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Abstract— This paper proposes a novel model-predictive
control scheme which combines both economic and security
objectives to mitigate the effects of severe disturbances in
electrical power systems. A linear convex relaxation of the
AC power flow is employed to model transmission line losses
and conductor temperatures. Then, a receding-horizon model
predictive control (MPC) strategy is developed to alleviate line
temperature overloads and prevent the propagation of outages.
The MPC strategy seeks to alleviate temperature overloads
by rescheduling generation, energy storage and other network
elements, subject to ramp-rate limits and network limitations.
The MPC strategy is illustrated with simulations of the IEEE
RTS-96 network augmented with energy storage and renewable
generation.

I. INTRODUCTION

Recent large-scale electricity supply failures suggest that
the power grid is being operated closer and closer to its
limits. Without significant capital investment and operational
changes, it will not be able to meet future demand [1].
However, as the amount, type and distribution of control-
lable resources increases, operators will find it increasingly
difficult to determine appropriate responses to unanticipated
events. For example, energy storage facilities connected to
the grid will require consideration of the temporal character-
istics of energy control resources. At a minimum, operators
will require new tools to guide their decision-making. Given
the increased complexity of response actions, a closed-loop
feedback process will become indispensable. Furthermore,
since power systems are suffused with constraints and lim-
its on states and inputs, model predictive control (MPC)
schemes can be particularly useful within the context of
contingency management. For an overview of MPC, see [2].

The first application of MPC to emergency control of
power systems is [3], where voltage stability was achieved
through optimal coordination of load shedding, capacitor
switching, and tap-changer operation. A tree-based search
method was employed to obtain optimal control actions
from discrete switching events. To circumvent tree-based
search methods, the authors in [4], [5] employed trajectory
sensitivities to develop MPC for voltage stability. However,
these methods focus on voltage stability and do not take
into account energy storage (ES) or thermal overloads of
transmission lines.

Recent literature, see [6], [7], focuses on model-predictive
control of electrical systems to alleviate line overloads within
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a standard DC power flow framework. Specifically, the
authors in [7] extend the ideas of [6] to include a linearized
current-based thermodynamic model of conductors, which
enables [7] to set a hard upper limit on conductor temper-
ature to prevent overloads. An auto-regressive model of the
weather conditions (i.e. wind speed and ambient temperature)
near transmission lines allows the controller to utilize dy-
namic ratings and operate the system closer to actual physical
limits than if using standard conservative thermal ratings.
However, the role of ES in improving economical and secure
performance of the system is not considered.

In our previous work [8], a bilevel control scheme was
employed for large-scale energy-hub systems. The first level
operated on an hour-by-hour timescale with a 24-hour pre-
diction horizon and was in charge of economic dispatch.
The second level represented contingency management and
was implemented as a simple shrinking (fixed-point) hori-
zon model-predictive cascade-mitigation scheme, which shed
minimal load in the process of halting the cascade. The
effectiveness of the cascade mitigation process in maxi-
mizing economic and secure operation was due to proper
management of available ES and renewable energy resources.
The impact of different ES scenarios on cascade mitigation
was investigated in [9], where it was concluded that the
MPC scheme alone provided considerable protection against
cascade failures and that appropriate storage schemes further
improved performance.

This paper builds upon the model-predictive cascade miti-
gation scheme presented in [8] by implementing a receding-
horizon MPC scheme1. The MPC recommendations are im-
plemented with AC power flow measurements and explicitly
consider economic set-points (for generation and ES), yet
achieves security by bringing line temperature below limits.
That is, the MPC scheme drives the system to a secure and
economical operating region. In addition, an improvement
over standard linearization techniques for branch currents is
provided in terms of a piece-wise linear convex relaxation
that is proven sufficient to alleviate line temperature over-
loads and mitigate the effects of cascading failures in power
systems.

Section II provides an overview of the interaction and
roles of Level 1 and Level 2 operations. The Level 2
controller model, including the convex relaxation of line
losses is developed in Section III. The model of the actual
power system (i.e. the plant) is discussed in Section IV. In
Section V, the MPC cascade mitigation scheme is simulated

1This contrasts with the fixed horizon MPC scheme of [8].
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Fig. 1: Overview of proposed control scheme showing Level
1 (economical) and Level 2 (corrective) interaction.

on the IEEE RTS-96 network. Finally, Section VI concludes
the paper and suggests future research directions. Due to
space constraints, some of the technical details in this paper
are omitted. Please see [10] for the missing details.

