numerical integration

Predicting the dynamic response of a system, for
a given set of initial conditions, generally requires
numerical integration. The accuracy of the result-
ing approximate trajectory depends on factors such
as integration technique, time step and round-
off error [Parker & Chua, 1989; Shampine, 1994].
Gross errors, including numerical instability, can
be avoided by using implicit integration with an
appropriate time step. However, some inaccuracy
will always remain. In cases where event triggering
hypersurfaces are encountered transversally, slight
inaccuracy in the predicted trajectory will have
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Fig. 4. Thyristor current waveforms for various firing angles.
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Fig. 5. Integration time step comparison.

only a minor effect on the triggering point.4 How-
ever in grazing situations, where the encounter is
tangential, behavior will be as sensitive to simula-
tion parameters as it is to true system parameters.

To illustrate, Fig. 5 shows the first cycle of
SVC inductor current iLr, for a firing angle α =
125◦. Trapezoidal integration was used to obtain
this trajectory; the responses predicted using two
different time steps are shown. The two trajecto-
ries are almost identical, except for slight divergence
around the peaks and troughs. However referring to
Fig. 4, it is the trough that undergoes grazing as
the firing angle α is increased. The predicted graz-
ing value of α will therefore depend (slightly) on the
integration time step.

There are certainly integration techniques that
are more accurate than trapezoidal, so numerical
inaccuracies can be further reduced. However the
tangential contact implicit in grazing suggests that
any inaccuracy will (slightly) alter the grazing point
prediction.

3. Background

3.1. Trajectory sensitivities

Shooting method algorithms, which form the
basis for locating grazing phenomena, require the

4The point where the trajectory encounters the triggering hypersurface can be accurately located by adapting the implicit
integration solver. Normal progression from time tk to tk+1 = tk + tstep, for a given time-step tstep, is achieved by solving a
(typically nonlinear) implicit algebraic equation of the form,

Fint(xk, yk, xk+1, yk+1, tstep) = 0 (21)

for xk+1, yk+1. When locating a triggering point, tstep becomes a variable, and (21) is augmented by the triggering hypersurface
equation s(xk+1, yk+1) = 0.
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sensitivity of a trajectory to perturbations in
parameters and/or initial conditions [Stoer &
Bulirsch, 1993]. To obtain the sensitivity of the
flows φ and ψ to initial conditions x0, the Taylor
series expansions of (9)–(10) are formed. Neglect-
ing higher order terms gives

∆x(t) =
∂x(t)
∂x0

∆x0 ≡ Φ(x0, t)∆x0 (22)

∆y(t) =
∂y(t)
∂x0

∆x0 ≡ Ψ(x0, t)∆x0 (23)

where Φ and Ψ are the sensitivity transition matri-
ces, or trajectory sensitivities, associated with the x
and y flows, respectively [Frank, 1978]. Equations
(22)–(23) describe the changes ∆x(t) and ∆y(t) in
a trajectory, at time t along the trajectory, for a
given (small) change in initial conditions ∆x0 =
[∆xT

0 ∆pT ]T . In accordance with the partitioning
(6), Φ can be decomposed as

Φ =
[

Φx Φp

0 I�

]
(24)

where I� is the 	 × 	 identity matrix.
An overview of the variational equations

describing the evolution of these sensitivities is pro-
vided in Appendix A. It should be emphasized that
Φ and Ψ do not require smoothness of the underly-
ing flows φ and ψ. As shown in Appendix A, they
are well defined for nonsmooth and/or discontinu-
ous flows generated by hybrid systems.

3.2. Limit cycles

3.2.1. Poincaré maps

Periodic behavior of limit cycles implies that the
system state returns to its initial value every cycle.
This can be expressed in terms of the flow as

x∗ = φ(x∗, T ) (25)

where T is the limit cycle period.5 For non-
autonomous systems, the period T is a known
quantity. However it is not known a priori for
autonomous systems. The unknown period, or
return time, can be found using Poincaré map con-
cepts [Parker & Chua, 1989; Seydel, 1994]. These
concepts are well known; the following summary
is provided as it underlies later analysis of grazing
bifurcations in periodic systems.

Γ

Σ

P(x0)

x*

φ(x0,t)

x0

σx~

Fig. 6. Poincaré map.

Referring to Fig. 6, let Σ be a hyperplane that
is transversal to the flow φ(x0, t), and defined by

Σ = {x : σT (x − x̃) = 0} (26)

where x̃ is a point anchoring Σ, and σ is a vector
normal to Σ. The return time τr for a trajectory
emanating from x0 ∈ Σ is therefore given by

σT (φ(x0, τr) − x̃) = 0. (27)

Because the flow φ(x0, t) transversally encounters
Σ at τr, the tangent to the flow at that intersection
point

∂φ

∂t
(τr) = f(x(τr), y(τr)) ≡ f |τr (28)

satisfies

σT f |τr �= 0. (29)

By differentiating (27) with respect to x0 and τr,

σT Φ(x0, τr)dx0 + σT f |τrdτr = 0, (30)

and taking account of the transversality condition
(29), it can be seen that the implicit function the-
orem [Fleming, 1977] guarantees the existence of a
function τr(x0) which (locally) satisfies (27),

σT (φ(x0, τr(x0)) − x̃) = 0. (31)

The flow φ and hyperplane Σ together describe
a Poincaré map P : Σ → Σ, defined by

P (x0) = φ(x0, τr(x0)) (32)

where τr(·) is given (implicitly) by (27). Therefore
from (25), a limit cycle of an autonomous system
must satisfy

x∗ = P (x∗) = φ(x∗, τr(x∗)). (33)

The corresponding limit cycle is labeled Γ in Fig. 6.

