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Abstract— Distribution networks that supply large numbers
of induction motors are vulnerable to Fault Induced Delayed
Voltage Recovery. This phenomenon is usually triggered by a
transmission fault but results in a delayed recovery of volt-
ages in the distribution feeder, usually taking several seconds
for a return to pre-fault conditions, if at all. The general
mechanism underlying this delayed recovery arises from the
coupled nonlinear dynamics of induction motors stalling. It
is important to establish the phase boundary that separates
parameters that lead to stalled versus unstalled motor states.
This paper develops a novel algorithm, based on shooting
methods and Euler homotopy continuation, for obtaining the
phase boundaries. It forces a trajectory to spend a fixed amount
of time near an unstable equilibrium, and then increases that
time until the trajectory approaches the unstable equilibrium
point arbitrarily closely. This technique does not require prior
knowledge of the unstable equilibrium point. Numerically com-
puted phase boundaries, in terms of induction motor moments
of inertia, fault clearing times, and nonhomogeneous networks
are presented. The techniques are formulated in generality, and
could be applied to compute phase boundaries for a large class
of dynamical systems.

I. INTRODUCTION

Due in part to increased penetration of air conditioners,
with their associated induction motors, a serious and growing
concern in distribution systems is Fault Induced Delayed
Voltage Recovery (FIDVR) [1]. A FIDVR event is typically
initiated by a transmission-level fault near a distribution
substation, and results in a momentary voltage reduction
across the distribution network. The fault in the transmission
system is usually cleared quickly, and the voltage at the
distribution substation returns to normal, but voltage across
the distribution network may be very slow to recover. This
occurs because the momentary reduction in voltage leads to
a reduction in the electrical torque of induction motors, with
no corresponding reduction in mechanical torque, causing
them to reduce their rotational speed or even to stall. Motors
that are stalling or that are reaccelerating draw a large
amount of current, which leads to local voltage reduction.
Sometimes several motors stall as a result of the fault, and
the system temporarily settles to a new steady state with
voltages dangerously low. This is referred to as FIDVR. If
these low voltages are sustained, protection systems may trip
[1], leading to further stress on the system and possibly even
voltage collapse.
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Despite the concerns raised by FIDVR, current modeling
is unable to accurately capture the behavior or predict the
sensitivity of FIDVR events to parameter variations. Of
particular interest is identifying the boundary between sets of
parameters that result in stalled versus unstalled conditions,
referred to as the phase boundary. When two parameters are
free to vary, this boundary is described by a curve. It is very
useful to know this boundary so that FIDVR events can be
better anticipated. Currently this is achieved through trial and
error by running a large number of simulations.

Physical mechanisms underlying the cascading stalling of
induction motors were discussed in [5], with an emphasis
on the coupling of the nonlinear dynamics between a large
number of induction motors. However, [5] assumes a con-
tinuous distribution of induction motors along a feeder, and
employs brute force techniques to locate the phase boundary.

The approach adopted in this paper is to find an initial
point on the phase boundary using a shooting method and
then continue the point into a curve using an Euler homotopy
continuation method. The key idea behind the shooting
method is to force a trajectory to spend a prescribed amount
of time near an unstable equilibrium point (UEP), and then
to increase that time until the trajectory approaches the UEP
arbitrarily closely. Since the trajectory will converge to the
UEP as the specified time approaches infinity, in practice this
algorithm forces the trajectory as close as desired to the UEP.
Due to the generality of this formulation, these techniques
can be readily applied to compute phase boundaries for a
wide range of dynamical systems.

The remainder of the paper is organized as follows.
Section II presents an overview of induction motor dy-
namics and trajectory sensitivities, Section III describes the
algorithms for computing phase boundaries for unknown
UEPs, Section IV provides an overview of the numerical
experiments and Section V discusses the results. Conclusions
and directions for future work are presented in Section VI.

