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Abstract— In this article, we propose two stabilizing discrete-
time model predictive control (MPC) strategies, which are
alternatives to other classical (e.g. terminal cost/constraint-
based) approaches. Both proposed strategies take advantage
of a known stabilizing controller and its associated Lyapunov
function. The first strategy allows optimization of an arbitrary
cost function at each stage, but guarantees stability by enforcing
a decrease in the known Lyapunov function at the first step of
each MPC state. The second strategy uses an averaged/summed
Lyapunov function as the objective function. A combined
strategy that enforces a decrease in a summed Lyapunov
function while optimizing an arbitrary cost is also considered.
The proposed strategies are applied to an example drawn
from the class of linear systems subject to actuator saturation
constraints.

I. INTRODUCTION

Model predictive control (MPC) methods have been
widely used in solving on-line optimal control problems with
constraints, cf. [1]–[4]. One motivation for using MPC is that
many real-world processes requiring real-time control have
constrained, highly nonlinear dynamics that are subject to
disturbances, and hence classical optimal control methodolo-
gies (which usually require a pre-calculated controller) are
difficult to apply directly. MPC often can relieve the com-
plexity inherent in designing high-performance controllers
for these systems: because a finite-horizon problem is solved,
MPC can exploit efficient algorithms such as linear program-
ming tools to solve the underlying optimization problem.
Specifically, given the current state at each time-step, MPC
aims to numerically find inputs that optimize a finite-horizon
cost function subject to the constraints. Since the process is
repeated at each successive sample time-step, MPC generates
a form of feedback control law for the system, and does so
in real time (or on-line).

In many domains where MPC is applied, asymptotic
or long-term dynamics of the closed-loop system are of
importance. Guaranteeing stability via MPC while still taking
advantage of its performance-optimization and computational
benefits is critical for both applications and control theoreti-
cal developments. Because MPC feedback controllers are not
expressed explicitly as functions of the system state, asymp-
totic stability analysis of the closed-loop system becomes
challenging. The stability of MPC has received considerable
attention over the last several decades, cf. [5]–[9], many
of which are based on using a terminal-constraint-set. For
example, a dual-mode controller proposed in [11] guarantees
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stability by employing MPC outside a terminal region and
a linear feedback controller inside it, which is a relaxation
of earlier approaches based on terminal equality constraints.
The survey article [10] establishes a rather general set
of sufficient conditions for terminal-constraint-based MPC
stability. Specifically, the terminal state constraint guarantees
the existence of a feasible control sequence for successive
MPC steps. Further, the terminal cost requirement allows the
total cost to be employed as a Lyapunov function. Some other
classical stabilizing MPC strategies are worth mentioning:
[12] presents a quasi-infinite horizon approach with an ad-
ditional terminal penalty constraint; [13] introduces a stable
MPC scheme by adding an inequality contraction constraint
to the state vector; in [14], [15], stability is guaranteed by
requiring a global control Lyapunov function (CLF) to be
decreasing along the state trajectory; among many others.

These MPC stability analyses/methods are a starting
point for evaluating feedback-control performance of MPC.
Specifically, the analyses show that, when the cost function
and MPC receding horizon are specified properly, closed-
loop stability can be achieved while the optimality properties
of MPC are retained. However, the conventional methods in-
troduce several concerns with respect to the tradeoff between
stability and performance/computation:
1) Selection of the MPC receding horizon often depends on
the ball of possible initial conditions (domain of attraction).
For stability, the terminal-constraint-based MPC schemes are
required to bring the state trajectory into a terminal set
within the MPC time horizon at each stage. For different
initial conditions, the time horizon required for a controller
to achieve this requirement may vary; even for the same
initial condition, different time horizons may lead to stability
or instability (see [14]). To ensure MPC stability, either this
MPC time horizon has to be changed based on the initial-
condition set, or the local controller and cost function have to
be redesigned. Hence, there is an inherent tradeoff between
stability and performance or computational burden.
2) Different forms of cost functions also have an impact on
stability. The terminal-constraint-based MPC stability con-
ditions require that the terminal cost decreases sufficiently
quickly (usually to compensate possible growth in the stage
cost) to guarantee stability [10]. Similarly, the quasi-infinite
horizon MPC method uses a quadratic terminal cost to upper
bound an infinite horizon cost within a terminal region
to achieve close-loop stability [12]. The fact that the cost
function has to be redesigned, or is restricted by the specifics
of the problem, sometimes may limit the computational
performance. For example, the presence of a special terminal
penalty in the cost function may lead to slower settling. This
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also means that the optimization horizon can become long,
leading to high computational complexity.