5It is assumed throughout that the algebraic equations g(x, y) = 0 are always satisfied.
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For a nonautonomous system, the Poincaré
map P : R

n → R
n becomes simply

P (x0) = φ(x0, T ), (34)

with limit cycles given by x∗ = P (x∗).

3.2.2. Locating limit cycles

Limit cycles can be located by solving (25) for
nonautonomous systems or (33) for autonomous
systems. In the case of nonautonomous systems,
rewriting (25) gives

Fl(x∗) = φ(x∗, T ) − x∗ = 0. (35)

The solution x∗ can be obtained using a shooting
method,6 which solves the iterative scheme

xk+1 = xk − (DFl(xk))−1Fl(xk) (36)

where

DFl(xk) = Φ(xk, T ) − I (37)

and I is the n-dimensional identity matrix.
For autonomous systems, rewriting (33) gives

Fl(x∗) = φ(x∗, τr(x∗)) − x∗ = 0. (38)

Again (36) can be used to find the solution x∗. In
this case

DFl(xk) = Φ(xk, τr(xk)) + f |τr(xk)
dτr

dx
(xk) − I.

(39)

The term dτr/dx in (39) can be obtained from (30),
giving

DFl(xk) = Φ(xk, τr(xk))

− f |τr(xk)
σTΦ(xk, τr(xk))

σTf |τr(xk)

− I (40)

=

(
I − f |τr(xk)σ

T

σTf |τr(xk)

)
Φ(xk, τr(xk)) − I.

(41)

Recall from Appendix A that the sensitivity
transition matrix Φ in (37) and (41) is well defined
for hybrid (piecewise smooth) systems. Therefore,
the proposed shooting method is suitable for piece-
wise smooth limit cycles. This will be illustrated in
later examples.

3.2.3. Parameters within the state

It can be seen from (9) that the last 	 states within
x, those corresponding to parameters p, always
remain constant. Therefore the last 	 equations in
(35) or (38) are always satisfied by default, and
hence are redundant. Discarding those 	 equations
results in the under-constrained problem,

F l(x) = 0 (42)

where F l : R
n → R

n−�. Furthermore, (24) indicates
that the last 	 rows of Φ are identical to the corre-
sponding rows of the identity matrix I. Therefore
from (37),

DFl =
[

DF l

0�×n

]
(43)

where 0�×n refers to the 	×n matrix of zeros. Like-
wise, it is straightforward to show that DFl in (41)
also has the structure (43).

It follows that solutions of (35) or (38) are well
defined only when 	 = 0, i.e. no parameters are
incorporated into x. In that case Fl ≡ F l. It will
be shown in Sec. 5.1 though that periodic graz-
ing requires 	 = 1, and in Sec. 6 that continua-
tion requires 	 = 2. Closest grazing point concepts,
developed in Sec. 7, require 	 ≥ 2.

4. Transient Grazing

4.1. Mathematical description

Grazing is characterized by a trajectory (flow)
of the system touching a triggering hypersurface
tangentially. Let the target hypersurface be des-
cribed by

b(x, y) = 0 (44)

where b : R
n+m → R. Vectors that are normal to

b are therefore given by ∇b = [∂b/∂x ∂b/∂y]T ≡
[bx by]T , and the tangent hyperplane is spanned
by vectors [uT vT ]T that satisfy

[bx by]
[

u

v

]
= 0. (45)

The vector [ẋT ẏT ]T is directed tangentially
along the flow, so it must satisfy (45) at a graz-
ing point. Furthermore, differentiating (8) and

6Reformulation as a multiple shooting method [Stoer & Bulirsch, 1993] is straightforward. Likewise for the grazing shooting
methods discussed later.
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substituting (7) gives,

0 =
∂g

∂x
ẋ +

∂g

∂y
ẏ (46)

⇒ 0 = gxf(x, y) + gyv (47)

where for notational convenience v replaces ẏ.
A single degree of freedom is available for vary-

ing parameters (and initial conditions) to find a
grazing point. This single degree of freedom can
be achieved by parametrization x0(θ), where θ is
a scalar. Grazing points are then described by com-
bining together the flow definition (9) (appropri-
ately parameterized by θ), algebraic equations (8),
target hypersurface (44), and tangency conditions
(45), (47), to give

Fg1(xg, θ, tg) := φ(x0(θ), tg) − xg = 0 (48)

Fg2(xg, yg) := g(xg, yg) = 0 (49)

Fg3(xg, yg) := b(xg, yg) = 0 (50)

Fg4(xg, yg, v) :=
[

bx by

gx gy

]
(xg,yg)

[
f(xg, yg)

v

]
= 0. (51)

The grazing encounter occurs at time tg along the
trajectory, and its state-space location is given by
xg, yg. This set of equations may be written com-
pactly as

Fg(xg, yg, θ, tg, v) = Fg(z) = 0 (52)

where Fg : R
n+2m+2 → R

n+2m+2 and z =
[xT

g yT
g θ tg vT ]T . Solution of (52) can be

achieved using a shooting method, as discussed in
the following section.

4.2. Shooting method

4.2.1. Algorithm

Numerical solution of (52) using Newton’s method
amounts to iterating on the standard update
formula

zk+1 = zk − (DFg(zk))−1Fg(zk) (53)

where DFg is the Jacobian matrix

DFg =




−I 0 Φ
dx0

dθ
f 0

gx gy 0 0 0
bx by 0 0 0

f tbxx + bxfx + vtbyx f tbxy + bxfy + vtbyy 0 0 by

f̂ tgxx + gxfx + v̂tgyx f̂ tgxy + gxfy + v̂tgyy 0 0 gy




(54)

with

f̂ =




f

f

f

. . .
f



∈ R

mn×m, v̂ =




v

v

v
. . .

v


 ∈ R

m2×m (55)

gxx =




∂2g1

∂x2

∂2g2

∂x2

...
∂2gm

∂x2



∈ R

mn×n, gyx =




∂2g1

∂y∂x

∂2g2

∂y∂x
...