II. BACKGROUND

A. Dynamics of an induction motor

The dynamic behavior of an induction motor arises prin-
cipally from the swing equation,

2Hω̇r = Te − Tm

where H denotes the moment of inertia, ωr is the angular
frequency of rotation of the rotor, Te is the electric torque and
Tm is the mechanical torque applied to the rotor. A common
model for the mechanical torque in an induction motor [2]
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is,

Tm = To

(
ωr
ωs

)m
(1)

where ωs is the nominal system angular frequency, To is the
nominal torque and m ∈ [0, 1]. The electrical torque is given
by

Te =
Pe
ωs

where Pe is the electrical power supplied to the rotor.
When analyzing induction motor dynamics, it is useful

to make a coordinate transformation to a frame rotating at
the nominal frequency ωs. This frame is called the d − q
frame, and the voltages and currents in this frame are given
by Vd+ jVq and Id+ jIq . The electrical power in this frame
is given by Pe = VdId + VqIq . Converting to per unit in
terms of the nominal frequency ωs, the electric torque and
power are the same, which results in

2H
ω̇r
ωs

=

(
VdId + VqIq − To

(
ωr
ωs

)m)
. (2)

In addition to the swing equation, standard relations
among currents and voltages apply, adjusted for the d − q
frame. These induce dynamics in the currents and voltages
as a result of the varying motor frequency and of the rotating
d− q reference frame. A full description is available in [2].
The examples presented later use this more complete third-
order dynamic model.

The slip of a motor is defined as,

s =
ωs − ωr
ωs

. (3)

The motor stalls when ωr reaches 0, or in other words when
s = 1. It is not physically possible for the motor to recover
from a stalled state.

Figure 1 shows the terminal voltage Vt = |Vd + jVq| of a
single induction motor for a fault occurring near the motor
at 0.5s. The fault clearing time, i.e. the time between the
occurrence and removal of the fault, is varied. As the fault
clearing time increases, the system becomes more and more
stressed and eventually stalls for a clearing time of 0.45s.
Notice that as the clearing time increases the voltage remains
low for a longer period of time before returning to its original
value. The system is approaching the boundary of the region
of attraction ever more closely as the clearing time increases.
This trait motivates the phase boundary algorithm presented
later.

B. Trajectory sensitivities

Trajectory sensitivities describe the change in a trajectory
resulting from perturbations in initial conditions1. The dy-
namic behaviour of a nonlinear differential-algebraic system,

ẋ = f(x, y), x(0) = x0, (4)
0 = g(x, y), (5)

1Sensitivity to perturbations in parameters θ can also be captured by mod-
eling parameters as “states” through the introduction of trivial differential
equations θ̇ = 0, θ(0) = θ0.
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Fig. 1. Voltage behavior for a range of fault clearing times.

with x ∈ Rn and y ∈ Rm, can be expressed analytically by
the flow,

x(t) = φ(t, x0) (6)

together with (5). A Taylor series expansion of (6) gives,

∆x(t) = φ(t, x0 + ∆x0)− φ(t, x0)

≈ ∂φ(t, x0)

∂x0
∆x0

where Φ(t, x0) , ∂φ(t,x0)
∂x0

is referred to as the sensitivity
transition matrix or simply trajectory sensitivities. These
concepts are extended to hybrid dynamical systems in [6]
where the model allows for arbitrarily complicated switch-
ing conditions and incorporates state reset (jump) actions.
Furthermore, trajectory sensitivities can be computed effi-
ciently if an implicit numerical integration technique, such
as trapezoidal integration, is used to establish the nominal
trajectory. Full details are provided in [6].

Trajectory sensitivities will be used in forming the Jaco-
bians in the shooting methods developed in Section III.

III. ALGORITHMS

In order to identify a set of parameters that lies on the
phase boundary, a trajectory is forced to remain near an
(unknown) UEP for a prescribed length of time. This time is
then increased, forcing the trajectory to approach the UEP,
and hence lie arbitrarily close to the boundary of the region
of attraction. Once a single point on the phase boundary
has been identified, a continuation method based on a Euler
homotopy can be used to numerically construct a 1-manifold
or curve that describes the phase boundary in the plane of
two free parameters.