II. SYSTEM OPERATION AND CONTROL

The economic dispatch problem allows computation of an
economically optimal trajectory, which the system operator
tracks via available generation and forecasted load. However,
if a significant disturbance takes place, the operator must
modify his economical trajectory to prevent overloads and
subsequent line outages. This requires the formulation of an
emergency (safety) contingency controller, which responds
quickly to a disturbance and drives the system back to a
secure and economical state, from which economic dispatch
can be re-initiated and normal (economic) operation can
resume. Therefore, a bilevel hierarchical control strategy is
employed for electric power systems.

The “Level 1” controller is enlisted to compute an eco-
nomically optimal schedule for each hour of the day. When
a disturbance takes place (e.g. line outage), Level 1 com-
putes an updated economic reference for the “Level 2”
contingency controller, which is initiated and shifts operation
from economically optimal (hourly) to corrective (minute-
by-minute) in order to alleviate transmission line temperature
overloads. Figure 1 gives an overview of the proposed bilevel
hierarchical operation of the system, and discussion of each
level is included below.

A. Level 1: Optimal Energy Schedule

Over a 24-hour period, an optimal energy schedule de-
termines how to best operate ES, conventional generation,
flexible loads, and available renewable energy based on
forecasts. The Level 1 schedule is similar to standard eco-
nomic dispatch [11] but considers grid storage, renewable
generation, and line losses. The line losses are modeled
with a standard piece-wise linear (PWL) approximation as
proposed in [12], [13].

In Level 1, line flow (i.e. thermal) limits are enforced to
ensure that, under accurate model and forecast scenarios, no
lines are overloaded. The dispatch schedule is computed as
a multi-period quadratic programming (QP) problem whose

objective is to minimize energy costs of conventional gener-
ators:

Cost (fGn) = αGnf
2
Gn + βGnfGn, (1)

where αGn [$/h/pu2] and βGn [$/h/pu] are constant
generator-specific parameters and fGn [pu] is the output
power provided by generator n. The only dynamics
considered for Level 1 are ES dynamics and ramp-rate
limits on generators. Thus, the Level 1 schedule represents
a reference signal with economically optimal system set-
points, xsp, and the operator control actions usp required to
achieve those set-points. The schedule is submitted to the
operator and recomputed every hour. For details on Level 1
formulation, see [8], [14].

B. Level 2: Corrective Control

This lower level generally operates in the background to
track the reference trajectories computed from Level 1 (i.e.
the economic set-point values). The corrective controller em-
ploys a simple linear model of the actual system (i.e. plant),
which is described in detail in Section III, and operates on a
minute-by-minute timescale. If a disturbance takes place (e.g.
line outage), Level 2 computes corrective control actions in
a receding-horizon (i.e. moving horizon) MPC fashion that
steers the system towards a safe and economically optimal
state as provided by a Level 1 post-disturbance schedule
update. The MPC scheme can be summarized as follows:

1) At time k and for the measured system state xmeas
k

and updated reference signals from Level 1, xsp[k] and
usp[k], solve an optimal control problem over fixed
interval [k, k+M ] taking into account the current and
future constraints. This yields a sequence of optimal
open-loop controls: {u[0|k], u[1|k], . . . , u[M − 1|k]}
(i.e. [l|k]→ time k + l).

2) Apply first instance of open-loop sequence: u[0|k].
3) Measure the state reached at time k + 1, xmeas

k+1.
4) Set k = k + 1 and repeat step 1).
The time-scale of Level 2 is on the order of minutes

to capture the dynamics associated with the temperature
of transmission line conductors. At this time-scale, one
must consider ramp-rate limits on conventional generators,
dynamics and power ratings of grid storage devices, and
incorporate the thermal response of overloaded lines. Note
that in Level 2, lines are no longer subject to a hard flow
limit constraint and, instead, the controller seeks to drive
line temperatures below their respective limits and return
generation and storage to economical set-points.

III. CONTROLLER MODEL

The Level 2 MPC controller utilizes a simplified but
sufficient approximate model of the non-convex AC power
system that is amenable to a linear optimization framework.
The index l denotes discrete time-steps of one minute and
the MPC scheme is employed with prediction and control
horizon M . For notational convenience, the time index [l|k]
is replaced with l.
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An electric power system network can be described in a
graph-theoretic sense as consisting of a set of nodes and
edges, (i.e. edge (i, j) ∈ E for nodes i, j ∈ N , graph G =
(E ,N )). Electrical transmission lines have prescribed power
flow limits to prevent dangerous sagging and permanent
damage (e.g. annealing). These limits are related to the
thermal capacity of the conductor and the current flowing
across the line. Generally, there is an inverse relationship
between the current on a line and the expected time it takes
before the line must be taken out of service. In most common
overload scenarios, the time-response is of the order of 10-
20 minutes [15]. To ensure secure line flows, it is desirable
for an operator to enforce flows to stay within apparent
power (MVA) limits. While it is feasible to take such limits
into consideration upon determination of an hourly energy
management schedule (i.e. Level 1), it is unrealistic to expect
such a constraint to be valid immediately after a significant
disturbance (e.g. line outage). This is because flows depend
on the physics of the network and (unlike many digital
systems) cannot be directly guided, which means that line
flows may exceed their limits post-contingency. Therefore,
in Level 2, line overloads are tracked via the conductor
temperature and the controller seeks to alleviate temperature
overloads.