∂2gm

∂y∂x



∈ R

m2×n (56)
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gyy =




∂2g1

∂y2

∂2g2

∂y2

...
∂2gm

∂y2



∈ R

m2×m, gxy =




∂2g1

∂x∂y

∂2g2

∂x∂y
...

∂2gm

∂x∂y



∈ R

mn×m. (57)

The matrices gxx, gyx, gxy and gyy are usually
extremely sparse. It has been found that often the
error introduced into DFg by ignoring them has neg-
ligible effect on convergence. However, situations
can arise where these terms are vital for reliable
convergence. This is the case, for example, when
the trajectory has multiple turning points (peaks
and troughs) in the vicinity of the target hypersur-
face. The example of Sec. 4.4 provides an illustra-
tion. Two approaches have been used to obtain the
second derivative terms:

1. Numerical differencing. Many simulators provide
direct computation7 of gx and gy. Numerical dif-
ferencing of gx and gy is straightforward, but
not particularly efficient for high dimensional
systems.

2. Direct computation. By utilizing an object ori-
ented modeling structure [Hiskens & Sokolowski,
2001], second derivative terms occur only within
components. There are no terms introduced by
inter-component dependencies. Explicit formu-
lae for second derivative terms can be established
for each component model. The sparse matrices
can then be efficiently constructed.

Care must be taken in evaluating the terms of
(52) and (54) that relate to trajectory solution. The
flow term φ(x0(θk), tkg) in (48) evaluates, via numer-
ical integration, to the value of x at time tkg along
the trajectory that has initial value x0(θk). Like-
wise, the terms Φ and f in the first row of DFg

should also be evaluated at time tkg along that tra-
jectory. All other terms in DFg should be evaluated
at xk

g , yk
g .

4.2.2. Initialization of variables

As with all iterative procedures, solution of (53)
requires a good initial guess z0. In terms of

the original system variables, initial (approximate)
grazing point values of x0

g, y0
g , θ0, t0g, and v0

are required. These can be obtained from regular
simulation.

Referring to Fig. 1, parameter values that are
near the critical value result in trajectories that
either, (i) encounter the target hypersurface, or
(ii) just miss the hypersurface. Therefore, the tra-
jectory induced by parameter θ0 should be moni-
tored for,

1. a point where b(x, y) = 0, i.e. an intersection
with the target hypersurface, or

2. an appropriate local minimum of b(x, y), i.e.
a point where the trajectory passes close by
the target hypersurface. This point is given by
db/dt = 0, which implies bxẋ + by ẏ = 0. Substi-
tuting for ẏ from (46), and using (7), gives

db

dt
= (bx − byg

−1
y gx)f(x, y) = 0.

In both cases, the identified point directly provides
initial values for x0

g, y0
g , and t0g. The corresponding

value of v0 can be obtained from (47) as

v0 = −g−1
y gxf(x0

g, y
0
g)

with all partial derivatives evaluated at x0
g, y0

g .

4.3. Example 2 (Switching-time
bifurcation)

Referring to Fig. 4, variation of the thyristor firing
angle α suggests that a switching-time bifurcation
[Rajaraman et al., 1996; Jalali et al., 1996] occurs
between 125◦ and 130◦. The triggering hypersur-
face in this case is given by iLr = 0. The shooting
method (53) was used to determine the conditions
that gave rise to grazing. For illustration purposes,
an initial parameter value of α = 120◦ was chosen,
even though it was known that the actual grazing
value α∗ lay in the range 125◦ < α∗ < 130◦. The

7These quantities are required for implicit numerical integration.



Shooting Methods for Locating Grazing Phenomena in Hybrid Systems 681

Table 1. Shooting method convergence,
first conduction period.

Grazing Values

Iteration Firing Angle, α Time, tg

0 120.00 0.007900
1 128.28 0.007954
2 129.39 0.007947
3 129.43 0.007946

solution process converged in three iterations, with
convergence progress given in Table 1.

Figure 7 shows the behavior of iLr for the ini-
tial guess α = 120◦ and the grazing value α∗ =
129.43◦. It can be seen that grazing occurred at
time t∗g = 0.007946 sec, when the dip during the
first conduction period dropped to iLr = 0. Behav-
ior is ill-defined at that point; iLr could continue as
shown in Fig. 7, or the thyristor could commutate
and iLr remain at zero. Exact behavior would be
governed by unmodeled effects.

Figure 4 also indicates that a switching-time
bifurcation can occur during the second conduc-
tion period, for a value of firing angle in the range
130◦ < α∗ < 135◦. The shooting method (53) was
again used to find this grazing value. An initial
guess of α = 120◦ was used, with solution progress
given in Table 2. Even though the initial guess
for α was (deliberately) quite poor, convergence
was obtained in three iterations. Grazing occurs at
t∗g = 0.02499 sec, with a firing angle α∗ = 132.66◦.
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Original firing angle, α=120˚
Grazing, α=129.43˚

Fig. 7. Comparison of original and grazing behaviors of iLr.

Table 2. Shooting method convergence,
second conduction period.

Grazing Values

Iteration Firing Angle, α Time, tg

0 120.00 0.02460
1 131.89 0.02487
2 132.47 0.02498
3 132.66 0.02499

4.4. Example 3 (Performance
specification)

Performance specifications often place bounds on
transient excursions of system quantities. Determin-
ing parameter values that ensure the specifications
are satisfied can be formulated as a grazing problem
(52). The single machine infinite bus power system
of Fig. 8 will be used to illustrate this application.

