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Abstract— The paper develops a novel decentralized charging
control strategy for large populations of plug-in electric vehicles
(PEVs). We consider the situation where PEV agents are
rational and weakly coupled via their operation costs. At an
established Nash equilibrium, each of the PEV agents reacts
optimally with respect to the average charging strategy of
all the PEV agents. Each of the average charging strategies
can be approximated by an infinite population limit which is
the solution of a fixed point problem. The control objective
is to minimize electricity generation costs by establishing a
PEV charging schedule that fills the overnight demand valley.
The paper shows that under certain mild conditions, there
exists a unique Nash equilibrium that almost satisfies that goal.
Moreover, the paper establishes a sufficient condition under
which the system converges to the unique Nash equilibrium. The
theoretical results are illustrated through various numerical
examples.

Keywords: Plug-in electric vehicles (PEVs); Decentralized con-
trol; Nash equilibrium; ‘Valley-filling’ charging strategy.

I. INTRODUCTION

Plug-in electric vehicles (PEVs) are beginning to compete

with conventional petroleum-combustion vehicles, and they

may achieve significant market penetration over the next few

decades. While PEVs will reduce consumption of exhaustible

petroleum resources and may reduce green-house gas emis-

sions, their impact on the electrical power grid could be

significant.

A number of studies have been undertaken recently to

explore the potential impacts of high penetrations of PEVs

on the power grid [1], [2], [3], [4]. In [5], we studied

centralized optimal charging control, for large populations

of homogeneous PEVs. This work rigorously explored the

conditions under which the socially optimal (i.e. generation

cost minimizing) control strategy results in valley filling.

Referring to Figure 1, this strategy ensures that PEV demand

fills the overnight load valley, such that the aggregate PEV

load together with non-PEV demand remain constant during

the charging period.

A practical process for achieving the valley-filling demand

pattern is not straightforward, however. For large populations

of PEVs, centralized charging control by a utility or system
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Fig. 1. A typical summer aggregate non-PEV base demand for the region
managed by the Midwest Independent System Operator (MISO).

operator would require significant communications and com-

putational capability. Furthermore, the centralized approach

may be unrealizable due to a reluctance among PEV owners

to allow third parties to directly control vehicle charging

rates. Instead, in this paper, we allow each PEV to choose

and implement its own local charging control.

We will assume that the (electricity) charging price, seen

by all PEVs, is a function of the total demand on the

grid, which is the summation of the inelastic non-PEV base

demand together with the aggregated charging of the whole

population of PEVs. Because of the coupling through this

common price signal, each PEV agent effectively interacts

with the average charging strategy of the rest of the PEV

population. As the population grows, the influence of each

individual PEV on that average charging strategy becomes

negligible. Accordingly, in a large population, each PEV will

observe the same average strategy in the set of all PEVs

not including itself. In this situation, a collection of local

charging controls is a Nash equilibrium (NE), if

(i) Each of the local controls is optimal with respect to one

commonly observed charging trajectory, and

(ii) The average of these local optimal charging controls is

equal to the common trajectory, i.e. the average charging

strategy is collectively reproduced by the local optimal

control laws.

This result is closely related to the Nash certainty equivalence

(NCE) principle, as proposed by Huang et al. [6], [7].

This framework also has connections with mean-field game

models that were studied by Lasry and Lions [8], [9], and

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 206



TABLE I

LIST OF SYMBOLS

xn state of charge of PEV n
N PEV population size
[0, T ] charging interval (identical for all PEVs)
βn battery size of PEV n
αn charging efficiency of PEV n
un local charging rate of PEV n
Un set of local charging controls of PEV n
u ≡ {un; 1 ≤ n ≤ N}, the collection of local

controls for the entire PEV population
avg(u) average value of collection of local controls u

u
−n collection of all PEV controls except n

p real-time electricity retail price
d (inelastic) non-PEV base demand
|x|1 l1-norm of the vector x

close connections with the notion of oblivious equilibrium

proposed by Weintraub, Benkard, and Van Roy [10] via a

mean-field approximation.

Implementation of the decentralized control is achieved

through a charging negotiation procedure, developed in the

paper, which takes place at some time prior to the actual

charging interval. Under certain mild conditions, the de-

centralized charging control drives the system to a unique

Nash equilibrium that is nearly socially optimal (or ‘valley-

filling’). In the case of homogeneous PEV populations, the

Nash equilibrium degenerates to a perfect ‘valley-filling’

charging strategy.

