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Convex Relaxations of Optimal Power Flow
Problems: An Illustrative Example

Daniel K. Molzahn, Member, IEEE, and Ian A. Hiskens, Fellow, IEEE

Abstract—Recently, there has been significant interest in con-
vex relaxations of the optimal power flow (OPF) problem. A
semidefinite programming (SDP) relaxation globally solves many
OPF problems. However, there exist practical problems for which
the SDP relaxation fails to yield the global solution. Conditions
for the success or failure of the SDP relaxation are valuable for
determining whether the relaxation is appropriate for a given OPF
problem. To move beyond existing conditions, which only apply
to a limited class of problems, a typical conjecture is that failure
of the SDP relaxation can be related to physical characteristics
of the system. By presenting an example OPF problem with two
equivalent formulations, this paper demonstrates that physically
based conditions cannot universally explain algorithm behavior.
The SDP relaxation fails for one formulation but succeeds in
finding the global solution to the other formulation. Since these
formulations represent the same system, success (or otherwise) of
the SDP relaxation must involve factors beyond just the network
physics. The lack of universal physical conditions for success of
the SDP relaxation motivates the development of tighter convex
relaxations capable of solving a broader class of problems. Tools
from polynomial optimization theory provide a means of develop-
ing tighter relaxations. This paper uses the example problem to
illustrate relaxations from the Lasserre hierarchy for polynomial
optimization and a related “mixed semidefinite/second-order cone
programming” hierarchy.

Index Terms—Convex relaxation, global solution, optimal
power flow, power system optimization.

I. INTRODUCTION

THE optimal power flow (OPF) problem determines a min-
imum cost operating point for an electric power system

subject to both network constraints and engineering limits. Typ-
ical objectives are minimization of losses or generation costs.
The OPF problem is generally non-convex due to the non-linear
power flow equations [1] and may have local solutions [2]. OPF
solution techniques are therefore an ongoing research topic.
Many techniques have been proposed, including successive
quadratic programs, Lagrangian relaxation, and interior point
methods [3]–[7].
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There has been significant interest in convex relaxations of
OPF problems. Convex relaxations lower bound the objective
value, can certify infeasibility, and, in many cases, globally
solve OPF problems. In contrast, traditional OPF solution meth-
ods may find the global optimum [8] but provide no guarantee
of doing so, do not provide a measure of solution quality
and cannot provably identify infeasibility. The capabilities of
convex relaxations thus supplement traditional techniques.

For radial systems that satisfy certain non-trivial technical
conditions [9], a second-order cone programming (SOCP) re-
laxation is provably exact (i.e., the lower bound is tight and
the solution provides the globally optimal decision variables).
For more general OPF problems, a semidefinite programming
(SDP) based Shor relaxation [10] is often exact [11], [12].
Active research in this area includes developing tighter and
faster relaxations with improved modeling flexibility as well as
distributed solution algorithms [13]–[25].

Despite success in globally solving many practical OPF
problems [12], [13], there are problems for which the SDP
relaxation of [12] is not exact [2], [13], [26], [27]. There is sub-
stantial interest in developing sufficient conditions for exactness
of the SDP relaxation. Existing conditions include requirements
on power injection, voltage magnitude, and line-flow limits, and
either radial networks (typical of distribution systems), appro-
priate placement of controllable phase-shifting transformers, or
a limited subset of mesh network topologies [9], [28].

The SDP relaxation globally solves many OPF problems
which do not satisfy any known sufficient conditions [9], [28].
In other words, the set of problems guaranteed to be exact
by known conditions is much smaller than the actual set of
problems for which the relaxation is exact. This suggests the
potential for developing less stringent conditions. It is natural to
speculate that some physical characteristics of an OPF problem
may govern such conditions. With solutions close to voltage
collapse, this speculation is supported by several problems for
which the SDP relaxation is not exact [27].

This paper’s first contribution is an example that dampens
enthusiasm for this avenue of research. We consider a small
problem, first presented in [29], with two equivalent formu-
lations. The SDP relaxation globally solves one formulation
but fails to solve the other. Since both formulations represent
the same system, strictly physically based conditions for the
success of the relaxation cannot differentiate between these
formulations.1 The feasible spaces of both problems illustrate

1See also [28] for an example where different line-flow limit formulations
determine success or failure of the SDP relaxation.
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why the SDP relaxation succeeds for one formulation but fails
for the other.

The small example considered in this paper is relatively
simple. In fact, this example “OPF” problem reduces to finding
the minimum loss solution to power flow constraint equations
for a specified set of power injections and voltage magnitudes.
Thus, this example further demonstrates that the SDP relaxation
may fail even for simple OPF problems.

The lack of universal, physically based conditions for de-
termining success or failure of the SDP relaxation of [12]
motivates the development of tighter convex relaxations. Recent
research [30]–[34] exploits the fact that the OPF problem is
a polynomial optimization problem in terms of the complex
voltage phasors. Separating the complex voltages into real and
imaginary parts yields a polynomial optimization problem in
real variables. This facilitates the application of the Lasserre
hierarchy of “moment” relaxations for real polynomial opti-
mization problems, which take the from of SDPs [35]. The
first-order moment relaxation is equivalent to the SDP relax-
ation of [12]. Higher-order moment relaxations thus generalize
the SDP relaxation of [12], enabling global solution of many
problems for which the SDP relaxation of [12] is not exact
[30]–[34].