The states and inputs associated with the proposed formu-
lation of a MPC cascade mitigation scheme for an electric
power system are outlined below.

Dynamic states: there are three types of dynamic states:
• ∆T̂ij , line (i, j) conductor temperature overload with

respect to limit, T lim
ij .

• En, state-of-charge (SOC) for ES n
• fGn, power output level for generator n.
Control inputs: the formulation employs six types of

control inputs:
• ∆fGn, change to conventional generator n output level
• f spill

GWn, wind spilled from nominal wind turbine n
• f red

Dn, load reduction from nominal load n
• fQc,n, fQd,n, charge (c), discharge (d) rates for ES n
• ψij , transformer phase shift (rads) for line (i, j).
Uncontrollable inputs: there are three types of forecasted

(uncontrollable) inputs (i.e. disturbances):
• f nom

GWn, nominal available power from wind turbine n
• f nom

Dn , nominal demand for load n
• dij , ambient temperature and solar gain for line (i, j).
Algebraic states: consider six types of algebraic states:
• fij , real power flowing across line (i, j)
• f loss

ij , real power loss from line (i, j)
• θij , phase angle difference between nodes i and j
• fGWn, real power injected from wind turbine n.
• fDn, real power consumed by load n.
• fQn, total power injected or consumed by ES n.
Suppose that controls u(t) are step-wise with step-width

Ts [s], such that u(t) := u[k] for t ∈ [kTs, (k + 1)Ts]. All
discrete dynamics are the result of forward Euler discretiza-
tion with sample time Ts. For each time k, the dynamic states
xmeas
k are measured perfectly and represent the initial state of

the MPC system model. Then, the full MPC formulation is
defined as a quadratic programming (QP) problem:

min
u[l]

∣∣∣∣x[M ]− xsp
k+M

∣∣∣∣
SM

+

M−1∑

l=0

L (x[l], u[l]) (2a)

s.t.

∆Tij [l + 1] = τij∆Tij [l] + ρij∆f
loss
ij [l] + δij∆dij (2b)

En[l + 1] = En[l] + Tsηc,nfQc,n[l] +
Ts
ηd,n

fQd,n[l] (2c)

fGn[l + 1] = fGn[l] + ∆fGn[l] (2d)

0 = Γi

(
fij [l], f

loss,est
ij,k , fGn[l], fDn[l], fQ,n[l]

)
(2e)

0 = aijxijfij [l]− (θij [l]− ψij [l]) (2f)

0 = aijx
2
ijf

loss
ij [l]− rij (θij [l]− ψij [l])2 (2g)

∆T̂ij [l] = max{∆Tij [l], 0} (2h)

fDn[l] = f nom
Dn [l]− f red

Dn[l] (2i)
fQ,n[l] = fQc,n[l] + fQd,n[l] (2j)

fGWn[l] = f nom
GWn[l]− f spill

GWn[l] (2k)

x[l] ∈ X , u[l] ∈ U , z[l] ∈ Z (2l)
x[M ] ∈ Tx (2m)
x[0] = xmeas

k (2n)

for all l ∈ M, where x[l], u[l], and z[l] represent the
dynamic state, control input, and algebraic state variables,
respectively, at predicted time k + l given initial measured
state at time k, xmeas

k . The terms in the summation of the
objective function (2a) are defined by:

L(x[l], u[l]) = ||x[l]− xsp
k+l||Q + ||u[l]− usp

k+l||R, (3)

where ||y||B ≡ y>By and SM � 0, Q � 0, R � 0 are
positive semi-definite weighting matrices.

Expressions (2b), (2c), and (2d) represent the linear
(discrete) dynamics associated with conductor temperature
for line (i, j), SOC for energy storage device n, and the
output level of generator n, respectively. The thermal con-
ductor model is based on the IEEE standard describing the
temperature-current relationship in overhead conductors [16].
Temperature dynamics in (2b) are linearized with respect
to the conductor temperature (T lim

ij [◦C]) at ampacity (I lim
ij

[A]), and conservative ambient parameters. That is, ∆Tij =
Tij−T lim

ij and ∆f loss
ij = f loss

ij Sb/3Lij−Rij(I lim
ij )2, where Sb

[VA/pu] and Lij [m] are power base and conductor length,
respectively, and Rij [Ω/m] is the per-unit length resistance.