A. Shooting method for locating a target hypersurface

Prior work [7], reviewed below, has been successful in
driving a system of DAEs to a target hypersurface at a fixed
time. The novel contribution developed here is to increase
this time towards infinity in order to force a trajectory to
approach the boundary of the region of attraction.
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For any fixed time α, the system can be driven to a
target hypersurface b(x, y) = 0 by the following shooting
method. Let θ represent a free parameter of interest. Then
the initial conditions are given by x0 = x0(θ) and the flow
by φ = φ(t, x0(θ)). We wish to find a root of the system of
equations,

Fs1(xa, θ) = φ(α, x0(θ))− xa = 0 (7)
Fs2(xa, ya) = g(xa, ya) = 0 (8)
Fs3(xa, ya) = b(xa, ya) = 0 (9)

where (xa, ya) is the desired intersection point with the
target hypersurface. The variables are z =

[
xᵀa yᵀa θ

]ᵀ
.

This denotes a system of n + m + 1 equations in the same
number of unknowns, and therefore the solution will consist
of isolated point.

The system Fs(z) = 0 given by (7)-(9) can be solved
efficiently using Newton-Raphson with the following update

zn+1 = zn − (DFs(z
n))−1Fs(z

n) (10)

where the Jacobian is given by,

DFs =

−I 0 Φdx0

dθ
∂g
∂x

∂g
∂y 0

∂b
∂x

∂b
∂y 0

 . (11)

Both the rate of convergence and the solution obtained are
sensitive to the choice of initial conditions x0(θ). However,
the extensions to this algorithm that follow make it possible
to reach the phase boundary even from an initial condition
far from the boundary, so long as the initial condition results
in a stable, unstalled steady state. For this stage of the
algorithm, it is simplest to make an arbitrary guess for an
initial condition, check the time at which it encounters the
target hypersurface, and then choose a nearby target time
with which to initialize the algorithm. The reasons for this
choice will become clear in the following sections.

B. Continuation method 1: finding a point on the phase
boundary

The next stage of the algorithm is to increase the time
at which the target hypersurface is reached until the system
trajectory is arbitrarily close to instability. Let α denote the
target time for encountering the hypersurface b(x, y) = 0.

A homotopy continuation method is used to extend the
target time in order to find a point on the phase boundary.
To generate a homotopy path, it is necessary to free an
additional parameter, which in this case will be α. So,
z =

[
xᵀa yᵀa θ α

]ᵀ
giving a system of n + m + 1

equations in n+m+ 2 unknowns, which defines a curve.
The continuation method proceeds by alternating between

predictor and corrector steps. For a given iteration, suppose
the initial starting point is z0. The predictor step estimates a
new point z1 = z0 + κη where η is the unit tangent vector
to the curve at z0 and κ is a scalar. For this part of the
algorithm, κ is obtained using a backtracking line search
which checks whether the simulation with the proposed new
θ leads to a stable, unstalled steady state. Then, the corrector

step projects the prediction z1 onto the true curve to obtain
the next point. In this stage of the algorithm, the projection is
done by fixing α to its predicted value and using the shooting
method described above to vary θ until an intersection with
the desired curve is obtained.

The algorithm terminates when the change in θ between
successive iterations is sufficiently small. When the algorithm
terminates, a point on the desired phase boundary has been
found.

C. Continuation method 2: computing successive points on
the phase boundary

Once a point on the phase boundary has been located,
it can be extended to a curve using an Euler homotopy
continuation method, similar to that described in [8] but
with some modifications. Fix α to its value at the end of
the last iteration, and free an additional parameter µ. Then
z =

[
xᵀa yᵀa θ µ

]ᵀ
so there are n + m + 2 unknowns

in n + m + 1 equations, which will generate a curve. The
predictor step is performed as in the homotopy continuation
method above, using the unit tangent vector η, but the
corrector step consists of two stages.