The paper is organized as follows. Section II establishes

a class of decentralized charging control problems for large

populations of PEVs. Section III develops existence, unique-

ness and social optimality properties of the Nash equilibrium.

These results are explored with illustrative examples in

Section IV, and conclusions are presented in Section V.

II. FORMULATION OF DECENTRALIZED CHARGING

CONTROL FOR LARGE PEV POPULATIONS

A. Decentralized charging control problems

We consider charging control for a significant penetration

of PEVs with a population size equal to N . For individual

PEV n, we adopt the notation of Table I. The charging

dynamics can be written,

xn
t+1 = xn

t +
αn

βn
un
t , with t = 0, · · · , T − 1, (1)

with an initial state-of-charge (SOC) value of xn
0 . It is

straightforward to verify that the terminal SOC value xn
T

equals 1 when subject to a charging control un that satisfies

E(un) = βn

αn (1 − xn
0 ) where E(un) ,

∑T−1
t=0 un

t . In this

paper we consider the set of feasible full charging controls,

Un ,

{
un ≡

(
un
0 , · · · , u

n
T−1

)
; s.t. un

t ≥ 0, xn
T = 1

}
, (2)

where the final constraint on xn
T requires that all PEVs are

charged completely by the end of the interval.

Considering a collection of local controls of the PEV

population u = {un; 1 ≤ n ≤ N}, we denote avg(u) ≡{
avg(ut); t = 0, · · · , T −1

}
as the average charging control

with respect to u, where

avg(ut) ,
1

N

N∑

n=1

un
t . (3)

In order to formally establish properties of the Nash

equilibrium, it will be assumed that the population is infinite.

Therefore, as N → ∞,

(i) The total electric generation capacity, denoted by C, is

proportional to the PEV population size N , i.e. C/N =
c, with some positive constant c.

(ii) The aggregate non-PEV base demand at instant t,
denoted by Dt, is unrelated to the PEV charging con-

trols. It is, however, proportional to the grid generation

capacity C, and hence to the PEV population size N ,

i.e. Dt/N = dt where d is the inelastic normalized

non-PEV base demand.

We specify an (electricity) retail price function, denoted by

p(.), that depends on the ratio of the total aggregate demand

in the grid and the generation capacity. By (3), (i) and (ii),

for a collection of charging controls u, we have

p(·) ≡ p
(Dt +

∑N

n=1 u
n
t

C

)
= p

(dt + avg(ut)

c

)
.

Note that this formulation assumes that electricity price

depends only on the current demand level, which implicitly

neglects intertemporal constraints such as generator ramping

and minimum run times. It will be seen in Section III, that the

shape of the electricity retail price function p(r) has a major

influence on the performance of the decentralized charging

control strategy.

Coordinated control of PEV charging often assumes a

centralized control framework, where the utility controls the

charging rates for all PEVs. The objective is to implement

a collection of PEV charging rates that achieve the dual

objectives, 1) the aggregated PEV load fills the overnight

valley of the non-PEV base load, and 2) every PEV is fully

charged at the end of its charging interval. In contrast, this

paper proposes a charging control scenario where individual

PEVs minimize their own operating cost by implementing

a charging strategy that takes into account the collection of

charging strategies adopted by other agents.

More specifically, subject to a collection of charging

strategies u, we suppose that the cost function of agent n,

denoted by Jn(u), is specified as,

Jn(u) ,

T−1∑

t=0

{
p(rt)u

n
t + δ

(
un
t − avg(ut)

)2}
(4)

where rt ≡ dt+avg(ut)
c

and the tracking parameter δ is a

non-negative constant. It follows from (4) that each agent’s

optimal charging strategy must achieve a trade-off between

the total electricity cost p(.)un and the cost incurred in

deviating from the average behavior of the PEV population

(un − avg(u))2. The examples in Section IV illustrate that

the small tracking costs are more than compensated by cost

savings that arise from valley filling.
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The underlying decentralized PEV charging control

scheme is a form of finite-horizon noncooperative dynamic

game. Each PEV agent shares with other PEV agents the

(limited, valuable and divisible) electricity resources beyond

the inelastic non-PEV demand base d, and also tracks the

average charging strategy of the whole population. A collec-

tion of charging controls u is a Nash equilibrium if, for all

n, un is a charging strategy that minimizes the cost (4) with

respect to u
−n.

So far we have formulated the decentralized charging

control problem as a class of dynamic games. Such problems

are, however, generally computationally intractable for large

population size N , see [11] and the references therein. We

address this issue in the next section.