Equations (2e), (2f), and (2g) denote nodal power balance
constraints (∀i ∈ N ), DC power flows, and nonlinear DC-
based active line losses, respectively. The scalar values xij
and rij are the per-unit (pu) line reactance and resistance.
Power balance implies Kirchhoff’s 2nd law: that power
flowing into node i must equal the power flowing out of
the node i plus/minus what is injected/consumed at node i,
and is defined as follows:

0 =
∑
j∈ΩN

i

fT
ij [l]−

∑
n∈ΩG

i

fGn[l] +
∑

n∈ΩE
n

fQn[l] +
∑

n∈ΩD
D

fDn[l] (4)
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where fT
ij := fij + 1

2f
loss
ij is the total flow on line (i, j) with

• ΩG
i , set of generators (conventional & wind) at node i

• ΩN
i , set of adjacent nodes to node i

• ΩD
i , set of demands at node i

• ΩE
i , set of energy storage devices at node i.

Note that DC flow and losses, as presented in (2f) and
(2g), reflect application of the “Unified Branch Model” as
developed by [17]. Under the unified model, in-phase (IPT,
ψij = 0) and phase-shifting (PST, aij = 1) transformers and
transmission branches (aij = 1, ψij = 0) can be described
together.

Constraint (2h) defines the main objective of alleviating
temperature overloads while not incentivizing underloading
of lines. That is, the MPC should compute control actions
that only take into account lines with ∆Tij [l] > 0. Keeping
in mind the QP formulation, the temperature objectives of
MPC are defined as follows:

∆T̂ij = max{0, ∆Tij} =⇒
{

0 ≤ ∆T̂ij
∆Tij ≤ ∆T̂ij

. (5)

Algebraic equations (2i), (2j), (2k) define the relationship
between control inputs and power balance from (2e). Specifi-
cally, how load shedding, injections/consumption by storage,
and wind curtailment are coupled with generation and line
flows within the electric network.

The sets defined in (2l) and (2m) are all convex polytypes.
In particular, X 3 xsp is closed and U 3 usp is compact:

X =
{
x
∣∣∣E[l] ∈ [0, E]; fG[l] ∈ [fG, fG]; ∆T̂ [l] ≥ 0

}
(6)

Z = {z | θij [l] ∈ [−θmax, θmax] ⊂ (−π/2, π/2)} (7)

U =
{
u
∣∣∣ f red

D [l] ∈ [0, αD], f spill
GW

[l] ∈ [0, αG], (8)

∆fG[l] ∈ [−Rdown
G , Rup

G ], ψij [l] ∈ [−αP , αP ],

fQc[l] ∈ [0, fQc], fQd[l] ∈ [−fQd, 0]
}

with bounds defined by appropriate parameters.
Finally, the set Tx ⊂ X establishes a convex polytopic

terminal constraint set that forces all line temperatures to be
at or below their limits by the end of the prediction horizon.
The terminal set is defined as follows:

Tx =
{
x
∣∣∣∆T̂ [M ] = 0;E[M ] ∈ [0, E]; fG[M ] ∈ [fG, fG]

}
(9)

The astute reader will have noticed the nonlinear and non-
convex description of active line losses in (2g). In the next
section, a convex relaxation of line losses is developed and
proven to be tight for overloaded lines.

A. Convex Relaxation of Line Losses

To include a meaningful model of losses into the QP
formulation, a PWL relaxation of losses that circumvents
the need for integer optimization is applied, similar to [12],
[13]. To simplify notation in the development of the PWL
approximation, let transformer parameters aij = 1 and
ψij = 0.

The DC loss formulation in (2g) will be approximated
using S linear segments of width ∆θ. Denote the slopes
of each segment αij(s) and define variables θPW

ij (s), ∀s ∈
{1, . . . , S}, such that:

f loss
ij ≈ PWL

[
rij
x2
ij

θ2
ij

]
=

S∑

s=1

αij(s)θ
PW
ij (s), (10)

where PWL[.] is a piece-wise linear approximation. Im-
plementation of PWL[.] within an optimization framework
generally requires binary integers to enforce adjacency con-
ditions for PWL segments [18]. Adjacency conditions ensure
that θPW

ij (s) > 0⇒ θPW
ij (p) = ∆θ, ∀p < s. On the contrary,

if one omits integers and relaxes adjacency conditions, it
implies a strictly continuous LP approximation of line losses
that is equivalent to a bounded convex relaxation of PWL[.].
The linear relaxation is convex since segment slopes are
monotonically increasing for all l (when rij > 0):