These concerns, to some extent, motivate the study de-
scribed in this article. We explore alternative approaches to
MPC stability, that may allow greater freedom in selecting
the time horizon (e.g. possible duration to bring the state
trajectory into the terminal constraint set) and cost function
(e.g. terminal penalty), and hence improve tradeoffs between
stability, settling performance (total cost), and computational
effort. Keeping in mind that previous classical MPC stability
results require certain system knowledge (e.g. a local stable
controller and its Lyapunov function [10]), the development
here is also built on the assumption of a pre-known globally
stabilizing controller and its associated Lyapunov function
for the nonlinear system. Based on this assumption, two
different stability design schemes are proposed, both of
which take advantage of the Lyapunov function for the
controlled system, but in a way that differs from the classical
MPC stability results.

We stress that our assumption of a globally-stabilizing
controller is strong. We realize that such an assumption may
not always be practical since it can be difficult to establish
a stabilizing controller for a nonlinear system subject to
constraints. On the other hand, the strong assumption on the
system’s stability helps to free the limitations and constraints
on the selection of the time horizon and cost function. Also,
several important classes of nonlinear systems, for example
linear systems with actuator saturation, do admit global con-
trollers and associated Lyapunov functions. A key feature of
our formulation is the freedom to optimize any cost function
with a relatively small look-ahead horizon. We finally stress
that the effort here is not intended to provide a general and
complete analysis for MPC stability; in fact, the goal of
this article is to provide different conceptual perspectives
for achieving MPC stability which may provide interesting
design freedoms, and to further relate the proposed schemes
back to some of the existing MPC stability results.

The article is organized as follows. Section II briefly re-
views the MPC optimization problem. Section III introduces
the two proposed stable MPC design strategies, and provides
conceptual comparisons between these two methods and ex-
isting designs. Several illustrative examples are included, and
a third approach that combines the two proposed strategies
is also briefly discussed. Finally, Section IV concludes the
article by summarizing the contributions.

II. PROBLEM FORMULATION

Let us introduce a particular control problem that we will
address using MPC. Formally, we consider the following
nonlinear discrete-time system subject to input constraints:

xk+1 = f (xk,uk), (1)

where xk ∈ Rn is the state vector at time step k, uk ∈
U ⊆ Rm is the input/actuator vector at time step k, and
U is compact. We assume that f satisfies the equilibrium
condition f (0,0) = 0. The MPC cost function at each stage

k is defined as:

Jk =
k+N

∑
i=k+1

xT
i Qixi +

k+N−1

∑
i=k

uT
i Riui, (2)

where N ≥ 1 is the MPC time horizon, and Qi, Ri are positive
semi-definite weighting matrices. For convenience, let the
control sequence Uk

△
= {uk, · · · ,uk+N−1}. At each stage k,

the MPC optimization goal is:

min
Uk

Jk, subject to xk+1 = f (xk,uk), and uk ∈ U, (3)

where the compact set U is a set of admissible values for
the input. To actually obtain an MPC solution, we need
to solve the stage optimization problem (3) by using some
optimization techniques (e.g., linear, quadratic, or nonlinear
programming tools). The resulting control sequence U∗

k =
{u(k)k, · · · ,u(k)k+N−1} achieves optimality while satisfying
the system dynamics and constraints. MPC implements only
the first input u(k)k of the sequence to the system.