For this example, the generator was accu-
rately represented by a sixth-order machine model,8

and the generator excitation system was modeled
according to Fig. 9. Note that the output limits
on the field voltage Efd are anti-wind-up limits,
while the limits on the stabilizer output VPSS are
clipping limits [Goodwin et al., 2001]. Therefore
even though this example utilizes a simple network
structure, it exhibits nonlinear, nonsmooth, hybrid
system behavior. Larger systems are no more chal-
lenging. A single phase fault was applied at the
generator terminal bus at 0.05 sec. The fault was
cleared, without line tripping, at 0.28 sec.

Generators are susceptible to over-voltage pro-
tection operation if their terminal voltage rises
too high. This may occur during transients follow-
ing a large disturbance. The field voltage maxi-
mum limit Efdmax has a large influence on transient
over-voltages. Therefore, this example considers the
maximum value of Efdmax that ensures the initial
terminal voltage overshoot does not rise above a

AVR
Exciter

PSS

~
VtV∞ Efd

Fig. 8. Single machine infinite bus system.

8The sixth-order machine model consists of two axes, with two windings in each axis [Sauer & Pai, 1998].
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1+sT3
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Fig. 9. Excitation system (AVR/PSS) representation.

specified value of 1.2 pu. The target hypersurface in
this case is therefore Vt − 1.2 = 0.

Results of the iterative process are given in
Table 3, and presented graphically in Figs. 10
and 11. Convergence of the shooting method was
achieved in four iterations. This is an encourag-
ing result, as an onerous test condition was chosen.

Table 3. Shooting method convergence.

Grazing Values

Iteration Param, Efdmax Time, tg

0 5.80 1.14
1 3.16 1.28
2 4.37 1.19
3 4.72 1.20
4 4.78 1.21
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Fig. 10. Terminal voltage, Vt.

Referring to Fig. 10, it can be seen that the
original voltage trajectory is quite flat over the
first extended peak. The grazing formulation (52)
not only describes peaks, but also troughs and
points of inflection. It turns out that for this
example, (52) actually has three solutions in close
proximity. Accordingly, the Jacobian DFg is quite
ill-conditioned. It was found that if the second
derivative terms in (52) were ignored, the shoot-
ing method converged, but to the wrong solution.
This occurred for initial conditions over most of
the extended peak. Clearly the directional infor-
mation provided by the second derivative terms is
important in cases such as this, where the encoun-
ter between the trajectory and the border is not
unimodal.

It is evident from Figs. 10 and 11 that this
system exhibits quite nonsmooth behavior. In fact
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Fig. 11. Generator field voltage, Efd.
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fifteen events occur over the initial 2 sec transient,
primarily VPSS banging on maximum and minimum
limits. Discrete events clearly exert a strong influ-
ence on system dynamics. However because trajec-
tory sensitivities, and hence the Jacobian DFg, take
those events into account, shooting method conver-
gence is unaffected.

Notice in Fig. 10 that enforcing the perfor-
mance specification at the first peak has a detrimen-
tal effect on the second peak. This reflects the fact
that the grazing formulation (52) solves for local
encounters between the trajectory and the tangent
hypersurface. However the specification could be
enforced at both peaks by freeing a second param-
eter, and coupling together two sets of equations of
the form (48)–(51).

5. Periodic Grazing

5.1. Algorithm

For a grazing bifurcation to occur in a periodic sys-
tem, the conditions governing limit cycles, (35) or
(38), and grazing (52) must be jointly satisfied. This
requires more degrees of freedom than was the case
for transient grazing. In order to locate a limit cycle,
the initial point x0 must be free to vary. Also, graz-
ing point solution requires one free parameter. Com-
putational and notational advantages follow from
a consistent treatment of all variables. Therefore,
throughout subsequent developments, parameters

p ∈ R
� will be incorporated into x0 in accordance

with (6).
To allow for the extra degrees of freedom, (48)

should be restated,

F ′
g1(xg, x0, tg) := φ(x0, tg) − xg = 0. (58)

Also, recall from Sec. 3.2.3 that with parameters p
incorporated into x, the equations describing limit
cycles take the form (42). Assembling the full set of
equations governing grazing and limit cycles gives

Fgl(z) ≡ Fgl(xg, yg, x0, tg, v) :=




F ′
g1(xg , x0, tg)

Fg2(xg, yg)

Fg3(xg, yg)

Fg4(xg, yg, v)

F l(x0)




= 0

(59)

where z = [xT
g yT

g xT
0 tg vT ]T and Fgl :

R
2n+2m+1 → R

2n+2m+2−�. Point solutions of (59)
require a match between the numbers of equations
and variables. This is achieved when 	 = 1, i.e. a
single free parameter. When 	 > 1, (59) describes
a continuum of solutions. That situation arises in
Secs. 6 and 7.

As in the case of transient grazing, numerical
solution of (59) using Newton’s method amounts to
iterating on the standard update formula

zk+1 = zk − (DFgl(zk))−1Fgl(zk) (60)

where now DFgl is the Jacobian matrix

DFgl =




−I 0 Φ f 0
gx gy 0 0 0
bx by 0 0 0

f tbxx + bxfx + vtbyx f tbxy + bxfy + vtbyy 0 0 by

f̂ tgxx + gxfx + v̂tgyx f̂ tgxy + gxfy + v̂tgyy 0 0 gy

0 0 DF l 0 0




(61)

with f̂ , v̂, and the second-order partial deriva-
tives defined by (55)–(57). The term DF l is defined
by (43).