B. Implementation of decentralized PEV charging control

At an established Nash equilibrium, each agent reacts

optimally with respect to its local state and the collectively

average trajectory of all other agents. These trajectories are

approximated by an identical deterministic infinite popu-

lation limit (associated with the mean field or ensemble

statistics of the random agents) which is shown later, in

Theorem 3.1, to be the solution of a fixed point problem.

Before proceeding to develop the control strategy, it is

important to confirm that the decentralized charging control

formulation of Section II-A, with the SOC dynamics given by

(1) and the cost functions of individual PEV agents specified

by (4), gives rise to a Nash equilibrium. The requirements

can be formalized as the following theorem, which we state

without proof.

Theorem 2.1: Consider the charging control for an infinite

population of PEVs. The collection of charging controls

{un; 1 ≤ n < ∞} is a Nash equilibrium (NE), if

(i) Every un ∈ Un is a local control infimizing the cost

function,

Jn(un;u) =
T−1∑

t=0

{
p
(dt + ut

c

)
un
t + δ(un

t − ut)
2
}

(5)

with respect to a fixed u; and

(ii) lim
N→∞

avg(ut) = ut, i.e. u can be collectively re-

produced subject to the local optimal controls of all

individual systems.

For any finite population size N , however, this method-

ology gives the weaker result that {un; 1 ≤ n ≤ N}
is an ε-NE, for some positive ε. All the avg(u−n) are

only approximately equal in this case, because of the finite

population size N . Nevertheless the value of the error ε tends

to zero as the population size N grows.

Implementation of the decentralized control is achieved

through a charging negotiation procedure, which takes place

at some time prior to the actual charging interval:

(S1) The utility broadcasts the prediction of non-PEV base

demand d to all the PEV agents.

(S2) Each of the PEVs proposes a charging control that

minimizes its charging cost with respect to a common

aggregate PEV demand broadcast by the utility.

(S3) The utility collects all the individual optimal charging

strategies proposed in (S2), and updates the aggregate

PEV demand corresponding to the proposed charging

strategies. This updated aggregate PEV demand is re-

broadcast to all of the PEVs.

(S4) Repeat (S2) and (S3) until the optimal strategies pro-

posed by the agents no longer change.

At convergence (assuming it occurs), the collection of pro-

posed individual charging strategies is an NE. Some time

later, when the actual charging start time is reached, each

PEV implements its optimal strategy obtained from (S1)-

(S4).

In the negotiation procedure (S1)-(S4), each of the PEVs

independently updates its own optimal feedback charging

strategy with respect to the one-dimensional average value of

all PEV agent strategies. The local computational complexity

of the underlying decentralized control strategy is therefore

independent of the PEV population size N .

III. PERFORMANCE OF THE DECENTRALIZED CHARGING

CONTROL PROBLEMS

In this section, we first specify the optimal charging

control that infimizing the cost function (5) with respect to

fixed parameter u. Based upon the properties of the optimal

charging strategy, and under certain mild conditions on retail

price function p(r) and tracking parameter δ, we state the ex-

istence, uniqueness, and social optimality (or ‘valley-filling’

property) of the decentralized charging control problems.

Rigorous and complete proofs for these results are presented

in [12], while this paper provides proof outlines rather than

the full technical details.

Define a charging control un(u,A) for agent n with

respect to u

un
t (u,A) =

1

2δ
max

{
0, A−

(
p
(dt + ut

c

)
− 2δut

)}
, (6)

where the associated scalar A ≡ An(u) is chosen to ensure

T−1∑

t=0

un
t =

βn

αn
(1− xn

0 ). (7)

Figure 2 illustrates the charging strategy un
t (u,A). It can

be verified that the A is uniquely determined by u for any

agent n.

Lemma 3.1: Considering a fixed u, un(u,A) ∈ Un satis-

fying (6) and (7) is the unique charging control infimizing

the cost function (5).

Outline of the proof of Lemma 3.1.

The infimization problem of Jn(un;u) subject to Un is a

constrained optimization problem. Lemma 3.1 can be shown

by applying the method of Lagrange multipliers. �

In order to establish properties of the optimal charging

strategy, some further notation is required. Denote ũn(u) and

ũn(v) as the charging controls infimizing the cost function
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Fig. 3. Illustrations of agent charging controls ũn(u), ũn(v) and un.

(5) with respect to u and v respectively, subject to the set of

full charging controls Un. By Lemma 3.1,

ũn(u) = un(u,An(u))

ũn(v) = un(v,An(v))

where An(u) and An(v) uniquely depend upon u and v
respectively, and

ũ(u) =
{
ũn(u); 1 ≤ n < ∞

}

ũ(v) =
{
ũn(v); 1 ≤ n < ∞

}
.