The ability of the moment relaxations to solve a broader
class of OPF problems comes at a computational cost: the
matrices grow rapidly with both relaxation order and system
size. Ameliorating the former challenge, low relaxation orders
suffice for global solution of many problems. Several recent
developments address the latter challenge. First, by exploiting
sparsity and selectively applying the higher-order constraints to
specific buses, loss-minimization problems with thousands of
buses are computationally tractable [33], [34]. Second, rather
than separating complex voltages into their real and imaginary
parts, a hierarchy built directly from the complex formulation
is computationally advantageous [36]. Third, emerging SDP
solution algorithms may enable faster computation of the mo-
ment relaxations [21], [37], [38]. Fourth, a “mixed SDP/SOCP”
hierarchy implements the first-order constraints with an SDP
formulation, but the higher-order constraints are relaxed to an
SOCP formulation [39]. The less computationally intensive
SOCP constraints often reduce solution times while still yield-
ing global optima.

The second contribution of this paper is a tutorial-style
review of the moment relaxation and mixed SDP/SOCP hierar-
chies in the context of the small example system. By illustrating
the corresponding feasible spaces, the small example system is
used to demonstrate the varying capabilities of the relaxations
to globally solve OPF problems. Further, presentation of the
matrices and related discussion for the small example system
clarify implementation details regarding the various relaxation
hierarchies.

This paper is organized as follows. Section II introduces
the OPF problem. Section III describes the SDP relaxation of
[12]. Section IV presents the example OPF problem which
demonstrates that factors beyond the problem physics deter-
mine success or failure of the SDP relaxation. Sections V and
VI provide the moment relaxations using SDP constraints and
the mixed SDP/SOCP hierarchy, respectively, with the problem

Fig. 1. Line model.

in Section IV providing an illustrative example. Section VII
concludes the paper.

II. OPTIMAL POWER FLOW PROBLEM

We first present an OPF formulation in terms of rectangular
voltage coordinates, active and reactive power injections, and
apparent power line flow limits. Consider an n-bus system with
nl lines, where N = {1, . . . , n} is the set of buses, G is the
set of generator buses, and L is the set of lines. The network ad-
mittance matrix is Y = G+ jB, where j denotes the imaginary
unit. Let PDk + jQDk represent the active and reactive load
demand and Vk = Vdk + jVqk the voltage phasors at each bus
k ∈ N . Superscripts “max” and “min” denote specified upper
and lower limits. Buses without generators have maximum and
minimum generation set to zero.

Define a function for squared voltage magnitude:

fV k(Vd, Vq) := V 2
dk + V 2

qk. (1)

The power flow equations describe the network physics:

fPk(Vd, Vq) :=Vdk

n∑
i=1

(GkiVdi −BkiVqi)

+ Vqk

n∑
i=1

(BkiVdi +GkiVqi) + PDk

(2a)

fQk(Vd, Vq) :=Vdk

n∑
i=1

(−BkiVdi −GkiVqi)

+ Vqk

n∑
i=1

(GkiVdi −BkiVqi) +QDk.

(2b)

Define a convex quadratic cost of active power generation:

fCk(Vd, Vq) := ck2 (fPk(Vd, Vq))
2 + ck1fPk(Vd, Vq) + ck0.

(3)

We use a line model with an ideal transformer that has a
specified turns ratio τlmejθlm : 1 in series with a Π circuit with
series impedance Rlm + jXlm (equivalent to an admittance of
glm + jblm := 1/(Rlm + jXlm)) and total shunt susceptance
jbsh,lm. (See Fig. 1.) The line flow equations are:

fPlm(Vd, Vq) :=

(
V 2
dl + V 2

ql

)
glm

τ2lm
+(VdlVdm+VqlVqm)

× (blm sin(θlm)−glm cos(θlm)) /τlm

+ (VdlVqm−VqlVdm)

× (glm sin(θlm)+blm cos(θlm)) /τlm

(4a)
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fQlm(Vd, Vq) :=−
(
V 2
dl + V 2

ql

)(
blm +

bsh,lm
2

)
/τ2lm

+ (VdlVdm+VqlVqm)

× (blm cos(θlm) +glm sin(θlm))/τlm

+ (VdlVqm−VqlVdm)

× (glm cos(θlm)−blm sin(θlm))/τlm

(4b)

fSlm(Vd, Vq) := (fPlm(Vd, Vq))
2 + (fQlm(Vd, Vq))

2

(4c)

fPml(Vd, Vq) :=
(
V 2
dm + V 2

qm

)
glm − (VdlVdm+VqlVqm)

× (glm cos(θlm)+blm sin(θlm))/τlm

+ (VdlVqm−VqlVdm)

× (glm sin(θlm)−blm cos(θlm))/τlm

(4d)

fQml(Vd, Vq) :=−
(
V 2
dm + V 2

qm

)(
blm +

bsh,lm
2

)