(2s− 1)
rij
x2
ij

∆θ = αij(s) < αij(s+ 1) = 2s
rij
x2
ij

∆θ. (11)

The PWL approximation is a relaxation when adjacency
conditions are not enforced, as illustrated in Figure 2a and
by the following:

f loss
ij ≈ PWL[f loss

ij ] ≤
S∑

s=1

αij(s)θ
PW
ij (s) (12)

=
rij
x2
ij

∆θ

S∑

s=1

(2s− 1)θPW
ij (s), (13)

where variables θPW
ij (s) are defined by

|θij | =
S∑

s=1

θPW
ij (s) (14)

with θPW
ij (s) ∈ [0,∆θij ] providing the contribution to |θij |

for each segment s = 1, ..., S of the PWL approximation.
To model the (non-convex) absolute value relation in (14)
within an LP formulation, apply the following relaxation:

θij = θ+
ij − θ−ij ,

S∑

s=1

θPW
ij (s) := θ+

ij + θ−ij (15)

where θ+
ij , θ

−
ij ∈ [0, θmax]. This is equivalent to a bounded

convex relaxation of (14), as demonstrated in Figure 2b and
below:

|θij | = |θ+
ij − θ−ij | ≤ |θ+

ij |+ |θ−ij | = θ+
ij + θ−ij . (16)

Notice that in the absence of enforcing the complementarity
condition: θ+

ij θ
−
ij = 0, the convex relaxation may overesti-

mate |θij | and, hence, overestimate losses.
In summary, the convex relaxation of active line losses is

described by the algebraic states θ+
ij , θ

−
ij , {θPW

ij (s)}Ss=1 and
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f loss
ij

αij(1)

αij(2)

αij(3)

convex
relaxation

3�

s=1

θPW
ij (s)

rijf
2
ij

(a) PWL adjacency re-
laxation

θij

convex
relaxation

3�

s=1

θPW
ij (s)

θmax−θmax

|θij |

(b) Absolute value relaxation

Fig. 2: Relaxing adjacency conditions and absolute value
complementarity condition (i.e. θ+

ijθ
−
ij = 0) for PWL approx-

imation with S = 3. Notice how the PWL segment variables
θPW
ij (s) define the relationship between phase angles and line

losses.

the following expressions, which replace (2g):

f loss
ij :=

rij
aijx2

ij

∆θ

S∑

s=1

(2s− 1)θPW
ij (s) (17a)

S∑

s=1

θPW
ij (s) = θ+

ij + θ−ij (17b)

θij − ψij = θ+
ij − θ−ij (17c)

θ+
ij , θ

−
ij ≥ 0 (17d)

θij − ψij ∈ [−θmax, θmax] (17e)

θPW
ij (s) ∈ [0,∆θ]. (17f)

The linear formulation presented in (17) produces losses
that are greater than or equal to PWL[f loss

ij ]. Equality oc-
curs only when both absolute value complementarity (i.e.
θ+
ij θ
−
ij = 0) and PWL adjacency conditions are satisfied. Un-

der such conditions, the relaxation is considered “tight” and
the model is exact (with respect to PWL[f loss

ij ]). Furthermore,
when the losses are relaxed (i.e. not tight), overestimated
losses are denoted “fictitious losses” as they exist only as
a figment of the MPC controller model and not in the real
system (plant).

To that effect, the MPC scheme must exhibit a tight
approximation of line losses when temperatures are above
their limit to allow overloaded lines to be driven below their
limit. The following theorem describes sufficient conditions
that enable a tight approximation.

Theorem III.1 (Temperature & Convex Relaxation)
Assume rij > 0 and losses in (2e) are fixed to an estimated
value over duration of the prediction horizon. If the
temperature of line (i, j) ∈ A exceeds its limit at time l+ 1,
then the convex relaxation is tight with respect to line (i, j)
for all previous time-steps. That is, if ∃l ∈ {0, . . . ,M − 1}
and (i, j) ∈ A such that ∆Tij [l + 1] > 0, then adjacency
conditions are satisfied and θ+

ij [p]θ
−
ij [p] = 0 ∀p ≤ l, which

implies that the convex relaxation associated with line (i, j)
is tight for all time p ≤ l.