As mentioned above, our development is based on the
assumption that a stabilizing state-feedback controller of
the original nonlinear system (1) subject to constraints has
already been established, and a Lyapunov function for the
closed-loop system is known. Our proposed MPC algorithms
take advantage of this known control capability, while also
exploiting the advantages of MPC (optimal control over a
finite horizon, on-line design in the face of disturbances and
noise). Formally, let F(xk) = uk be a stabilizing feedback
controller of the original system (1), with F(0) = 0. The
Lyapunov function V (·) of the closed-loop system corre-
sponding to F(·) satisfies V (xk+1)−V (xk) < 0 for xk ̸= 0,
and V (0) = 0. For clarity, we will subsequently use the
notation Vk ≡V (xk).

III. TWO ALTERNATIVE STRATEGIES FOR STABILIZING
MPC DESIGN

In this section, we introduce two different stable MPC
design approaches: one is based on forcing a first-step-
Lyapunov constraint on the MPC problem (which is an
extension of an idea presented in [16]), and the second is
based on using a special summed Lyapunov function as the
cost function. We also discuss some comparisons between
these two methods, and present an MPC design version that
combines both alternative strategies.

A. Multi-Step MPC with a First-Step Lyapunov Constraint

Controller design for nonlinear systems is usually either
based on using a linearized model to approximate the original
nonlinear dynamics, or restricted to limited classes of nonlin-
ear plants for which systematic designs are possible. For the
latter case, a representative example is the class of linear sys-
tems subject to input/actuator saturation. Designing feedback
controllers that can stabilize such saturated linear systems
has received much attention, e.g. [18]. Classical stabilizing
feedback designs include low-gain control, scheduled low-
gain control, and low-and-high-gain control.

Recently, an alternative design for stable MPC algorithms
has been proposed, though only for the class of linear
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systems with actuator saturation and a single-step receding
horizon [16]. The proposed design strategy is summarized as
follows: 1) first confirm that there exists a stable low-and-
high-gain controller whose corresponding Lyapunov function
is decreasing along state trajectories; 2) next, pose a set
of extra sufficient constraints on the input, which guarantee
a decrease in the same Lyapunov candidate (corresponding
to the stable controller) during a single time-step; 3) solve
the original MPC optimization problem with these extra
constraints. Since the existing low-and-high-gain controller is
a feasible solution to the MPC problem and the imposed extra
conditions guarantee a decrease of the Lyapunov function, it
is thus shown that MPC is stabilizing. It is worth noting that
at each MPC stage, the stabilization conditions are obtained
through solving an algebraic Riccati equation. This pre-
calculation process may increase the complexity of the MPC
algorithm even though the constraints are linear.

Here, we argue that the MPC design technique given in
[16] can be extended to allow multi-step optimization hori-
zons, and also that the design philosophy can be adapted for
control of a broader class of nonlinear plants (not only linear
systems with saturation). We refer to the new stabilizing
MPC design as multi-step MPC with first-step Lyapunov
constraint. Specifically, since only the first input from the
optimal sequence is implemented, the main philosophy of
this design strategy is still to impose extra constraints on the
first input to guarantee a decrease of a Lyapunov function,
while optimizing a multi-step cost. This new MPC design
scheme is formalized in the following theorem:

Theorem 1: Consider a nonlinear system (1) subject to
the input constraint uk ∈ U, and say that the cost function
Jk for MPC is as defined in (2). Assume that there exists an
admissible stabilizing feedback control law uk = F(xk) ∈U,
such that the closed-loop system has a Lyapunov function Vk.
Choose any positive function p(xk), such that U∩Up ̸= /0
where Up is a set of inputs uk that satisfies Vk+1 −Vk =
V ( f (xk,uk))−V (xk) ≤ −p(xk). Then, the MPC solution to
(3) is asymptotically stable if Jk is optimized subject to an
extra constraint uk ∈ U∩Up.

Proof: First, we show that the MPC optimization
problem (3) has a feasible solution. Noticing that the system
(1) is time invariant, there exists a positive function p∗(xk)
such that Vk+1 −Vk ≤ −p∗(xk) when F(xk) ∈ U is applied.
Then, for any chosen p(xk) such that 0 < p(xk) ≤ p∗(xk),
the feedback controller F(xk) must satisfy Vk+1 − Vk ≤
−p∗(xk) ≤ −p(xk). Therefore, F(xk) ∈ Up. But F(xk) ∈ U
by definition, so U∩Up ̸= /0. We thus have shown that there
exists at least one feasible solution (i.e. F(xk)) to the MPC
optimization problem (3) subject to uk ∈ U∩Up.