As noted in Sec. 4.2.1, care must be given to
evaluating terms of (59) and (61) that relate to tra-
jectory solution. Referring to (59), the flow term
φ(xk

0 , t
k
g) in F ′

g1 evaluates, via numerical integration,
to the value of x at time tkg along the trajectory ini-
tialized at xk

0 . The associated Jacobian entries Φ

and f in the first row of DFgl should also be eval-
uated at tkg along that trajectory. Similarly, F l in
(59) involves the flow term φ(xk

0 , T ) or φ(xk
0 , τr(xk

0))
for nonautonomous or autonomous systems respec-
tively. The former evaluates to x at time T along
the trajectory initiated from xk

0. The latter gives
x at the point where the trajectory, starting from
xk

0 ∈ Σ, re-encounters Σ.9 The associated Jacobian

9This occurs at return time τr(xk
0), though that time is not explicitly determined.
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Fig. 12. SVC steady state behavior over a range of firing angles.

entry DF l, which involves Φ, should be evaluated
at time T , or the return point, accordingly.

5.2. Example 4 (Nonautonomous
limit cycles)

The SVC of Sec. 2.2 was previously used (in
Sec. 4.3) to illustrate transient grazing. In steady
state, the SVC exhibits (nonautonomous) limit
cycle behavior.10 Figure 12 shows steady state oper-
ation for a range of firing angles α. These limit
cycles were located using the shooting method (36).

It is apparent from Fig. 12 that the limit cycles
for α = 100◦ and α = 105◦ have structurally differ-
ent forms. A grazing bifurcation occurs somewhere
between these two cases. The shooting method of
Sec. 5.1 was used to determine the value of α∗
corresponding to this grazing bifurcation. Initial
conditions were given by the limit cycle with α =
100◦. Convergence progress is reported in Table 4.
The bifurcation occurs at α∗ = 102.16◦, and is
shown in Fig. 13, along with the initial condition
limit cycle.

Figure 13 also shows the post-bifurcation limit
cycle that develops when α is incrementally per-
turbed above the bifurcation value. Interestingly,
this single-trough limit cycle coexists with the
double-trough version over the range 97.73◦ < α <
102.16◦. Both coexisting limit cycles are stable,

Table 4. Shooting method convergence to grazing bifur-
cation.

Limit Cycle
Initial Point, x0 Grazing Values

Iteration iLs vc Firing Angle, α Time, tg

0 3.8462 −0.5853 100.00 0.01050
1 4.6489 −0.9602 102.13 0.01043
2 4.6628 −0.9640 102.16 0.01043
3 4.6627 −0.9640 102.16 0.01043
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Fig. 13. SVC grazing bifurcation.

10The SVC model is nonautonomous, due to the time-dependent source.
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though the region of attraction for the single-trough
one is quite small. At α = 97.73◦, the single-trough
limit cycle undergoes its own grazing bifurcation
and vanishes.

5.3. Example 5 (Autonomous
limit cycles)

5.3.1. Robot model

A model of the compass gait biped robot is dis-
cussed in detail in [Goswami et al., 1998]. A
summary is included here for completeness. The
biped robot can be treated as a double pendu-
lum, with point masses mH and m concentrated
at the hips and legs, respectively. Figure 14 pro-
vides a schematic representation and identifies other
important parameters: lengths a and b, and incline
angle γ. The robot configuration is described by
the support angle θs and the nonsupport angle θns.
The dynamic equations describing the robot can be
written

M(θ)θ̈ + N(θ, θ̇)θ̇ +
1
a
g(θ) = 0 (62)

where θ = [θns θs]T . The state vector is therefore
x = [θns θs θ̇ns θ̇s]T ∈ R

4. The matrix coeffi-
cients of (62) are given by,

M(θ) =
[

β2 −(1 + β)β cos θd

−(1 + β)β cos θd (1 + β)2(µ + 1) + 1

]

N(θ, θ̇) =

[
0 (1 + β)βθ̇s sin θd

−(1 + β)βθ̇ns sin θd 0

]

Fig. 14. Compass gait biped robot.

g(θ) =
[

gβ sin θns

−((µ + 1)(1 + β) + 1)g sin θs

]

where θd = θs − θns, β = b/a, µ = mH/m, and
g = 9.8 is the gravitational constant. The model
can be simply manipulated into the form (1)–(2),
though the impulse effects are added below.

An event occurs when the nonsupport (swing-
ing) leg collides with the ground. This establishes
the triggering condition

θns + θs + 2γ = 0. (63)

At the event, the nonsupport leg becomes the
support leg, and vice-versa. Velocities θ̇ns and θ̇s

undergo step changes to ensure conservation of
momentum through the collision. The resulting
reset equations can be written

[
θ

θ̇

]+

=



[
0 1
1 0

]
0

0 Q+(θ−d )−1Q−(θ−d )


[ θ

θ̇

]−
(64)

where

Q+(θd) =
[

β(β − (1 + β) cos θd) (1 + β)((1 + β) − β cos θd) + 1 + µ(1 + β)2

β2 −β(1 + β) cos θd

]

Q−(θd) =
[−β −β + (µ(1 + β)2 + 2(1 + β)) cos θd

0 −β

]
.

Equation (64) matches the form (4). The event
triggering state yr follows from (63) as yr = θns +
θs + 2γ.

5.3.2. Results

To illustrate the shooting algorithm, a triggering
hypersurface (border) was established by b(x, y) =
x3 − 2.5 = 0 where x3 ≡ θ̇ns. This could be inter-
preted as a maximum allowable nonsupport leg
velocity. (Perhaps the robot falls apart at higher

velocities!) Walking motion that just satisfied this
constraint was achieved by varying the incline angle
γ. Solution progress is given in Table 5, and illus-
trated in Fig. 15. The figure shows the initial tra-
jectory, and final grazing limit cycle.