Proof: The full proof is given in [10]. To sketch the
proof, let {∆Tij [l]}Ml=1 be an optimal MPC temperature
trajectory for line (i, j) and assume ∃l ∈ {0, . . . ,M−1} such
that ∆Tij [l+1] > 0 but the solution is not tight for some p ≤
l. That is, losses are overestimated via the convex relaxation
(i.e. either θ+

ij [p]θ
−
ij [p] > 0 and/or adjacency conditions are

not satisfied in the PWL relaxation, see Figure 2). Then,
a feasible solution can be derived which is identical to the
optimal solution except that it enforces a tight formulation
at time p and reduces line losses accordingly, say from
f loss
ij,relax[p] > f loss

ij,tight[p]. Decreased losses at time p result in
lower temperatures from time p+ 1 onwards, which implies
that the temperature overload at time l + 1 must be less
under the tight feasible solution. Since the objective function
penalizes ∆T̂ij [p], the feasible tight trajectory embodies a
lower cost solution than the relaxed optimal trajectory. This
is a contradiction. Thus, if (i, j) has a temperature overload
at time l + 1, the formulation is locally tight ∀ p ≤ l.

Given the complete controller model description provided
by (2), (17), the state and input vectors can be collected
together as:

x = col{∆T̂ , E, fG} (18a)

u = col{∆fG, f spill
GW

, f red
D , fQc, fQd , ψ} (18b)

z = col{θ, θ+, θ−, θPW , f, f loss, fD, fGW , fQ}. (18c)

B. Objective Weighting Matrices

One of the objectives of the MPC scheme is to determine
optimal control actions to alleviate temperature overloads,
∆T̂ij . Described below are the multiple objectives that the
MPC balances to compute optimal corrective control actions:

po(∆T̂ij [l])
2 - line temperature overload

pg(fGn[l]− f sp
Gn)

2 - deviation from reference output
pr(∆fGn[l]−∆f sp

Gn)2 - changes in generation ramping
pe(En[l]− Esp

n )2 - deviation from reference SOC
pq(fQd/cn[l]− f sp

Qd/cn)2 - changes in reference dis/charging
ps(f

red
Dn[l])2 - load control

pw(f spill
GWn

[l])2 - wind spill
pp(ψij [l]− ψsp

ij)
2 - deviation from PST reference

The reference values above, denoted (.)sp, refer to the
economically optimal set-points computed in Level 1. To pri-
oritize objectives, the coefficients p(.) > 0 take on different
values. However, the main objective is to drive temperatures
below their limits.

Based on the state and input definitions in (18), the
weighting matrices in (2a) are given by:

Q = diag{poI,
pe

10M2
I,

pg
10M2

I} � 0 (18d)

SM = diag{poI, peI, pgI} � 0 (18e)
R = diag{prI, pwI, psI, pqI, pqI, ppI} � 0. (18f)

where I represents square identity matrices of appropriate
dimensions and diag{.} is a block-diagonal matrix. Note
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that the terminal cost matrix, SM , penalizes deviations from
economical references for storage SOC and conventional
generation states more severely than Q. This is because, the
MPC does not care how these reference signals are tracked,
only that they are being considered by the end of the horizon.

Remark III.2 (From DAE to ODE) The DAE system pre-
sented in (2) cannot be written explicitly as an ODE, because
there is no bijective mapping from algebraic to dynamic
states. That is, the convex relaxations employed in this MPC
model beget multiple optimal algebraic solutions for lines
that satisfy ∀l, ∆T̂ij [l] = 0.

IV. PLANT (ACTUAL) MODEL

The AC power flow is generally accepted as a valid rep-
resentation of the actual physical power system. Therefore,
the control actions recommended by the MPC scheme, which
utilizes the strictly linear model described in Section III, is
applied to an AC model of the system at each time-step.
In addition, resulting losses from the full AC power flow
are utilized in a non-linear temperature model to capture
the effects of MPC recommendations on the actual system.
Finally, the actual energy storage model does not allow for
simultaneous charging and discharging in the same time-step.

Excessive line temperature (and resulting sag or possi-
ble annealing) may eventuate in line-tripping. The higher
the temperature, the more likely line tripping becomes. To
capture the inverse relationship between temperature and
expected-time-to-trip in the actual system, the exponential
probability distribution function is utilized and the condi-
tional probability of tripping line (i, j), given line tempera-
ture at time k, is defined as follows:

P (line (i, j) trips at k) = 1− e−λ(∆Tij [k])Ts (19)

with rate parameter λ > 0 determined based on the short-
term (15-minute) emergency (STE) rating. The proposed
model employs λ(∆Tij [k]) = (∆Tij [k]/30)6.