Consider a charging control ûn ≡ un(v,An(u)), i.e. ûn

represents the charging control of agent n satisfying (6) with

respect to v and An(u). Charging controls ũn(u), ũn(v), and

ûn are illustrated in Figure 3.

Lemma 3.2: For any positive tracking parameter δ, the

following inequalities hold,

|ũn
t (u)− ûn

t |

≤
∣∣∣(ut − vt)−

1

2δ

(
p
(dt + ut

c

)
− p

(dt + vt
c

))∣∣∣ (8)

and

|ũn(u)− ũn(v)|1 ≤ 2|ũn(u)− ûn|1 (9)

where |x|1 denotes the l1 norm of the vector x ∈ R
T , i.e.

|x|1 ,
∑T

l=1 |xl|.

Proof of Lemma 3.2 is not included in this paper but can

be found in [12]. This lemma is used to establish existence

and uniqueness properties of the Nash equilibrium.

Theorem 3.1: (Existence of Nash equilibrium)

Assume that the retail price p(r) is continuous on r ∈
[0, 1]. Then there exists a Nash equilibrium for the decen-

tralized charging control problem.

Outline of the proof of Theorem 3.1.

By Lemma 3.2, we can show avg
(
ũ(u)

)
is continuous on

u because the retail price p is continuous on r ∈ [0, 1]. By

the Brouwer fixed point theorem [13], there exists a fixed

point u∗ such that avg
(
ũ(u∗)

)
= u∗, and by Theorem 2.1

ũ(u∗) is a Nash equilibrium for the decentralized charging

problem. �

In preparation for Theorem 3.2, we define

rmin , min
{dt

c
; t = 0, · · · , T − 1

}
.

Theorem 3.2: (A sufficient condition on the uniqueness

and convergence of Nash equilibrium)

Assume the retail price p(r) is continuously differentiable

and increasing on r, such that

sup
r∈[rmin,1]

dp

dr
< 2 inf

r∈[rmin,1]

dp

dr
, (10)

and the tracking parameter δ satisfies

1

2c
sup

r∈[rmin,1]

dp

dr
≤ δ ≤

a

c
inf

r∈[rmin,1]

dp

dr
,

for some a, with 1
2 < a < 1. Then the system converges

to a unique Nash equilibrium for the decentralized charging

problem.

Outline of the proof of Theorem 3.2.

By Lemma 3.2, and under the inequality constraint for p
given in the statement of the theorem, it can be shown that

∣∣avg(ũ(u))− avg(ũ(v))
∣∣
1
≤ (2−

1

a
)
∣∣u− v

∣∣
1
.

By hypothesis on a we have 0 < 2− 1
a
< 1, and hence that

avg(ũ(u)) is a contraction map/operator with respect to u.

By applying the contraction mapping theorem [14], iterations

converge to a unique fixed point u such that avg(ũ(u)) = u.

By Theorem 2.1, the collection of agent strategies u is a

Nash equilibrium for the decentralized charging problem. �

Having established existence, uniqueness and convergence

properties, we are now in a position to consider the ‘valley-

filling’ property of the underlying Nash equilibrium.

Theorem 3.3: (Social optimality, or ‘valley-filling’ prop-

erty, of Nash equilibrium)

Suppose that a collection of charging strategies ũ is a

Nash equilibrium for the decentralized charging problem, and

assume that the retail price p(r) is strictly increasing on r ∈
[0, 1]. Then ũ satisfies the properties:

ut ≥ us, when dt ≤ ds (11a)

dt + ut ≤ ds + us, when dt ≤ ds (11b)

dt + ut = B, t ∈ [t̂0, t̂s], for some B (11c)
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where u = avg(ũ), and [t̂0, t̂s] represents a sub-interval of

the charging period [0, T ], such that ũn
t > 0 for all n and all

t ∈ [t̂0, t̂s]. Furthermore,

ũn
t ≥ ũn

s , when dt ≤ ds (12a)

dt + ũn
t = B′, t ∈ [t̂0, t̂s], for some B′. (12b)

An outline of the proof of Theorem 3.3 is given in

the appendix. The theorem characterizes the ‘valley-filling’

property of the Nash equilibrium:

• For any pair of charging instants, the one with the

smaller non-PEV base demand is assigned a larger

individual charging rate and a larger average charging

rate, and possesses a lower total aggregated demand.