Next, we argue that such MPC is stable. Note that MPC
first finds a set of admissible inputs subject to uk ∈ U∩Up,
and then selects a sequence of inputs that optimizes Jk. The
optimum sequence U∗

k therefore automatically falls within
set Up, which guarantees Vk+1 −Vk ≤−p(xk). The decrease
reflected in Vk indicates that the MPC design is stable.

In the above theorem, a positive function p(xk) needs
to be pre-selected, and the stability conditions are then

obtained by solving the inequality equation Vk+1 −Vk ≤
−p(xk). In general, Vk+1 −Vk < 0 for xk ̸= 0 is sufficient
to guarantee stability. However, Vk+1 −Vk < 0 may yield a
constraint set that is not closed, and hence the solution to the
optimization problem may not be in the set (i.e., optimization
achieves infimum rather than minimum) and may not achieve
Vk+1 −Vk < 0. Therefore, by forcing Vk+1 −Vk ≤ −p(xk),
the possibility for an infimum can be avoided, which also
sometimes makes the optimization easier to implement.

Remark 1: Compared to the MPC method in [16], the
above stable design does not impose a limit on the time
horizon of the MPC. By taking advantage of the existence
of a stabilizing controller and the fact that only the first
input will be used, a constraint can be imposed that guar-
antees a decrease of the same Lyapunov function without
impacting the multi-step optimization. The remaining in-
puts {uk+1, · · · ,uk+N−1} are designed to achieve the multi-
step optimization, without respect to the Lyapunov-function-
based constraint on uk. We also note that for the terminal
penalty on the state xk+N , [16] chooses the weight matrix
Qk+N in the cost function (2) as the unique positive definite
solution of an algebraic Riccati equation. In our formulation,
such a limitation can also be released, since the decrease
in the Lyapunov function has already been considered at
the first step and a particular terminal state penalty is not
necessary in this situation.

Remark 2: The above first-step Lyapunov-constraint-based
MPC design can be viewed in terms of the classical terminal-
constraint-based MPC method as summarized in [10]. The
classical method requires knowledge of a stabilizing con-
troller and its associated Lyapunov function for only the
terminal constraint set. It also requires that the state trajectory
actually should be steered into this set within the MPC time
horizon. Our formulation, however, extends the terminal con-
straint set to the full state set Rn, without any limitation on
the receding horizon. In other words, for any initial condition
at each MPC stage, it automatically lies within this “terminal
constraint set” and no control action is needed to bring the
trajectory to this set. Our formulation, of course, requires
existence of a global Lyapunov condition; however, given
this strong condition, it does afford considerable freedom in
the choice of the cost function and look-ahead horizon, and
their selection becomes independent of the initial-condition
set in contrast with the classical approach.

Remark 3: The proposed scheme also has strong simi-
larities with the CLF-based method presented in [14], in
which a continuous-time nonlinear system is considered. In
[14], a global stabilizing controller is also required (through
finding a CLF). Similarly to our first-step constraint, stability
is guaranteed in [14] by forcing the derivative of the CLF to
be negative along the trajectory.

To better illustrate this design approach, we consider the
example presented in [16], and use the new approach to
design a multi-step MPC for a linear system with actuator
saturation.
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Example 1: Linear Systems with Actuator Saturation

As mentioned above, a stable MPC method with N = 1 has
been successfully implemented for the class of linear systems
subject to input saturation [16]. Specifically, [16] uses the
fact that a low-high-gain controller can be designed for such
plants, and so a Lyapunov function can be found. Based
on this recognition, the authors impose a set of extra linear
constraints on the input (in addition to the saturation con-
straints) that guarantees a decrease in a Lyapunov function,
and hence ensures stability. To better illustrate the generality
provided by our method, we consider an extended version
of the example from [16], where the MPC time horizon is
multi-step. Specifically, we consider the same system plant
as in [16]:

xk+1 = Axk +B
[

σ(u1,k)
σ(u2,k)

]
, (4)

where

A =

1 1 0
0 1 1
0 0 1

 , B =

0 0
1 0
0 1

 ,

and σ(ui,k) is the saturated input of the system (i.e., σ(ui,k)=
sign(ui,k)min{1, |ui,k|}) for i = 1,2.