Furthermore, considering over-current protection on trans-
mission lines (for large overloads), an additional condition
is added to the probabilistic line-tripping model:

P
(

line ij trips at k
∣∣|f ac

ij [k]| ≥ f lim
ij Ω

)
= 1 (20)

where f ac
ij [pu] is a line’s AC power flow in the actual system

and Ω is an upper bound on allowable relative instantaneous
overload. For example, if Ω = 3, then a line flow of 300%
of f lim

ij automatically and immediately trips line (i, j).

V. NUMERICAL EXAMPLE: IEEE RTS-96

This example will highlight the advanced contingency
management available from the proposed hierarchical control
scheme. The MPC scheme is applied to an augmented
version of the IEEE RTS-96 power system test-case, which
is described in full details in [19] (i.e. load, generator,
transmission, transformer, and bus parameters) and illustrated
in Figure 3. However, the RTS-96 system is designed as
a highly reliability system with large nominal thermal rat-
ings. To bring the system closer to its limits and engender

Modified RTS96 Network with Storage and Wind
Buses: Blue = Gen, Maize = Load, Green = Hub, Red = Tripped, Aqua = Xfmr
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Fig. 3: Augmented IEEE RTS-96 one-line diagram with
storage (E) wind (W). Specific buses are denoted with three
digits. Bus types are indicated by color: generator (blue), load
(yellow), and through-put (white). Edges represent transmis-
sion lines (black) and transformers (gray). The disturbance
(i.e. tripped lines) is displayed with a star. Storage and wind
nodes are attached to buses as indicated, but those edges do
not represent transmission lines.

worthwhile scenarios, thermal ratings have been reduced by
40%, which means that line temperature limits are reduced
to the range of 60-70◦C. Furthermore, ramp-rates have
been reduced by 82.5% to enhance the role of storage in
congestion management and highlight Level 2 performance.
For more details, please see [10].

To benchmark the performance of the proposed MPC-
based scheme, a base-case controller is employed.

A. Base-case Controller

The base-case controller estimates human control operator
behavior during a large disturbance. Modeling a human op-
erator is non-trivial, however, the crude base-case presented
here captures the underlying goals of the operator [20], which
are implemented within an MPC-based framework:

1) Consider power overloads and not temperature.
2) Employ power transmission distribution factors

(PTDFs), generation shift factors (GSFs), and
transmission loading relief (TLR) procedures to make
control decisions to reduce overloads.

3) Energy storage devices are not available for control.
• Base-case implementation

– Replace ∆T̂ [l] with static power overload:
ôij [l] = 10 max{0, (|fij [l]|+ 1

2f
loss,est
ij [k])/f lim

ij −1}.
That is, if a line is 10% overloaded, ôij = 1.0.

– Consider PTDFs, GSFs, and TLR procedures
implicitly as a 1-step MPC process akin to
Level 2 (i.e. set M = 1) but include overloads
ôij [0|k], ôij [1|k] in objective and terminal costs.

– Ignore terminal constraints Tx.
– Set Rbase = R, Qbase = SM , SM,base = SM

The objective weighting factors utilized in MPC Level 2
and base-case are presented in Table I. Note that overload
coefficient, po, for the base-case, reflects power overload
(ôij) and not temperature. Also, the storage control coef-
ficient for the base-case, pq = ∞, is to reflect that this
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TABLE I: Objective function coefficients for Q,R, SM ma-
trices for MPC and base-case systems.

Model po pe pg pr pw ps pq pp

Lvl 2 1 100 100 [0.05,1] 0.05 100 0.1 0.05
Base 5 0.01 0.01 [0.01,0.1] 0.10 200 ∞ 0.1

resource is not available in decision-making. Control changes
to generator inputs, ∆fG, are penalized with factors pr =
max{0.05, αG/maxG {αG}} in Level 2 while for the base-
case: pr = 0.1 max{0.1, αG/maxG {αG}}. Recall, αG is
given by cost-curve (1). The cost-curve parameters (αG, βG)
utilized in this example are from [21].

Since longer timescales are associated with the early stages
of a cascade failure, it allows for significant computation
immediately following a disturbance. Therefore, the updated
economically optimal set-points are computed by Level 1
immediately following the disturbance.

B. Simulation Results

The RTS-96 model is simulated according to Level 1,
Level 2, and base-case implementations. Initially, the system
is operated economically according to Level 1. However, at
hour 18 when available wind power is low and demand is
high, a two-line outage (i.e. disturbance) trips the two parallel
lines 315-321. Performance and behavior of Level 2 MPC
(with M = 10, 20, 40) and the base-case are discussed below.