The inner stage involves fixing α and solving for the
intersection of the continuation curve with a hyperplane
that passes through the prediction point and which, when
restricted to the θ − µ plane, is orthogonal to η.2 The need
for restriction to the θ − µ plane arises in the outer stage
of the correction step, and will be described shortly. From a
prediction point z1, performing the inner stage is achieved
by solving,

Fi1(xa, θ) = φ(α, x0(θ))− xa = 0 (12)
Fi2(xa, ya) = g(xa, ya) = 0 (13)
Fi3(xa, ya) = b(xa, ya) = 0 (14)

Fi4(z) = (z − z1)ᵀ[k:k+1]η[k:k+1] = 0 (15)

where k = n + m + 1 and the last equation expresses the
desired orthogonality between a hyperplane containing the
prediction point and η when restricted to the θ − µ plane.
This can be solved efficiently using the Newton-Raphson
update (10) to find a root of Fi with

DFi =


−I 0 Φdx0

dθ Φdx0

dµ
∂g
∂x

∂g
∂y 0 0

∂b
∂x

∂b
∂y 0 0

0 0 ηk ηk+1

 . (16)

If the correction step involved only the inner stage, it
would trace out a curve of constant α which intersected the
target hypersurface b(x, y) = 0 always at the target time
α. However, in practice different target times are required
for different sets of parameters in order to remain close to
the phase boundary. In other words, as the parameter values
θ and µ change, it may be necessary to adjust α in order
to remain close to instability. This was observed in practice

2This is in contrast to the correction step in [8] where orthogonality to
the full vector η is maintained.
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Fig. 2. Network used to simulate cascaded stalling. Three induction motors
are arranged linearly with an infinite bus at the head.

for induction motor dynamics, as will be illustrated in later
results, and motivates the need for the outer stage.

The outer stage involves multiplying α by a factor greater
than one until successive values of θ and µ differ from their
values at the previous iteration by less than some specified
tolerance. One interpretation of this stage is to consider a
family of curves in θ and µ that is parameterized by α.
As α approaches infinity, this family of curves converges
to the true one-dimensional phase boundary. Typically, the
outer stage is initialized with the value of α obtained at
convergence of the previous predictor-corrector step.

IV. NUMERICAL EXPERIMENTS

A simple radial test network was constructed, as depicted
in Fig. 2. It consists of three identical induction motors
connected to three buses arranged radially with an infinite
bus at the head of the feeder. After initializing to steady
state, a fault was applied at the bus closest to the infinite
bus at 0.5s, and the ensuing dynamics were simulated. The
voltage at the infinite bus was set to 0.98pu. The lines were
all given resistances, reactances, and shunt admittances of
0.0069pu, 0.1090pu, and 1.106pu, respectively. The syn-
chronous frequency was set at 60Hz. The rotor resistances
were 0.0226pu, stator resistances were 0.0517pu, rotor re-
actances were 0.0800pu, stator reactances were 0.1058pu,
motor shunt admittances were 3.6186pu, nominal torques
were 0.822pu, and the exponents m were set to 0. The
fault impedance was 0.05pu. These conditions represented
a highly stressed situation for the motors.

The main parameters of interest in this study were motor
moments of inertia and fault clearing time. Initial simulations
were conducted on a network similar to that shown in Fig. 2
but with only two motors. This allowed trajectories to be
depicted in the phase plane, with plots showing the slip of
Motor 1 versus that of Motor 2. These simulations allowed
exploration of the claims presented earlier regarding the
necessity for the outer stage correction to α. The phase plane
plots also show the relevant UEP.