The Poincaré hyperplane Σ is defined by nor-
mal vector σ = [0 0 1 0]T and anchor point x̃
equal to the initial guess for x0. This gave Σ =
{x : x3 = 0.1}. A projection of this hyperplane
is shown in Fig. 15. The initial trajectory started
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Table 5. Shooting method convergence to grazing bifurcation.

Limit Cycle Initial Point, x0 Grazing Values

Iteration θns θs θ̇ns θ̇s Slope (deg), γ Time, tg

0 −0.3500 0.2100 0.1 −1.0000 3.00 0.2800
1 −0.4076 0.2253 0.1 −1.1408 4.66 0.2742
2 −0.4107 0.2223 0.1 −1.1278 5.07 0.2762
3 −0.4095 0.2220 0.1 −1.1215 4.99 0.2764
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Fig. 15. Nonsupport leg angle θns versus velocity θ̇ns.

from, and returned to, this hyperplane. It was
not a limit cycle. The final solution started from
a point on the hyperplane and returned to that
same point. Along the way it grazed the surface
b(x, y) = 0.

The characteristic multipliers for the graz-
ing limit cycle are: −1.549, −0.1873 and 0.0970.
Because one of the eigenvalues lies outside the unit
circle, this limit cycle is unstable. Even so, shoot-
ing method convergence was fast and reliable. On
the other hand, locating this limit cycle by repeated
simulations would be extremely difficult.

6. Continuation Method for Grazing
Limit Cycles

6.1. Algorithm

When a single parameter is free to vary, (59)
describes isolated grazing limit cycles. If two param-
eters are free, then Fgl : R

2n+2m+1 → R
2n+2m, so

Next point
on curve, z2 Continuation curve

Tangent vector, κη

z1 zp

Hyperplane
(z-z1)

Tη=κ

Fig. 16. Predictor–corrector process.

Fgl(z) = 0 describes a 1-manifold, or curve, of solu-
tions. Such curves are useful for exploring parame-
ter dependencies, but cannot be computed directly.
Rather, a continuation process is required to gener-
ate successive points along the curve. This can be
achieved robustly using an Euler homotopy algo-
rithm [Garcia & Zangwill, 1981]. A brief description
of this predictor–corrector process follows.

Assume the algorithm starts from a point z1 on
the curve.11 The first step of the algorithm, as illus-
trated in Fig. 16, is the prediction of the next point
on the curve. This is achieved by determining the
unit vector that is tangent to the curve at z1, and
moving along that vector at predefined distance κ.
This κ is a (scalar) control parameter that effec-
tively determines the distance between successive
points along the curve. In regions of high curva-
ture, κ may need to be small. When the curve is
almost linear, a large value of κ would suffice. The
unit vector η ∈ R

2n+2m+1 that is tangent to the
curve at z1 is given by,

DFgl(z1)η = 0 (65)
‖η‖2 = 1 (66)

where DFgl is the Jacobian (61) which, because
of the two free parameters, now has dimension

11This point would be obtained by solving (59), as discussed in Sec. 5.1.
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(2n + 2m)× (2n + 2m + 1).12 The prediction of the
next point on the curve is given by,

zp = z1 + κη. (67)

Having found the prediction point, the next
step is to correct to a point z2 on the curve. The
Euler homotopy method does this by solving for the
point of intersection of the curve and a hyperplane
which passes through zp and that is orthogonal to η.
Points z on this hyperplane are given by,

(z − zp)T η = 0 (68)

or alternatively

(z − z1)T η = κ. (69)

Either (68) or (69) can be used. The point of inter-
section of the curve and the hyperplane is then
given by,

F cont
gl (z) =

[
Fgl(z)

(z − z1)T η − κ

]
= 0. (70)

Note that in (70), z1, η and κ are fixed, with z being
the only unknown. The first 2n + 2m equations
ensure the point is on the desired curve. The last
scalar equation ensures the point is on the hyper-
plane. Altogether (70) forms a set of 2n + 2m + 1
equations in the same number of unknowns. They
can be solved for z2 using a standard Newton-based
shooting method, of the form (60), with

DF cont
gl =

[
DFgl

ηT

]
. (71)

The complete predictor–corrector process is illus-
trated in Fig. 16.

After the second point z2 on the curve has been
determined, an approximate tangent vector can
generally be used for obtaining successive points.
The approximate tangent vector at the ith point,
which is used to calculate the (i + 1)th point, is
given by,

ηi =
zi − zi−1

‖zi − zi−1‖2
. (72)

Obtaining the approximate tangent vector involves
much less computation than finding the exact
tangent vector using (65), (66). However the

approximation may not be adequate in regions of
high curvature.

6.2. Example 6 (Continuation)

Illustration of the continuation process again uti-
lizes the SVC model in Sec. 2.2. The aim is to
explore the relationship between values of Lr and
C that give rise to grazing. In Sec. 5.2, an isolated
grazing limit cycle was found by allowing the firing
angle α to vary, while holding all other parameters
constant. That case, corresponding to α = 102.16◦,
Lr = 1.66 mH and C = 1.5 mF, provides an initial
point for the continuation process. Now though, the
firing angle is fixed at α = 102.16◦, and Lr and C
are allowed to vary. The Euler homotopy algorithm
provides a sequence of points along the resulting
1-manifold. Figure 17 shows the outcome of this
continuation process.

Notice that the initial point is located quite
close to a sharp turn in the curve. Even so, the
continuation process proceeded reliably.