+ (VdlVdm+VqlVqm)

× (blm cos(θlm)−glm sin(θlm))/τlm

+ (−VdlVqm+VqlVdm)

× (glm cos(θlm)+blm sin(θlm))/τlm

(4e)

fSml(Vd, Vq) := (fPml(Vd, Vq))
2 + (fQml(Vd, Vq))

2 . (4f)

The OPF problem is:

min
Vd,Vq

∑
k∈G

fCk(Vd, Vq) subject to (5a)

Pmin
Gk � fPk(Vd, Vq) � Pmax

Gk ∀k ∈ N (5b)

Qmin
Gk � fQk(Vd, Vq) � Qmax

Gk ∀k ∈ N (5c)
(
V min
k

)2 � fV k(Vd, Vq) � (V max
k )2 ∀k ∈ N (5d)

fSlm(Vd, Vq) � (Smax
lm )2 ∀(l,m) ∈ L (5e)

fSml(Vd, Vq) � (Smax
lm )2 ∀(l,m) ∈ L (5f)

Vq1 =0. (5g)

Constraint (5g) sets the reference bus angle to zero.

III. SEMIDEFINITE RELAXATION OF THE OPF PROBLEM

This section describes an SDP relaxation of the OPF problem
adopted from [12], [13], [15]. We use notation from [30], [33]
corresponding to the moment relaxations that will be introduced
in the following sections. We begin with several definitions.
Define the vector of real decision variables x̂ ∈ R

2n as

x̂ := [Vd1 Vd2 . . . Vqn]
� (6)

where (·)� denotes the transpose.2 A monomial is defined using
a vector α ∈ N

2n of exponents: x̂α := V α1

d1 V α2

d2 · · ·V α2n
qn . A

polynomial is g(x̂) :=
∑

α∈N2n gαx̂
α, where gα is the real

scalar coefficient corresponding to the monomial x̂α.
Define a linear functional Ly{g} which replaces the mono-

mials x̂α in a polynomial g(x̂) with real scalar variables y:

Ly{g} :=
∑

α∈N2n

gαyα. (7)

For a matrix g(x̂), Ly{g} is applied componentwise to each
element of g(x̂).

Consider, for example, the vector x̂ = [Vd1 Vd2 Vq2]
�

corresponding to the voltage components of a two-bus system,
where the angle reference (5g) is used to eliminate Vq1. Con-
sider also the polynomial g(x̂) = (V max

2 )2 − V 2
d2 − V 2

q2. (The
constraint g(x̂) � 0 forces the voltage magnitude at bus 2 to
be less than or equal to V max

2 .) Then Ly{g} = (V max
2 )2y000 −

y020 − y002. Thus, Ly{g} converts a polynomial g(x̂) to a
linear function of y.

The convex quadratic cost functions (3) for each generator
k ∈ G are implemented by minimizing an auxiliary variable ωk

constrained by the SOCP formulation in (8e) [15].
The SDP relaxation of (5) is:

min
y,ω

∑
k∈G

ωk subject to (8a)

Pmin
Gk �Ly{fPk} � Pmax

Gk ∀k ∈ N (8b)

Qmin
Gk �Ly{fQk} � Qmax

Gk ∀k ∈ N (8c)

(
V min
k

)2 �Ly{fV k} � (V max
k )2 ∀k ∈ N (8d)

(1− ck1Ly{fPk} − ck0 + ωk)

�
∥∥∥∥
[
(1 + ck1Ly{fPk}+ ck0 − ωk)

2
√
ck2Ly{fPk}

]∥∥∥∥
2

∀k ∈ G

(8e)

Smax
lm �

∥∥∥∥
[
Ly{fPlm}
Ly{fQlm}

]∥∥∥∥
2

∀(l,m) ∈ L (8f)

Smax
lm �

∥∥∥∥
[
Ly{fPml}
Ly{fQml}

]∥∥∥∥
2

∀(l,m) ∈ L (8g)

Ly{x̂x̂�} � 0 (8h)

y00...0 =1 (8i)

y��...�ρ�...� =0 ρ = 1, 2, (8j)

where � 0 indicates positive semidefiniteness of the corre-
sponding matrix and ‖ · ‖2 denotes the two-norm. The apparent
power line flow constraints (5e) and (5f) are implemented
with the SOCP formulations in (8f) and (8g). See [13] for a
more general formulation of the SDP relaxation that considers
the possibilities of multiple generators per bus and convex

2The ability to arbitrarily set an angle reference in the OPF problem enables
the choice of one arbitrarily selected variable. We choose Vq1 = 0 as in (5g).
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piecewise-linear generation costs. The constraint (8i) enforces
the fact that x̂0 = 1. The constraint (8j) corresponds to the angle
reference Vq1 = 0; the ρ in (8j) is in the index n+ 1, which
corresponds to the variable Vq1. Note that the angle reference
can alternatively be used to eliminate all terms corresponding
to Vq1 to reduce the size of the semidefinite program.