The two-line outage, at hour 18, causes transmission lines
316-317 and 223-318 to become heavily overloaded. The
Level 2 MPC scheme alleviates the temperature overloads
and brings the system safely to the updated economic set-
points provided by Level 1. However, the base-case cannot
relieve the overloads fast enough and undergoes a cascading
failure, which evolves as follows:
• k = 9: line 316-317 trips with ∆Tij [9] = 12.6 ◦C.
• k = 11: line 223-318 trips with ∆Tij [11] = 16.5 ◦C.
• k = 12: Area 3 islands. Blackout for small island.
• k > 12: Load shed & line overloads. Non-economical.
In the base-case, islanding causes a large long-lasting

mismatch between generation and load in the small 4-node
island. It is reasonable to conclude that the 4-node island
will undergo severe frequency deviations and experience a
blackout. Since frequency response is not considered in this
study, the large island may overcome its smaller mismatch
but, nonetheless, it cannot return to economically optimal
operations and sheds up to 12% of total load during 90
minutes.

The actual maximum line temperature overload
maxij{∆T̂ij [k]} for the base-case and each MPC run
is illustrated in Figure 4. Note that MPC is able to avoid
high temperature overloads and drive the temperatures
below their respective limits by minute k ≈ 40. After this
time, radial line 307-308 hovers 0.6◦C above its temperature
limit. However, this is due to model inaccuracy regarding the
non-linear temperature and AC power system models in the
plant and the linear temperature and DC models employed
in Level 2 and Level 1. In particular, the temperature
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Fig. 4: Maximum line temperature for the base-case and
different MPC runs.

deviations above limits are associated with the 138 kV lines
that exhibit xij/rij < 4, which engenders discrepancies in
the DC approximation of an AC system. Essentially, the
DC model incorrectly informs the controller that losses
are low enough that the temperature will drop below its
limit in the next time-step under negligible control action.
Then, the AC power flow yields higher-than-DC losses
and temperature stays above limit. The controller repeats
these incorrect estimates until control action is required
or load-patterns autonomously reduce line loadings. Power
flows associated with the model inaccuracy are, however,
less than 5% above f lim

ij for k > 40, which is still within
expected DC approximation error levels [22].

Comparing the MPC runs to the base-case, a major factor
for the improved performance are load and storage control.
Namely, by initially shedding no more than 4% of the
aggregate load and curtailing reference storage injections,
the MPC brings temperatures within limits. For k > 120,
storage injections in the MPC runs exceed reference levels
slightly to bring SOC back to economical reference levels
while wind curtailment is employed as cheap control to keep
temperatures below limits under model inaccuracy.

The MPC scheme performs a balancing act between eco-
nomically optimal performance and ensuring safety criteria.
This balance is highlighted in Figure 5, where the cost of
generation is illustrated for MPC runs and the base-case. To
ensure safety, the different MPC cases initially sacrifice eco-
nomical optimality by deviating from the Level 1 set-points.
For k > 120, the system returns to economically optimal
levels with model inaccuracy causing minor discrepancies.

It is worthwhile to point out the effect on performance
from varying the prediction horizon. By employing the ter-
minal constraint Tx, MPC is required to bring temperatures
within their limits by the end of the horizon. Therefore, as
the prediction horizon decreases, the MPC scheme utilizes
more aggressive controls, but the temperature overloads and
the departures from economic references (as established by
generation costs) are, generally, less severe.

Finally, to illustrate the locally tight convex relaxation
from Theorem III.1, Figure 6 presents the adjacency,
absolute-value, and temperature conditions for MPC predic-
tions [l|1] (i.e. l ∈ {0, 1, . . . ,M − 1} given k = 1) with
prediction horizon M = 40. Notice, how any predicted
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temperature overloads at time l+ 1 yields a tight relaxation
for all previous time-steps p ≤ l. For example, line 119
(223-318) is predicted to have a temperature overload for
l ∈ [9, 25] and adjacency and absolute values relaxations are
tight for all l ≤ 24. This is exactly as stated in the theorem.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a model predictive control (MPC)
approach to managing contingencies in electric power sys-
tems. A bilevel hierarchical control scheme is proposed
for balancing economic and security objectives. The upper
level establishes economic set-points, whilst the lower level
exploits the thermal inertia of transmission line conductors to
manage post-contingency overloads. The nonlinear relation-
ship between AC power flow and line temperature is captured
via a convex relaxation of a PWL formulation for line losses.
The MPC scheme is illustrated with an example.

Future work will focus on formally guaranteeing stability
of the proposed MPC scheme. In addition, since topological
and operational disturbances in large power systems are
not generally system-wide, non-centralized schemes will be
considered to ensure reasonable computational requirements.
This implies a need for adapting control areas based on
sensitivities and the nature of the contingencies [23], [24].
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