We consider an N-step MPC, with the following objective
function:

Jk =
k+N

∑
i=k+1

xT
i Qixi +

k+N−1

∑
i=k

uT
i Riui. (5)

For simplicity, let Qi = I and Ri = I (chosen as identity
matrices with appropriate sizes). Then, the cost function
becomes

Jk =
k+N

∑
i=k+1

xT
i xi +

k+N−1

∑
i=k

uT
i ui. (6)

We note that, in the above cost function (6), the terminal state
penalty matrix Qk+N can be any arbitrary positive matrix. It
is a key difference from the result in [16], where the terminal
penalty matrix Qk+N is selected as the unique solution of an
algebraic Riccati equation.

The MPC problem is to minimize the N-step cost function
Jk (6) at each stage, subject to the system dynamics (4) and
the input saturation constraint. In addition, we also pose a set
of linear constraints on the first step to guarantee a decrease
of the low-high-gain controller’s Lyapunov function. These
are the same as in [16], so we do not repeat the derivation
and simply provide the result:

sign(Di,kxk)(ui,k −Fi,kxk)≥ 0,

sign(Di,kxk)[2Di,kxk −Ci,k(uk −Fkxk)]≥ 0,

for i = 1,2. The following notation applies:
1) D1,k, D2,k are the first and second rows of matrix Dk,
where Dk = RFk;
2) C1,k, C2,k are the first and second rows of matrix Ck, where
Ck = BT PkB;
3) Fk =−(R+BT PkB)−1BT PkA;
4) Pk is the solution to the algebraic Riccati equation Pk =
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Fig. 1. The state dynamics under low-high-gain feedback control for
Example 1.
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Fig. 2. The state dynamics under MPC with N = 1 for Example 1.

AT PkA+ε(xk)I−AT PkB(I+BT PkB)−1BT PkA, where ε(xk)=
max{r ∈ (0,1] | (xT

k Pkxk)trace(Pk)≤ 1
2trace(BBT )

}.
These linear constraints guarantee that the Lyapunov func-

tion associated with a stable feedback controller (in this case,
a classical low-and-high-gain controller) is decreasing. We
simulate the system dynamics under both the one-step and
two-step MPC, with the same initial condition

[
4 4 4

]T

and the specified cost function. For comparison, we also
simulate the system trajectory under the original low-and-
high-gain control. The state trajectories for all three cases are
shown in Figures 1, 2, and 3. We observe that the two-step
MPC has a significant performance improvement in terms
of the settling time, relative to both the low-and-high-gain
design and the one-step MPC design.

Remark: We note that classical low-high-gain feedback
control, the one-step MPC given in [16], and our proposed
multi-step MPC all guarantee closed-loop stabilization. Com-
pared to [16], however, our approach asserts that there is
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Fig. 3. The state dynamics under MPC with N = 2 for Example 1.

freedom in selecting the cost function and MPC horizon,
thus allowing optimization of a desirable cost and a trade-
off between performance and computational effort.

B. MPC Design Using A Summed Lyapunov-Function Cost

Here, we explore further the use of known Lyapunov
functions to guarantee MPC stability. Rather than impos-
ing an initial-step or final-step constraint/cost, we consider
defining the cost function based on a summed or averaged
Lyapunov function over an optimization horizon of interest.
Defining the cost in this way permits the design of controllers
that cause the Lyapunov function (and hence state norm)
to rapidly and globally decrease over the long term, while
also allowing temporary increases in the Lyapunov energy in
seeking for an optimal solution. This result can be formally
stated as the following theorem.