If the condition rank(Ly{x̂x̂�}) = 1 is satisfied, the relax-
ation is “exact” and the global solution to (5) is recovered
using an eigen-decomposition. Consider a solution to (8) where
the rank of the matrix Ly{x̂x̂�} is equal to one with non-
zero eigenvalue λ and associated unit-length eigenvector η. The
globally optimal voltage phasor solution to (5) is

V ∗ =
√
λ
(
η1:n + jη(n+1):2n

)
(9)

where subscripts denote vector entries in MATLAB notation.
The computational bottleneck of the SDP relaxation is the

constraint (8h), which enforces positive semidefiniteness of a
2n× 2n matrix. Solving the SDP relaxation of large OPF prob-
lems requires exploiting network sparsity. A matrix comple-
tion decomposition exploits sparsity by converting the positive
semidefinite constraint on the large matrix in (8h) to positive
semidefinite constraints on many smaller submatrices. These
submatrices are defined using the cliques (i.e., completely con-
nected subgraphs) of a chordal extension of the power system
network graph. See [13], [15], [40] for a full description of
a formulation that enables solution of (8) for systems with
thousands of buses.

IV. EQUIVALENT FORMULATIONS OF A

SMALL EXAMPLE PROBLEM

The SDP relaxation (8) globally solves many OPF problems
which do not satisfy any known sufficient conditions guarantee-
ing exactness [9], [28], indicating the potential for development
of broader sufficient conditions. One speculation is that some
physical characteristic of the OPF problem predicts the relax-
ation’s success or failure.

The following example shows that strictly physically based
sufficient conditions are unable to definitively predict success
or failure of the SDP relaxation for all OPF problems. The
example problem has equivalent two- and three-bus formula-
tions. The relaxation globally solves the two-bus system. For
the three-bus system, however, the relaxation only gives a strict
lower bound on the objective value rather than the solution.

A. Example Problem

Consider the two- and three-bus systems in Figs. 2 and 3. For
both systems, the voltage magnitudes at buses 1 and 2 are
fixed to 1.0 and 1.3 per unit, respectively, and the active power
injection at bus 2 is fixed to zero.3 There are no limits on the
reactive power injections at buses 1 and 2. For bus 3 in the
three-bus system, the active and reactive power injections are
constrained to zero and there is no voltage magnitude con-
straint. With the active power injections at the other buses fixed

3Equality constraints are achieved by setting the upper and lower limits equal
(e.g., V max

1 = V min
1 = 1 per unit).

Fig. 2. Two-bus system.

Fig. 3. Three-bus system.

TABLE I
SOLUTIONS TO TWO- AND THREE-BUS SYSTEMS (PER UNIT)

to zero, the objective function minimizes active power injection
at bus 1.

The resistance-to-reactance ratios for lines in both the two-
and three-bus systems are somewhat atypical for transmis-
sion systems, but are not particularly unusual for more lossy
networks like subtransmission and distribution systems [41].
Similar characteristics to these systems may also occur when
using “equivalencing” techniques to reduce larger systems to a
smaller representative network [42], [43].

With two quantities specified at each bus k along with two
degrees of freedom (Vdk and Vqk), the feasible space for the
OPF problem (5) for this example consists of a set of isolated
points that are the solutions of the power flow equations. The
OPF finds the solution point that has the lowest active power
losses. Here, this solution corresponds to the “high-voltage/
small angle-difference” power flow solution, which is com-
monly calculated using a Newton-Raphson iteration initialized
from a flat start (i.e., voltages of 1∠0◦).4 In this paper, however,
we use this problem to explore the properties of the convex
relaxations.

Since bus 3 in the three-bus system has zero power injections,
it can be eliminated by adding R13 + jX13 and R23 + jX23 to
yield an equivalent two-bus system with two parallel lines.5 The

4For both two- and three-bus systems, (5) has one other local minimum: there
exists one “low-voltage/large angle-difference” power flow solution with larger
losses.

5Elimination of bus 3 requires that the zero power injection at this bus is
achieved using an “open circuit to ground.” A “short circuit to ground” could
also yield zero power injections. However, a short circuit at bus 3 results in
infeasibility of the power flow equations for the loading specified in Fig. 3.
Thus, the feasible space of the two-bus system in Fig. 2 can be directly mapped
to the feasible space of the three-bus system in Fig. 3.
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Fig. 4. Projection of the two-bus system’s feasible space. The red squares at the intersection of the black oval and red dashed line are the feasible space for the
OPF problem (5). The blue region, including the black oval boundary, is the feasible space for the SDP relaxation (8). The orange star is the solution to the SDP
relaxation, which is the global optimum for the two-bus system. (a) Projection of the two-bus system’s feasible space. (b) Zoomed view of (a).

Fig. 5. Projection of the three-bus system’s feasible space. The feasible space for the OPF problem (5) is denoted by the red squares at the intersection of the red
dashed line and the region formed by the colored lines in (a) (the black line in (b)). The blue region is the feasible space for the SDP relaxation (8). The orange
star is the solution to the SDP relaxation, which does not match the global solution at the leftmost red square. (a) Projection of the three-bus system’s feasible
space. (b) Projection of the three-bus system’s feasible space with P3 = 0.

parallel combination of these lines gives the line impedance
R′

12 + jX ′
12 shown in the two-bus system of Fig. 2. Thus,

the OPF problems for the two- and three-bus systems are
equivalent. The voltage at bus 3 in the three-bus system can be
directly computed from the solution to the two-bus system. The
global solutions are given in Table I.