Grazing trajectories typically separate differ-
ent forms of dynamic behavior. The curve of graz-
ing points in Fig. 17 therefore separates regions
where behaviors are structurally different. To illus-
trate, Fig. 18 shows limit cycles corresponding to
parameter values C = 1.51 mF, and Lr = 1.3 mH,
1.4 mH and 1.55 mH. The parameter space locations
of these three cases are identified in Fig. 17. Notice
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Fig. 17. Curve relating Lr and C, given by the continuation
process.

12A numerically robust method of obtaining η follows from the factorization DFT
gl = QR, where Q is orthogonal and R upper

triangular. The last column of Q is exactly the desired η.
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Fig. 18. Limit cycles for C = 1.51 mF and three values of Lr.

that the parameter set (Lr = 1.4 mH) from the
region inside the curve gives rise to a limit cycle
that differs greatly from the two cases that lie out-
side the curve.

7. Closest Grazing

It has been established previously that when 	 ≥
2, i.e. two or more parameters are free to vary,
Fgl : R

2n+2m+1 → R
2n+2m+2−� describes an (	− 1)-

manifold, or hypersurface. Let P denote the pro-
jection of that manifold onto parameter space. As
indicated in Fig. 18, limit cycles corresponding to
parameters p0 /∈ P do not undergo grazing. How-
ever the parameter space “distance” between p0

and P provides an indication of the closeness, or
robustness, of that limit cycle to grazing phenom-
ena. A small distance would suggest that the system
was vulnerable to grazing. Therefore identifying
points on P that are (locally) closest to a nom-
inal parameter set p0 provides important design
information.

7.1. Mathematical formulation

In order to establish the closest grazing minimiza-
tion problem, it is helpful to distinguish the param-
eters in (59). It follows from the partitioning (6),
which specifies xT = [xT pT ], that (59) can be
restated

Fgl(z̃, p) = 0 (73)

where z̃ = [xT
g yT

g xT
0 tg vT ]T ∈ R

k and k =
2n + 2m + 1 − 	. The minimization therefore takes
the form

min
p

1
2
‖p − p0‖2

A (74)

s.t. Fgl(z̃, p) = 0 (75)

where ‖p − p0‖2
A denotes the A-norm (p −

p0)TA(p − p0). For this to be a valid norm,
A must be (symmetric) positive definite. It is
common for A to be diagonal, with entries
taking account of scaling differences between
parameters.

The Lagrangian corresponding to (74)–(75) is

L(z̃, p, λ) =
1
2
‖p − p0‖2

A + λT Fgl(z̃, p), (76)

and therefore optimal solutions are given by

∇L(z̃, p, λ) =




∂F T
gl

∂z̃
λ

A(p − p0) +
∂F T

gl

∂p
λ

Fgl(z̃, p)




= 0 (77)

where ∂Fgl/∂z̃ is the (k+1)×k matrix constructed
from DFgl in (61) by removing the columns corre-
sponding to parameters p. Those columns form the
(k + 1) × 	 matrix ∂Fgl/∂p. Well defined solutions
of (77) require rank{∂Fgl/∂z̃} = k.
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To understand the significance of (77), con-
sider the hyperplane that is tangent to the manifold
described by (73). Vectors (dz̃, dp) on that tangent
hyperplane satisfy

∂Fgl

∂z̃
dz̃ +

∂Fgl

∂p
dp = 0. (78)

Premultiplying by the Lagrangian multiplier λT

results in

λT ∂Fgl

∂z̃
dz̃ + λT ∂Fgl

∂p
dp = 0. (79)

But it follows from (77) that the coefficient of dz̃
in (79) equals zero. Therefore λT (∂Fgl/∂p)dp = 0,
implying that the parameter space vector (∂Fgl/
∂p)T λ ≡ N(p) is normal to P at (z̃, p).

It may be concluded that (77) describes points
on the manifold (73) where the normal vector N(p)
aligns with A(p − p0).

7.2. Algorithm

An iterative procedure for finding the closest (in
parameter space) grazing point can be established
by utilizing the fact that vectors A(p−p0) and N(p)
align at that closest point. The following algorithm
is adapted from [Dobson, 2003]. It converges locally
if P is convex (at least locally) or if it is only slightly
concave.

Parameter values along the ray emanating from
p0 and in the direction of unit vector ρ ∈ R

� are
given by p = p0 + θρ, where θ is a scalar. As
parameters vary along that ray, the grazing hyper-
surface P will be encountered at a point described
by Fgl(z̃, p0 + θρ) = 0. This is a slightly modified
version of (59), and can be solved using a shoot-
ing method similar to (60). The following iterative
procedure seeks to minimize ||p − p0||A.

1. Choose an initial direction ρ1. For example,
this initialization could be achieved by freeing a
single parameter and holding other parameters
fixed.

2. Given ρi, compute the first grazing point in
the direction ρi; that is, compute θi such that
pi = p0 + θiρi ∈ P.

3. Compute the vector N(pi) = (∂Fgl/∂p)T λ nor-
mal to P at pi. The Lagrangian multiplier vec-
tor λ is given by the first equation in (77),
and can be obtained directly from the factor-
ization ∂Fgl/∂z̃ = QR. The last column of Q
is the desired λ. Computation of N(pi) is then
straightforward.

4. Set ρi+1 = A−1N(pi) and normalize. Iterate
until convergence of ρi to ρ∗. The (locally) clos-
est grazing point occurs at p∗ = p0 + θ∗ρ∗ ∈ P.

The parameter space direction ρ∗ of a closest graz-
ing point is aligned with the normal vector N(p∗),
and is the fixed point of the iterations. Note that in
the special case of P being a hyperplane, iterations
converge in a single step.