Theorem 2: Consider the nonlinear system (1) subject
to the input constraint uk ∈ U. Let uk = F(xk) ∈ U be a
stabilizing feedback controller of the system (1), and let
V (xk) ≡ Vk be the Lyapunov function for the associated
closed-loop system. Let the MPC objective function at time
k be Jk = ∑k+N

i=k+1 Vi, for N ≥ 1. If the MPC optimization goal
is to minimize Jk subject to uk ∈ U, then the MPC solution
stabilizes the system (1).

Proof: To begin, let {u(k)
k , · · · ,u(k)

k+N−1} be the op-
timal input sequence that minimizes the objective func-
tion Jk = ∑k+N

i=k+1 Vi at MPC stage k, and let J∗k =

∑k+N
i=k+1 V (k)

i be the minimum objective-function value at
stage k, where V (k)

i is the i-th portion of this mini-
mum cost. Now consider a non-optimal input sequence
{u(k)

k , · · · ,u(k)
k̃
,F(xk̃+1), · · · ,F(xk+N−1)} for k ≤ k̃ < k+N −

1, where the first k̃ − k + 1 inputs are from the optimal
sequence, and the last (k+N−1)− k̃ inputs are provided by
the stable feedback controller. For such an input sequence,
the cost functions for the first k̃ − k + 1 time-steps remain
the same as those of J∗k , i.e. Vi =V (k)

i for i = k+1, · · · , k̃+1.
For the remaining (k+N − 1)− k̃ cost functions, assuming

x(k̃ + 1) ̸= 0, we have Vi−1 > Vi for i = k̃ + 2, · · · ,k + N,
since the controller F is stable and Vi is its corresponding
Lyapunov function. The decrease in Vi yields,

k+N

∑
i=k̃+2

Vi < (k+N −1− k̃)Vk̃+1 = (k+N −1− k̃)V (k)
k̃+1

.

Because of optimality, the following inequality also holds:
k+N
∑

i=k̃+2
V (k)

i ≤
k+N
∑

i=k̃+2
Vi. Combining these two inequalities, we

obtain
k+N

∑
i=k̃+2

V (k)
i < (k+N −1− k̃)V (k)

k̃+1
, (7)

for any k ≤ k̃ < k + N − 1. With some effort, the set of
inequalities in (7) can be used to obtain a simple relationship:
V (k)

i >V (k)
k+N for all i = k+1, · · · ,k+N −1. That is, the last

term in the optimal J∗k is the smallest of all its terms.
Next, MPC implements the first input u(k)

k from the
optimal sequence, and then moves to the next time-step
k+ 1. At the k+ 1 stage, one possible control sequence is
{u(k)

k+1, · · · ,u
(k)
k+N−1,F(xk+N)}, where the first N − 1 inputs

are the same as the last N − 1 inputs from the previous
optimal sequence, and the last input corresponds to the stable
controller. The cost function now becomes

Jk+1 =V (k)
k+2 + · · ·V (k)

k+N +Vk+N+1 = J∗k −V (k)
k+1 +Vk+N+1.

Again, at time-step k+N, the controller F causes the Lya-
punov function to decrease: Vk+N+1 < V (k)

k+N . Since V (k)
k+N <

V (k)
i for i = k + 1, · · · ,k + N − 1, we specifically obtain

Vk+N+1 < V (k)
k+N < V (k)

k+1. Thus, Jk+1 < J∗k , which indicates
J∗k+1 < J∗k . Also, it is straightforward to show that J∗k = 0
for xk = 0.

Finally, let us argue that J∗k is a Lyapunov function for
the MPC-controlled system. Note that J∗k is a nonnegative
function and that J∗k > 0 if the state is nonzero. Also, we
have shown that J∗k+1 < J∗k . This is sufficient to ensure that J∗k
will asymptotically decrease to the origin. Hence, the MPC-
controlled system is asymptotically stable.