The SDP relaxation globally solves the two-bus system.
However, for the three-bus system, the relaxation only pro-
vides a lower bound that is 22% less than the true global
optimum (i.e., there exists a large relaxation gap). We note that
MATPOWER’s interior point solver [7] fails to converge for the
three-bus formulation of this problem but successfully solves
the two-bus formulation.

B. Feasible Space Exploration

Although the OPF problems (5) for the two- and three-bus
systems share the same feasible spaces, this is not the case
for their SDP relaxations (8). This section explores the feasible

spaces of these relaxations to illustrate why the SDP relaxation
globally solves the two-bus system but fails for the equivalent
three-bus system.

Figs. 4 and 5 show projections of the feasible spaces of
the two- and three-bus systems in terms of the active power
injections. The boundary of the oval, shown by the black line in
Fig. 4, is the feasible space of the OPF problem (5) for varying
values of P2. The region in Fig. 4 consisting of the oval and
its interior is the feasible space of the SDP relaxation. For the
specified value of P2 = 0, shown by the red dashed line, the
OPF problem has a feasible space consisting of the two red
squares at the intersection of the red dashed line and the black
oval. The SDP relaxation finds the global optimum of (5) (i.e.,
the leftmost red square) at the orange star.

In Fig. 5(a), the colored lines outline the feasible space of
the OPF problem (5) for varying values of P2 and P3, as
determined using the approach in [44] and validated using
repeated homotopy calculations [45]. This feasible space has an
ellipsoidal shape with a hole in the interior. The red dashed line
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corresponds to zero active power injections at buses 2 and 3.
The OPF solutions, which are shown by the red squares at the
intersection of the exterior of the ellipsoidal shape with the red
dashed line, are near the hole in the feasible space. The feasible
space of the SDP relaxation, shown by the shaded region,
“stretches over” this hole in the OPF’s feasible space. As seen in
Fig. 5(b), which shows a zoomed view of a cut through P3 = 0,
the exterior of the relaxation’s feasible space does not match
the feasible space of the OPF problem near this hole. Thus, the
solution to the SDP relaxation (8) at the orange star does not
match the global solution to the OPF problem (5) at the left-
most red square, and the SDP relaxation is not exact for this
formulation. Similar phenomena occur for a range of non-zero
active power injections at bus 2.

The hole in the OPF’s feasible space is a non-convexity
introduced by “nearby” problems (i.e., different values of P3) in
the three-bus system. Without the additional degrees of freedom
associated with bus 3, there is no “nearby” non-convexity
for the two-bus system. Thus, despite the fact that the OPF
problems share the same feasible space (i.e., the red squares
in Figs. 4 and 5), the SDP relaxation is exact for the two-bus
system but not for the three-bus system.

V. MOMENT RELAXATIONS

By demonstrating that factors other than just physical char-
acteristics determine success or failure of the SDP relaxation,
the example in Section IV motivates the development of tighter
convex relaxations that globally solve a broader class of OPF
problems. Recognizing that the objective function and all
constraints in the OPF problem are polynomial functions of
the voltage phasor components enables the application of a
hierarchy of convex “moment” relaxations from the Lasserre
hierarchy for polynomial optimization problems. The moment
relaxations, which converge to the global optimum of (5) with
increasing relaxation order [35], generalize the SDP relaxation
presented in Section III. This section introduces and illustrates
the moment relaxations using the example from Section IV.

The moment relaxations require definitions beyond those in
Section III. Define a vector xγ consisting of all monomials of
the voltage components Vd and Vq up to order γ:

xγ :=
[
1 Vd1 . . . Vqn V 2

d1 Vd1Vd2

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]�
. (10)

The moment relaxations are composed of positive semi-
definite constraints on moment and localizing matrices. The
symmetric moment matrix Mγ is composed of entries yα
corresponding to all monomials x̂α up to order 2γ:

Mγ{y} := Ly

{
xγx

�
γ

}
. (11)

Symmetric localizing matrices are defined for each constraint
of (5). For a polynomial constraint g(x̂) � 0 of degree 2η, the
localizing matrix is:

Mγ−η{gy} := Ly

{
gxγ−ηx

�
γ−η

}
. (12)

See (14a)–(14c), at the bottom of the page, for the vector x2,
moment matrix M2{y}, and the localizing matrix associated
with upper voltage magnitude limit (V max

2 )2 − V 2
d2 − V 2

q2 � 0,
respectively, for a three-bus OPF problem. Note that the angle
reference Vq1 = 0 is used to eliminate Vq1 in (14). These equa-
tions use the notation Ly{V α1

d1 V α2

d2 V α3

d3 V α4
q2 V α5

q3 } = yα1α2α3
α4α5

.
The order-γ moment relaxation is:

min
y,ω

∑
k∈G

ωk subject to (13a)