The target hypersurface was b(x, y) = V − 0.9 where
V represents the voltage of the motor furthest from the
infinite bus in all cases. Phase boundaries were computed
for two sets of free parameters, fault clearing time versus
homogeneous moments of inertia, and the nonhomogeneous
moment of inertia for Motor 1 versus that for Motor 2.
Subsequently, similar boundaries were computed for the
three motor system.
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Fig. 3. Motor 2 voltage as a function of time for varying target times α.
The black line indicates the target hypersurface of 0.9V.
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Fig. 4. Motors 1 and 2 state-space trajectories for increasing values of
target time α, homogeneous moments of inertia, and a fixed clearing time
of 0.4s. The open circle indicates the initial steady state, the diamonds
encircle the fault clearing points, and the closed circle shows the unstable
equilibrium point. The trajectory proceeds counterclockwise.

V. RESULTS

A. Two induction motor network

The algorithms discussed above were designed under the
assumption that increasing the target time α would lead the
trajectories to approach the UEP arbitrarily closely. Figure 3
shows Motor 2 voltage as a function of time for varying
target times α. Note that each trajectory encounters the target
hypersurface of 0.9V exactly at its specified α, as desired.
Figure 4 shows the state-space trajectories of Motor 1 and
Motor 2 slips for increasing values of target time α with
homogeneous moments of inertia and a fixed clearing time
of 0.4s. The relevant UEP was computed and is shown as a
black circle. As α increases, the trajectories rapidly distort
towards the UEP, justifying the assumption.

The continuation method 1 described above for computing
an initial point on the phase boundary requires that the
parameter varies monotonically as α increases in order to
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Fig. 5. Convergence of homogeneous moments of inertia to their critical
value for increasing target time α, at a fixed clearing time of 0.4s.

avoid becoming trapped in a local minimum. Figure 5 depicts
the target time α and the homogeneous moments of inertia
as α is increased for a fixed clearing time of 0.4s. The
moment of inertia decreases monotonically with increasing
α, as expected, and converges approximately exponentially
to its critical value.

As discussed earlier, the continuation method 2 requires
an outer stage in order to ensure convergence to the true
phase boundary. Figure 6 depicts Motor 2 voltage as a
function of time for varying clearing times and corresponding
moments of inertia. Note that each trajectory encounters
the target hypersurface of 0.9V exactly at its specified time
α = 5s, as desired. The varying clearing times are evident
near the start of the trajectories, and the different moments of
inertia manifest in different curvatures within each trajectory.
Figure 7 shows the state-space trajectories of Motor 1 and
Motor 2 slips that correspond to the four cases depicted in
Figure 6. As the clearing time and homogeneous moments
of inertia increase, for a fixed target time α, the trajectories
lie further and further from the UEP.

As another illustration of this phenomenon, Figure 8 shows
the state-space trajectories of Motor 1 and Motor 2 slips
for increasing values of Motor 1 moment of inertia, and
the corresponding decreasing values of Motor 2 moment of
inertia, at the fixed target time α = 5s. As the Motor 1
moment of inertia increases, for a fixed target time α, the
trajectories lie closer and closer to the UEP. However, note
that the change in distance from the UEP is much smaller as
a function of Motor 1 moment of inertia here than it was as
a function of clearing time above. Accordingly, the changes
in α required to remain on the phase boundary are smaller
as well.

The overall algorithm produces a one-dimensional phase
boundary in the plane of two free parameters. This boundary
separates stable sets of parameters from those that cause
instability. Figure 9 depicts this boundary for the two motor
network, where the free parameters are clearing time and
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Fig. 6. Motor 2 voltage as a function of time for varying fault clearing times
and corresponding moments of inertia H , at a fixed target time α = 5s.
The black line indicates the target hypersurface of 0.9V.
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Fig. 7. Motors 1 and 2 state-space trajectories for increasing values of
clearing time and homogeneous moments of inertia H , at a fixed target
time α = 5s. The open circle indicates the initial steady state, the diamonds
encircle the fault clearing points, and the closed circle is the relevant UEP.
The trajectory proceeds counterclockwise.