Example 2: Revisiting the Linear System with Actuator
Saturation

We consider the same linear plant with saturation con-
sidered in Example 1. The MPC time horizon is chosen as
N = 2. As discussed in Example 1, the Lyapunov function
associated with the classical low-and-high-gain controller is
Vk = xT

k Pkxk, where Pk is the same solution to the algebraic
Riccati equation as described in Example 1. Then, the
corresponding cost function at time-step k is a summed
Lyapunov function over two time-steps:

Jk =
k+2

∑
i=k+1

xT
i Pixi. (8)

The MPC problem is to minimize Jk subject to the input
saturation constraint only. Figure 4 shows the simulation of
the state trajectories when MPC is applied.
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Fig. 4. The state dynamics for the Lyapunov-cost-based MPC with N = 2.

We observe in Figure 4 that the summed-Lyapunov-
function cost-based method achieves an even faster conver-
gence rate than the first-step-Lyapunov-constraint approach.
This is because the cost function (8) considered here is a
quadratic form of only the states, and the input magnitude
does not impact the cost. Not surprisingly, a design is
obtained that quickly drives the state to the origin, using
relatively large inputs. We note that the summed Lyapunov
cost also permits a short-term increase in the cost even while
guaranteeing stability, which may provide the algorithm with
further freedom to find a low-cost solution.

C. Comparisons

As mentioned above, for many of the classical stability-
achieving MPC methods, stability is guaranteed based on
pre-knowledge of a terminal state constraint. In other words,
if the state can be steered into a “safety” set with known
locally-stabilizing controller during the MPC time horizon,
it will eventually be trapped in this set and converge to
the origin. In practice, such a set, and hence the terminal
constraint, can be difficult to select properly. Furthermore,
the terminal constraint limits the choice of cost functions that
can be optimized, making selection of an appropriate cost
function complicated. The two alternative stabilizing MPC
strategies that we propose also require some pre-knowledge
(i.e. a stabilizing controller and associated global controller
are known). Such pre-knowledge essentially provides MPC
with at least one control sequence that achieves stability,
and yields a design that guarantees eventual decrease of
a Lyapunov function. The benefit of our approach, when
such global stabilization is possible, is the performance
improvement afforded by the freedom to choose the cost
function and time horizon at will (i.e., independently of the
stabilizing controller).

By utilizing the Lyapunov function (in two different ways),
MPC can thus asymptotically bring the state trajectory to the
origin and the cost function is optimized at the same time.
In particular, for some nonlinear system classes (e.g., linear

systems with input saturation), stabilizing controllers and
associated Lyapunov functions are well known. By taking
advantage of the existing knowledge on stabilization of such
systems, we can also implement these two alternative MPC
methods. Meanwhile, if the cost function is properly chosen,
the two MPC methods can achieve faster convergence than
other stable controllers. For example, in Examples 1 and 2,
both MPC methods (Figures 3 and 4) show a faster con-
vergence rate than the classical low-and-high-gain controller
(Figure 1).

It is worth stressing that the mechanisms by which the
two methods achieve stability are different. The first-step-
Lyapunov-constraint-based MPC design forces a decrease
in the Lyapunov function during the first time-step at each
MPC stage. Since only the first time-step’s control is applied
during the MPC stage, system stability is thus guaran-
teed, regardless of the optimization solution. One significant
advantage of this approach is that the cost function can
be selected at will: as long as the Lyapunov function is
decreasing with time, the cost function Jk and the MPC
time horizon N do not impact stability. However, they may
significantly alter dynamic characteristics such as settling
time and other performance metrics. For the second MPC
design, we used a summed Lyapunov function over N time-
steps as the cost function. In this case, the optimization
problem is to minimize the cost function at each time-step.
The decreasing property of the Lyapunov function ensures
that the cost function is also eventually decreasing, though
short-term increases in the cost are allowed.

D. A Combined Version of The Two Design Approaches

Thus far, we have introduced two alternative schemes
for building asymptotically-stable MPC for nonlinear plants
subject to constraints, with both schemes avoiding the use of
terminal constraints and costs. Both are applicable to plants
for which stabilizing controllers are already known, but MPC
solutions are sought to enable more desirable characteristics
such as performance optimization and disturbance rejection.