Mγ−1

{(
fPk − Pmin

k

)
y
}
� 0 ∀k ∈ N (13b)

Mγ−1 {(Pmax
k − fPk) y} � 0 ∀k ∈ N (13c)

Mγ−1

{(
fQk −Qmin

k

)
y
}
� 0 ∀k ∈ N (13d)

Mγ−1 {(Qmax
k − fQk) y} � 0 ∀k ∈ N (13e)

Mγ−1

{(
fV k −

(
V min
k

)2)
y
}
� 0 ∀k ∈ N (13f)

Mγ−1

{(
(V max

k )2 − fV k

)
y
}
� 0 ∀k ∈ N (13g)

(1− ck1Ly{fPk} − ck0 + ωk)

�
∥∥∥∥
[
(1+ck1Ly{fPk}+ck0−ωk)

2
√
ck2Ly{fPk}

]∥∥∥∥
2

∀k ∈ G

(13h)

Ly{fCk} = ωk ∀k ∈ G (13i)

Mγ−2

{(
(Smax

lm )2 − fSlm

)
y
}
� 0 ∀(l,m) ∈ L (13j)

Mγ−2

{(
(Smax

lm )2 − fSml

)
y
}
� 0 ∀(l,m) ∈ L (13k)

Smax
lm �

∥∥∥∥
[
Ly{fPlm}
Ly{fQlm}

]∥∥∥∥
2

∀(l,m)∈L (13l)

Smax
lm �

∥∥∥∥
[
Ly{fPml}
Ly{fQml}

]∥∥∥∥
2

∀(l,m)∈L (13m)

Mγ{y} � 0 (13n)

y00...0 = 1 (13o)

y��...�ρ�...� = 0 ρ = 1, . . . , 2γ. (13p)

where ρ in the angle reference constraint (13p) is in the index
n+ 1, which corresponds to the variable Vq1. In the same way
as (8), the angle reference can alternatively be used to eliminate
all terms corresponding to Vq1.6

As for the SDP relaxation, the globally optimal voltage
phasors can be extracted using (9) from a solution to (13) that
satisfies the condition rank(Ly{x̂x̂�}) = 1.

The order γ of the moment relaxation (13) must be greater
than or equal to half of the degree of any polynomial in the OPF
problem (5). This suggests that γ � 2 due to the fourth-order
polynomials resulting from the objective function (5a) and the
apparent power line flow constraints (5e) and (5f). However,

6We note that the angle reference constraint is unnecessary (i.e., its inclusion
does not tighten the constraints) in the SDP relaxation [12] and the first-order
moment relaxation [36]. However, the angle reference constraint (implemented
either via eliminating Vq1 or explicitly enforcing (13p)) can tighten the higher-
order moment relaxations. For instance, the second-order moment relaxation
with the angle reference constraint yields the globally optimal objective value
of $456.55 for the two-bus system in [46], but only a lower bound of $452.61
without the angle reference constraint. (This phenomenon was not observed for
the test case in Section IV.)
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as in the SDP relaxation (8), these can be rewritten using a
Schur complement [15] to allow γ � 1. Experience suggests
that implementing (5a), (5e), and (5f) both directly and with a
Schur complement formulation, as shown in (13h) and (13i) for
the quadratic objective function and (13j)–(13m), gives superior
results for γ � 2. (Constraints (13i)–(13k) are not enforced for
γ = 1.)

The second-order relaxation’s moment matrix M2{y} is
shown in (14b). The upper limit on the voltage magnitude at
bus 2 in (13g) corresponds to a positive semidefinite constraint
on the localizing matrix shown in (14c).

Fig. 6 shows a projection of the feasible space in terms of
active power injections for the second-order moment relaxation
of the three-bus system in Section IV. The points in this
figure were obtained by gridding the P1 − P2 − P3 space, and
associating with each grid point a quadratic objective function
that achieved its minimum at that point. The relaxation (13) was
solved for each of those objective functions while allowing the

loading conditions to vary (i.e., the constraints on P2 and P3

were released). The second-order moment relaxation globally
solved all these scenarios, with the resulting feasible space
in Fig. 6 seemingly equivalent to the space illustrated by the
colored lines in Fig. 5(a). Since the power injections result
from a non-linear transformation of the voltage components
given by the power flow (2), the second-order moment re-
laxation can represent the non-convex space of power injec-
tions while maintaining convexity in the decision variables
yα.

All polynomials in the OPF problem have only even-order
monomials (i.e., x̂α such that |α| is even, where | · | indicates
the one-norm). Odd-order terms in the moment relaxations are
therefore unnecessary: all yα such that |α| is odd can be set
to zero without violating any constraints or changing the ob-
jective value. For instance, the positive semidefinite constraint
on the second-order relaxation’s moment matrix, M2{y} �
0, is equivalent to positive semidefinite constraints on two
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Fig. 6. Projection of the second-order moment relaxation’s feasible space for the three-bus system. The feasible space for the OPF problem (5) is denoted by the
red squares. The second-order moment relaxation gives the global optimum at the orange star. The second-order moment relaxation was exact for all scenarios
tested. (a) Projection of the second-order moment relaxation’s feasible space. (b) Projection of the feasible space shown in (a) with P3 = 0.