• The total aggregated/individual demand, consisting of

aggregated/individual PEV charging load together with

non-PEV demand, is constant during charging sub-

intervals where all the PEV charging rates are strictly

positive.

Note that these conditions do not guarantee a perfect

‘valley-fill’ because there may be intervals in which not all

PEVs charge. However, in the case of a homogeneous PEV

population, the individual agent strategies un are coincident

with the aggregate strategy u. It follows that (11) and (12)

together are equivalent to,

ut =

{
B − dt, when dt ≤ B

0, otherwise
(13)

for some B > 0, such that
∑T−1

t=0 ut = βn

αn (1 − x0). In

other words, in the optimal case of a homogeneous PEV

population, the Nash equilibrium degenerates into a purely

‘valley-filling’ charging strategy.

IV. NUMERICAL EXAMPLES

This section presents a number of numerical examples

that explore the convergence properties and valley-filling

performance of the decentralized charging control process.

The examples are based on the aggregate non-PEV base

demand D shown in Figure 1. This curve is typical for

a summer day in the region managed by the Midwest

Independent System Operator (MISO). The normalized non-

PEV demand d has exactly the same shape as Figure 1,

but is scaled by the PEV population size N . The following

numerical examples use a PEV population of 107, which is

approximately 30% of all the vehicles in the MISO region.

The examples assume the normalized generation capacity

c in the MISO region is about 10 kW. It is further assumed

that all PEVs have an initial SOC of 15%, and identical

charging efficiency α of 85%. We consider a 24-hour charg-

ing interval from noon on one day to noon on the next, with

one hour time steps. Other parameters, such as PEV battery

size βn and the tracking-cost parameter δ, will be specified

for each of the examples.

Consider a retail price function p(r) = 0.15r2, on r ∈
[0, 1]. Recall that r is the ratio between the total demand and
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Fig. 4. Convergence of decentralized charging process for a homogeneous
PEV population with δ = 0.015.

the generation capacity. It follows from Figure 1 that rmin ≈
0.6. The requirement (10) from Theorem 3.2 becomes,

sup
r∈[rmin,1]

dp

dr
= 0.3 < 2× inf

r∈[rmin,1]

dp

dr
= 0.36.

By applying Theorem 3.2, the decentralized negotiation

procedure is guaranteed to converge to a unique Nash equi-

librium if the tracking parameter δ satisfies,

1

2c
sup

r∈[rmin,1]

dp

dr
= 0.015 ≤ δ ≤

a

c
inf

r∈[rmin,1]

dp

dr
= 0.018a,

for some a with 1
2 < a < 1.

Figure 4 shows a PEV’s best charging strategy for each

iteration of the negotiation process (S1)-(S4) described in

Section II-B. For this case, the PEV population was homoge-

neous, with all PEVs having identical battery size of 10 kWh

and maximum charging rate of 3 kW. The tracking parameter

δ was set to 0.015. Notice that the charging system converges

to the Nash equilibrium in a few negotiation cycles, and that

the equilibrium is valley-filling.

The conditions established in Theorem 3.2 are sufficient to

ensure uniqueness of the Nash equilibrium resulting from the

decentralized process, and convergence to that equilibrium.

However they are not necessary. Indeed, the convergent pro-

cess shown in Figure 5 was obtained with tracking parameter

δ = 0.007, which does not satisfy the conditions specified

in Theorem 3.2. The process converges to the same Nash

equilibrium as in Figure 4.

Note though that the tracking parameter δ must be non-

negligible for reasonable expectation of convergence. The

choice of δ = 0.003, for example, results in the non-

convergent process shown in Figure 6.

The previous examples considered a homogeneous pop-

ulation. In this final case, the population is heterogeneous

in battery size (half of the PEVs have a 20kWh battery

and half have a 10kWh battery; all other parameters are

as before). Figure 7 shows the converged Nash equilibrium

of the decentralized scheme with a tracking parameter of

δ = 0.015. The result is not a perfect valley-fill because some
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Fig. 5. Simulation results with δ = 0.007. Although the tracking parameter
does not satisfy the conditions of Theorem 3.2, convergence still occurs.
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Fig. 6. Simulation results with δ = 0.003. At this point the tracking
parameter is small enough that the negotiation process does not converge.

PEVs charge for less time than others. As a consequence,

total demand ramps down at the beginning of the charging

interval, and ramps up at the end.