The first approach, which is based on constraining a
candidate Lyapunov function to decrease during the first
MPC stage, is compelling in that it permits optimization of a
flexible multi-step cost function while guaranteeing stability.
However, the constraint imposed on the optimization is quite
strong, in the sense that the candidate function (which serves
as a Lyapunov function for the known controller) must
decrease at each time-step. As such, the resulting design may
be rather similar in performance to the original controller.
Meanwhile, the second approach – which uses the sum of
a candidate function (which is a Lyapunov function for a
known controller) over the MPC horizon as the MPC cost
function – permits flexibility in the state evolution (i.e., the
function value need not decrease monotonically), but there
is no flexibility in choosing the cost function. Here, we
introduce a methodology which constrains the multi-step sum
of a candidate function (which again is a Lyapunov function
for a known controller) to decrease, while an arbitrary cost
function is optimized. This approach replicates the benefits
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of both previous approaches (flexibility in choosing the cost
function, and looser constraints on the state trajectory). It is
formalized in the following main result:

Theorem 3: Consider a nonlinear system (1) subject to
the input constraint uk ∈ U, and consider applying an N-
step MPC with objective function Jk as defined in (2). Let
uk = F(xk) ∈ U be a stabilizing feedback controller of the
system (1), and let V (xk) ≡ Vk be a Lyapunov function for
the associated closed-loop system. Choose the same positive
function p(xk) as in Theorem 1. For each stage k, given the

current state xk, let Vk
△
=

k+N
∑

i=k+1
Vi be a summed Lyapunov

function over the next N steps when the input sequence
Uk ≡{uk, · · · ,uk+N−1} is applied. Define the MPC solution at
stage k to be the optimal input sequence U∗

k that minimizes
the cost function, subject to Vk −Vk−1 ≤ −p(xk) (for all
k ≥ 1), where Vk−1 is obtained from the previous stage k−1
when the optimal MPC schedule U∗

k−1 is applied. The closed-
loop system is stable when this MPC algorithm is applied.

Proof: First of all, we verify that the MPC optimization
at each stage has a feasible solution. At each stage k ≥ 1,
consider the control sequence Uk = {F(xk), · · · ,F(xk+N−1)},
where each F(·) is the stabilizing controller. Then, we have

Vk =
k+N
∑

i=k+1
V F

i , where V F
k , · · · ,V F

k+N are the values of the

Lyapunov function associated with F(·). Because Vk is the
Lyapunov function of the closed-loop dynamics when the
controller F(·) is applied, we have V F

k+1 −V F
k ≤ −p(xk)

for k ≥ 1. Therefore, Vk −Vk−1 = V F
k+N −V F

k ≤ −p(xk) for
k ≥ 1. Hence, the control sequence {F(xk), · · · ,F(xk+N−1)}
is always a feasible solution to the MPC problem.

Now, we argue that Vk itself is a Lyapunov function for
the closed-loop system when MPC is applied. Noting that
Vk is a summation of a sequence of Lyapunov functions,
Vk > 0 if xk ̸= 0 and Vk = 0 only if xk = 0. Also, Vk is
decreasing along trajectories since the MPC solution forces
Vk −Vk−1 ≤ −p(xk). Therefore, MPC achieves asymptotic
stability.

IV. CONCLUSIONS

We have introduced two alternative stabilizing MPC de-
sign strategies for nonlinear systems with constraints, and a
third approach that combines these two strategies. The two
MPC approaches use the fact that the original system can be
stabilized, and that in fact we know a stabilizing controller
and its associated Lyapunov function. By taking advantage
of this knowledge, MPC can be designed to optimize a
desired cost function while still achieving stabilization. The
simulation results show some interesting features: 1) the
performance of the various MPC approaches (in terms of
the convergence rate) varies with the MPC time horizon and
cost function; 2) if the cost function is chosen properly, the
proposed MPC strategies can provide faster convergence to
the origin than other stable controllers. In practice, if the
MPC time horizon is large, the optimization at each stage
becomes more complex since more free input values need to
be calculated. For real applications where the convergence

rate is important, the length of the MPC time horizon
becomes crucial.
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