Fig. 7. Projection of the second-order mixed SDP/SOCP relaxation’s feasible spaces for the three-bus system. The feasible space for the OPF problem (5)
is denoted by the red squares. The second-order mixed SDP relaxation gives the global optimum at the orange star. (b) shows that the second-order mixed
SDP/SOCP relaxation is exact for the points near the specified scenario. However, this was not the case for all scenarios: (a) shows that the second-order
mixed SDP/SOCP relaxation includes some points in the “hole” in the feasible space for which rank(Ly{x̂x̂�}) > 1. (a) Projection of the second-order mixed
SDP/SOCP relaxation’s feasible space; (b) projection of the feasible space shown in (a) with P3 = 0.

submatrices: the diagonal block corresponding to the degree-
two monomials (i.e., |α| = 2), which is identified by the green
dashed highlighting in (14b), and the terms corresponding
to the degree-zero, off-diagonal degree-two, and degree-four
monomials (i.e., |α| = 2k for some k ∈ N), which are identified
by the blue dotted highlighting in (14b).

The first-order localizing “matrices” corresponding to the
constraints (8b)–(8d) are, in fact, scalars.7 The correspond-
ing scalar constraints in the first-order relaxation (13b)–(13g)
are equivalent to the linear constraints in the SDP relaxation
(8b)–(8d). The moment matrix in the first-order relaxation has
all terms yα such that |α| � 2 (the diagonal block surrounded
by the black line in (14b)), whereas the SDP relaxation has
all terms yα such that |α| = 2 (the diagonal block with green
dashed highlighting in (14b)). The degree-one terms (the terms
with orange highlighting in (14b)) have odd |α| and so are un-
necessary, as discussed earlier. Since the degree-one terms are
unnecessary and y00...0 � 0 by (13o), the positive semidefinite
constraint on the first-order relaxation’s moment matrix (13n)

7Observe that Ly{g(x̂)x0x�
0 } = Ly{g(x̂)} since x0 = 1.

is equivalent to the positive semidefinite constraint in the SDP
relaxation (8h). With an equivalent feasible space and objective
function, the SDP relaxation in (8) is the same as the first-order
(γ = 1) moment relaxation (13).

The moment matrix for the lower-order relaxation Mγ−1{y}
is contained in the upper-left diagonal block of Mγ{y}. Like-
wise, the upper-left diagonal block of the higher-order lo-
calizing matrices contain the lower-order localizing matrices.
(The first-order matrices are contained within the solid black
outlines in the second-order matrices in (14b) and (14c).) Since
a necessary condition for a matrix to be positive semidefinite
is positive semidefiniteness of all principal submatrices, the
moment relaxations form a hierarchy where higher-order con-
straints imply the lower-order constraints.

Adding a rank-constraint rank(Ly{x̂x̂�}) = 1 to the SDP
relaxation (8) yields a non-convex problem equivalent to the
OPF problem (5). The SDP formulation (8) can thus be under-
stood in terms of a rank relaxation. The higher-order moment
relaxations generalize this approach by introducing constraints
that are redundant in the OPF problem (5) but strengthen
the moment relaxations. Consider g(x̂)xγ−ηx

�
γ−η � 0, where
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g(x̂) � 0 is a generic constraint in the OPF problem (5) with de-
gree 2η. The rank-one matrix xγ−ηx

�
γ−η is positive semidefinite

by construction, and the scalar constraint g(x̂) is non-negative.
Thus, their product is a rank-one positive semidefinite matrix.
Relaxing to Ly{g(x̂)xγ−ηx

�
γ−η} � 0 (i.e., eliminating the rank

constraint implied by xγ−ηx
�
γ−η) results in the localizing matrix

constraint.
The computational difficulty of solving the moment relax-

ations grows quickly with the relaxation order due to the size of
the positive semidefinite matrix constraints. After elimination
of Vq1 using the angle reference constraint, the size of the mo-
ment matrix (13n) for the order- γ relaxation of a n-bus system
is (2n− 1 + γ)!/((2n− 1)!γ!). For instance, the third-order
relaxation of a 10 bus system has a matrix with size 1540 ×
1540. The “dense” formulation of the second-order relaxation
is limited to solving problems with less than approximately
ten buses [30]–[32]. By exploiting sparsity using techniques
analogous to those for the SDP relaxation [47], the second-
order relaxation is computationally tractable for systems with
up to approximately 40 buses [33]. Extension to larger systems
is possible by both exploiting sparsity and only applying the
computationally intensive higher-order constraints to specific
“problematic” buses [33], [34].

VI. MIXED SDP/SOCP RELAXATION HIERARCHY

The moment relaxations globally solve many OPF problems
but are computationally challenging. First proposed in [39],
a “mixed SDP/SOCP” hierarchy is tighter than the first-order
moment relaxation but more tractable than the higher-order
relaxations. This section describes this mixed SDP/SOCP hi-
erarchy in the context of the example problem from Section IV.