7.3. Example 7 (Closest grazing point)

The SVC example again provides a useful illustra-
tion. The algorithm in Sec. 7.2 was used to find
values for parameters p = [Lr C]T that give rise to
grazing, and that are closest, in the A-norm sense,
to the nominal values p0 = [1.2 1.5]T . Notice from
Fig. 17 that variations in Lr are about ten times
greater than for C. Therefore, for the sake of the
illustration, this scaling difference was compensated

via the A-norm, by choosing A =
"

1 0

0 102

#
.

The initial direction was chosen as ρ1 = [1 0]T .
Successive points generated by the algorithm are
plotted in Fig. 19. (The figure is scaled to match the
scaling introduced by A.) It can be seen that con-
vergence was fast, even though a poor initial direc-
tion was specified. The vector p∗ − p0 is shown as
a dashed line in the figure. In the scaled coordinate
system, this vector is normal to the continuation
curve P at the point p∗.
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Fig. 19. Parameter space view of closest grazing iterations.
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8. Conclusions

Hybrid (piecewise smooth) dynamical systems are
characterized by intrinsic interactions between con-
tinuous dynamics and discrete events. Such sys-
tems are susceptible to grazing phenomena. Grazing
refers to situations where the system trajectory tan-
gentially (rather than transversally) encounters an
event triggering hypersurface. Behavior beyond the
grazing point is often not well defined.

Grazing points can be formulated as a bound-
ary value problem, consisting of a set of nonlinear,
algebraic equations that incorporates the sys-
tem flow. Iterative solution via Newton’s method
requires numerical integration of the system tra-
jectory, and therefore has the form of a shoot-
ing method. The Jacobian required by Newton’s
method incorporates trajectory sensitivities, which
can be efficiently computed along with the trajec-
tory. The shooting method is therefore practical for
arbitrarily large hybrid systems.

As the number of parameters increases, the
grazing point formulation gives rise to a con-
tinuum of solutions. A predictor–corrector con-
tinuation process has been developed to follow
1-manifolds, or curves, of grazing solutions. Further-
more, the grazing point formulation underlies the
development of an algorithm for finding the small-
est (in an A-norm sense) parameter change neces-
sary to induce grazing. Such information is valuable
in determining the robustness of a design (set of
parameters) to grazing phenomena.

The paper has developed and illustrated shoot-
ing, continuation and optimization methods for
both transient and periodic grazing. Examples are
drawn from power electronics, power systems, and
robotics.
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Appendix A
Variational Equations

Away from events, where system dynamics evolve
smoothly, the sensitivities Φ and Ψ are obtained
by differentiating (7)–(8) with respect to x0.13 This
gives

Φ̇ = fx(t)Φ + fy(t)Ψ (A.1)
0 = gx(t)Φ + gy(t)Ψ (A.2)

where fx ≡ ∂f/∂x, and likewise for the other
Jacobian matrices. Note that fx, fy, gx, gy are
evaluated along the trajectory, and hence are time-
varying matrices. It is shown in [Feehery et al., 1997;
Hiskens & Pai, 2000; Li et al., 2000] that the
solution of this (potentially high order) linear,
time-varying DAE system can be obtained as a by-
product of solving the original DAE system (7)–(8).

Initial conditions for Φ are obtained from
(11) as

Φ(x0, t0) = I

where I is the identity matrix. Initial conditions for
Ψ follow directly from (A.2),

0 = gx(t0) + gy(t0)Ψ(x0, t0).

Equations (A.1)–(A.2) describe the evolution of
the sensitivities Φ and Ψ between events. However
at an event, the sensitivities are often discontinuous.
It is necessary to calculate jump conditions describ-
ing the step change in Φ and Ψ. For clarity, consider
a single switching/reset event, so the model (1)–(4)
effectively reduces to the form

ẋ = f(x, y) (A.3)

0 =
{

g−(x, y), s(x, y) < 0
g+(x, y), s(x, y) > 0

(A.4)

x+ = h(x−, y−), s(x, y) = 0. (A.5)

(The switching hypersurface s has been given an
explicit form so as to elucidate its role in the jump
conditions.)

13Keep in mind that parameters p are incorporated into x0.
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Let (x(τ), y(τ)) be the point where the trajec-
tory encounters the hypersurface s(x, y) = 0, i.e.
the point where an event is triggered. This point is
called the junction point and τ is the junction time.
Assume that the trajectory encounters this trigger-
ing hypersurface transversally.

Just prior to event triggering, at time τ−, x and
y are given by

x− ≡ x(τ−) = φ(x0, τ
−)

y− ≡ y(τ−) = ψ(x0, τ
−)

where

g−(x−, y−) = 0.

Similarly, x+, y+ are defined for time τ+, just after
the event has occurred. Hiskens and Pai [2000] show
that the jump conditions for the sensitivities Φ are
given by

Φ(x0, τ
+) = h∗

x Φ(x0, τ
−) − (f+ − h∗

x f−) τx0

(A.6)

where

h∗
x =

(
hx − hy(g−y )−1g−x

)∣∣
τ−

τx0 = −
(
sx − sy(g−y )−1g−x

)∣∣
τ− Φ(x0, τ

−)(
sx − sy(g−y )−1g−x

)∣∣
τ− f−

f− ≡ f(x(τ−), y−(τ−))
f+ ≡ f(x(τ+), y+(τ+)).

The sensitivities Ψ immediately after the event are
given by

Ψ(x0, τ
+) = −(g+

y (τ+))−1g+
x (τ+)Φ(x0, τ

+).

Following the event i.e. for t > τ+, calcula-
tion of the sensitivities proceeds according to (A.1)–
(A.2), until the next event is encountered. The jump
conditions provide the initial conditions for post-
event calculations.