homogeneous moments of inertia. All points above this curse
give stable behavior while those below result in instability.
Note that the curve is almost linear. This is in agreement
with prior work [5] based on a less realistic continuum
approximation and found by trial and error. Figure 10 shows
the target time α required to remain on the phase boundary as
a function of moment of inertia. It is necessary to increase α
substantially in order to remain on the boundary, as expected
from the trajectory plots in Figure 7. Figure 11 shows the
phase boundary corresponding to the free parameters Motor 1
and Motor 2 moments of inertia, at a fixed clearing time
of 0.4s. All points above this curve give stable behavior
while those below result in instability. This curve is more
parabolic than the previous case. Only slight increases in α
were needed in this case to remain on the boundary. This is
consistent with Figure 8 and contrasts with the above case
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Fig. 8. Motors 1 and 2 state-space trajectories for increasing values of
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clearing time of 0.4s. The open circle indicates the initial steady state, the
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Fig. 9. Phase boundary for two motor network for varying clearing time
and homogeneous moment of inertia.

of homogeneous moments of inertia and clearing time.

B. Three induction motor network

The three motor network is already too large to be easily
visualized in phase space. However, applying the same
techniques as for the two motor setting results in similar
phase boundaries and trends in target time α. Figure 12
shows the phase boundary for the three motor network with
the free parameters being the clearing time and homogeneous
moments of inertia. As in the two motor case, it is almost
linear. Figure 13 depicts the target time α required to remain
on the boundary as a function of homogeneous moment of
inertia. As in the two motor case, α increases substantially
with the homogeneous moments of inertia. Figure 14 shows
the phase boundary for free parameters Motor 2 and Motor 3
moments of inertia, at a clearing time of 0.25s and with
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Fig. 10. Target time α required to approach the UEP for two motor network
as a function of homogeneous moment of inertia.
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Fig. 11. Phase boundary of two motor network for varying nonhomoge-
neous Motor 1 and Motor 2 moments of inertia, at a fixed clearing time of
0.4s.

Motor 1 moment of inertia fixed at 2.8757pu. The curve
is parabolic, as in the two motor case. The variations in α
required to remain on this boundary were small, as in the
two motor case.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A novel algorithm for numerical computation of one-
dimensional phase boundaries has been presented. The al-
gorithm was developed in generality and then applied to a
test case motivated by the role of induction motors in fault
induced delayed voltage recovery (FIDVR) events. A two-
motor network was initially used to illustrate the different
stages of the algorithm. the algorithm was then applied to a
larger network where visualization was not straightforward.
Phase boundaries that separated stable/unstable behavior
were computed for pairs of free parameters, viz., fault
clearing time and homogeneous moments of inertia, as well
as pairs of nonhomogeneous moments of inertia. An almost
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Fig. 12. Phase boundary for the three motor network for varying clearing
time and homogeneous moment of inertia.
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Fig. 13. Target time α required to approach the UEP for the three motor
network as a function of homogeneous moment of inertia.
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Fig. 14. Phase boundary of the three motor network for varying nonho-
mogeneous Motor 2 and Motor 3 moments of inertia at fixed clearing time
of 0.25s and Motor 1 moment of inertia of 2.8757p.u.

linear curve was found for the former while the latter resulted
in a hyperbolic curve. This trend was observed for both the
two- and three-motor networks.

There are several potential future directions. The phase
boundary computation algorithm will be tested on larger
networks with more complex topologies. The current require-
ment of varying the target time to remain on the boundary
will be explored further. Another possibility is to compute the
relevant UEP and force the trajectory to remain within a ball
around that UEP for a fixed length of time. It is anticipated
that this technique will not require as much adjustment of the
target time as is the case for the current algorithm, although
it will require prior knowledge of the UEP.

FIDVR is a dangerous phenomenon for distribution sys-
tems, and is of serious concern to power system operators. A
better understanding of the parametric influences on stability
for FIDVR events will enable better planning and more ro-
bust operation, leading to safer and more reliable distribution
grids.
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