The mixed SDP/SOCP hierarchy further relaxes the SDP
constraints in the higher-order moment relaxations (13) to
less stringent SOCP constraints. To ensure that the mixed
SDP/SOCP relaxations are at least as tight as the first-order mo-
ment relaxation, positive semidefinite constraints are enforced
for the diagonal block of the moment matrix that corresponds
to degree-two monomials (i.e., yα such that |α| = 2, which
are contained within the diagonal block highlighted in green
dashed lines in (14b).) We relax the higher-order constraints
using a necessary condition for a matrix to be positive semidef-
inite. Specifically, a necessary but not sufficient condition for
a generic symmetric matrix W to be positive semidefinite is
given by the constraints:

Wii � 0 i = 1, . . . , 2n (15a)

WiiWkk � |Wik|2 ∀ {(i, k) | k > i} . (15b)

The mixed SDP/SOCP hierarchy enforces the higher-order
constraints in the moment and localizing matrices using (15)
for (13b)–(13g), (13j)–(13k), and (13n). Since the terms cor-
responding to odd-order monomials can be set to zero, this
reduces to enforcing the SOCP constraints on the submatri-
ces corresponding to those highlighted in blue in (14b) and
(14c) for the three-bus system. For instance, in addition to
non-negativity of the diagonal entries, the second-order mixed

SDP/SOCP hierarchy includes the following SOCP constraints
associated with the moment matrix (14b):

y00000 y40000 �
∣∣y20000

∣∣2
y00000 y22000 �

∣∣y11000

∣∣2
...

y40000 y22000 �
∣∣y31000

∣∣2
y40000 y20200 �

∣∣y30100

∣∣2
...

y00022 y00004 �
∣∣y00013

∣∣2 .
Similarly, in addition a non-negative diagonal, the second-order
mixed SDP/SOCP hierarchy enforces the following SOCP con-
straints associated with the localizing matrix (14c):(

(V max
2 )2 y20000 −y22000 −y20020

)(
(V max

2 )2 y02000 −y04000 −y02020

)

�
∣∣∣(V max

2 )2 y11000 − y13000 − y11020

∣∣∣2(
(V max

2 )2 y20000 −y22000 −y20020

)(
(V max

2 )2 y00200 −y02200 −y00220

)

�
∣∣∣(V max

2 )2 y10100 − y12100 − y10120

∣∣∣2
...(

(V max
2 )2 y00020 −y02020 −y00040

)(
(V max

2 )2 y00002 −y02002 −y00022

)

�
∣∣∣(V max

2 )2 y00011 − y02011 − y00031

∣∣∣2 .
Since SOCP constraints have significant computational ad-

vantages over SDP constraints, the mixed SDP/SOCP relax-
ation is more tractable than the formulation of the moment
relaxations given in Section V. Further, it is only necessary to
enforce the SOCP constraints that correspond to higher-order
polynomials which appear in a localizing matrix constraint.
This provides additional computational advantages when com-
bined with the approach of selectively applying the higher-order
relaxation constraints [33]. See [39] for detailed numerical
results demonstrating speed increases between a factor of 1.13
and 18.70 compared to the moment relaxations.

Fig. 7 shows the feasible space of active power injections
for the second-order mixed SDP/SOCP relaxation. This figure
was produced using the same gridding procedure employed in
Fig. 6. The relaxation is exact for the specific loading condition
P2 = P3 = 0 considered in Section IV and for nearby loading
conditions(see the zoomed-in view of the feasible space shown
in Fig. 7(b)). However, in contrast to the moment relaxations
implemented with SDP constraints alone, illustrated in Fig. 6,
the mixed SDP/SOCP relaxation was not exact for all scenarios.
This is evident by the points that lie in the “hole” in the feasible
space (i.e., the points in Fig. 7(a) that are not in Fig. 6(a)).8

As expected, mixed SDP/SOCP relaxations are generally not
as tight as the moment relaxations in (13) which use only SDP
constraints.

8The feasible spaces for the third- and fourth-order mixed SDP/SOCP
relaxations also had points in this hole.
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VII. CONCLUSION

An SDP relaxation globally solves many OPF problems which
do not satisfy any existing sufficient conditions that assure
exactness of the relaxation. This motivates the development of
broader sufficient conditions, with a common conjecture being
that some physical characteristics of the OPF problem can de-
termine success or failure of the SDP relaxation. This paper has
presented a small example OPF problem with two equivalent
formulations. The SDP relaxation globally solves only one
of the two formulations. This suggests that strictly physically
based sufficient conditions for exactness of the SDP relaxation
of the OPF problem cannot predict the relaxation’s success or
failure for all OPF problems.

The inability to develop universal, physically based suffi-
cient conditions for success of the SDP relaxation motivates
researching more sophisticated convex relaxations. We use the
small example problem to illustrate two recently developed
convex relaxation hierarchies: “moment” relaxations from the
Lasserre hierarchy for polynomial optimization and a mixed
SDP/SOCP hierarchy derived by relaxing the higher-order con-
straints in the moment relaxations. Both of these hierarchies
generalize the SDP relaxation in order to enable global solution
of a broader class of OPF problems.
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