V. CONCLUSIONS

In this paper, decentralized charging control of large

populations of PEVs is formulated as a class of finite-horizon

dynamic games. The decentralized approach works by solv-

ing a relatively simple local problem and iterates quickly to

a global Nash equilibrium. This strategy does not require

significant central computing resources or communications

infrastructure.

The paper establishes, under certain mild conditions, ex-

istence, uniqueness and social optimality of the Nash equi-

librium attained through decentralized control. A negotiation

procedure is proposed that converges to a charging strategy

that is nearly optimal. In fact, for a homogeneous PEV pop-

ulation, the charging strategy degenerates to a purely social

optimal ‘valley-filling’ strategy. The results are illustrated

with various numerical examples.
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non−PEV base demand
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Fig. 7. Converged Nash equilibrium for a heterogeneous population of
PEVs with δ = 0.015.

APPENDIX

The proof of Theorem 3.3 proceeds by considering, with-

out loss of generality, adjacent time instants t and s = t+1.

Local charging controls (ũn
t , ũ

n
t+1), that are optimal with

respect to u and xn
t , can be decomposed as ũn

t = bn,∗−an,∗

and ũn
t+1 = bn,∗ + an,∗ respectively. It is possible to show

that

an,∗ = arginf
an∈Sbn,∗

{(
an −

1

2
(ut+1 − ut)

+
1

4δ

(
p(dt+1 + ut+1)− p(dt + ut)

))2}

with Sbn,∗ , {an;−bn,∗ ≤ an ≤ bn,∗}.

Relationship (11a) can be established by contradiction.

If (11a) were not true, then it can be shown that an,∗ <
1
2 (ut+1 − ut), implying that ũn

t+1 − ũn
t < ut+1 − ut for all

n, and hence that

avg(ũt+1)− avg(ũt) < ut+1 − ut

where ũ ≡
{
ũn; 1 ≤ n < ∞

}
. This, however, conflicts with

the fact that {ũn;n < ∞} is a Nash equilibrium with respect

to u, see Theorem 2.1. Hence a contradiction.

Relationship (11b) is also proved by contradiction, and

follows a similar argument as the proof of (11a). In this case

though, it is determined that

avg(ũt+1)− avg(ũt) > ut+1 − ut,

which conflicts with {ũn;n < ∞} being a Nash equilibrium

with respect to u.

Proof by contradiction is also used to establish (11c).

Assume there are adjacent times t, t+ 1 ∈ [t̂0, t̂s], such that

dt+1 + ut+1 = dt + ut +B, (14)

where B > 0 without loss of generality. Then there will also

exist an n and C ≥ B such that

dt+1 + ũn
t+1 = dt + ũn

t + C.

The theorem states that ũn
s > 0 for all n and all s ∈ [t̂0, t̂s],

so there always exists a sufficiently small ε > 0 such that
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ũn
t+1−ε > 0. A revised control law un,ε is established which

exactly duplicates ũn, except un,ε
t = ũn

t + ε and un,ε
t+1 =

ũn
t+1 − ε.

Using the assumption dt + ut < dt+1 + ut+1 from (14),

the proof proceeds to show that for sufficiently small ε > 0,

Jn(un,ε;u) < Jn(ũn;u).

But ũn infimizes Jn with respect to u, hence a contradiction,

so B = 0 in (14). The desired result follows.

To prove (12a), suppose that dt+1 ≥ dt. Then (11a) and

(11b) give

1

2
(ut+1 − ut)−

1

4δ
(p(dt+1 + ut+1)− p(dt + ut)) ≤ 0.

This inequality together with (14) gives

ũn
t+1 − ũn

t = 2an,∗ ≤ 0,

for all n, which establishes the result.

To prove (12b), consider a subset of local charging con-

trols U ′n(U), such that each control un ∈ U ′n(U) is feasible

and satisfies, (i) un
t is fixed for t /∈ [t̂0, t̂s], (ii) un

t > 0 for

all t ∈ [t̂0, t̂s], and (iii)
∑t̂s

t=t̂0
un
t = U .

It is then possible to manipulate the local cost function,

giving for all un ∈ U ′n(U),

Jn(un;u) = p

(
B

c

)
U + δ

∑

t∈[t̂0,t̂s]

(un
t −B + dt)

2 + F

where B is given in (11c), F gives the cost incurred over the

period t /∈ [t̂0, t̂s], and is constant since un
t is assumed fixed

on this interval. It follows that the infimum of Jn(un;u) for

un ∈ U ′n(U) is obtained when dt + ũn
t is constant for all

t ∈ [t̂0, t̂s]. The desired result follows. �
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