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Abstract

Reliable power system operation requires maintaining

sufficient voltage stability margins. Traditional techniques

based on continuation and optimization calculate lower

bounds for these margins and generally require appro-

priate initialization. Building on a previous semidefinite

programming (SDP) formulation, this paper proposes a

new second-order cone programming (SOCP) formula-

tion which directly yields upper bounds for the voltage

stability margin without needing to specify an initial-

ization. Augmentation with integer-constrained variables

enables consideration of reactive-power-limited gener-

ators. Further, leveraging the ability to globally solve

these problems, this paper describes a sufficient condition

for insolvability of the power flow equations. Trade-offs

between tightness and computational speed of the SDP

and SOCP relaxations are studied using large test cases

representing portions of European power systems.

1. Introduction

Ensuring steady-state stability of electric power sys-

tems requires maintaining sufficient voltage stability mar-

gins. These margins provide a metric of the distance to

voltage-collapse induced blackouts. Specifically, voltage

stability margins measure the distance from a specified

operating point to the power flow solvability boundary in

a given direction of power injection variation.

There is a large literature regarding voltage stability

analyses. Both saddle-node bifurcations, whereby two

power flow solutions annihilate each other, and limit-

induced bifurcations, whereby encountering a limit qual-

itatively changes component behavior, can result in volt-

age instability [1]–[11].

Voltage stability margins are commonly calculated

using methods based on continuation and optimization.

Continuation-based methods repeatedly calculate power

flow solutions to find the “nose” point of a power versus
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voltage (“P–V”) curve while monitoring “reactive mar-

gins” on generators (i.e., the margin between the genera-

tor’s reactive power output at a given operating point and

its maximum reactive output) [4], [6], [12]. Upon reach-

ing a reactive power limit, a generator is switched from

maintaining a constant voltage magnitude to a constant

reactive power output at the corresponding limit [13].

Industry standards include [9], [10], [14]. Optimization-

based methods directly calculate voltage stability margins

by maximizing a loading parameter subject to power flow

constraints and component limits [3].

To achieve consistency between the optimization- and

continuation-based methods, [15] proposes an optimiza-

tion formulation with complementarity constraints to

model reactive-power-limited generators. Under some

generically satisfied technical conditions, [16] proves that

any local solution to the optimization formulation of [15]

is either a limit-induced or saddle-node bifurcation.

Many of the techniques for calculating voltage stability

margins are mature and tractable for large-scale systems.

However, typical existing techniques are only guaranteed

to find a local maximum of the distance to the power flow

solvability boundary; the non-convexity of the power flow

feasible space implies the potential existence of multiple

local maxima to the optimization problem corresponding

to the voltage stability margin calculation. That is, there

may be feasible regions allowing stable operation beyond

the nose point identified by traditional voltage stability

margin calculation techniques.1 (Section 5 of this paper

provides a small example system exhibiting this behav-

ior.) Traditional local techniques are only guaranteed to

find a lower bound on the voltage stability margin.

Existing techniques also have challenges with choosing

an appropriate initialization. Continuation-based methods

require an initialization that satisfies all power flow and

generator capability constraints, which can be difficult to

determine. The convergence and optimality characteristics

of the non-convex optimization formulations [15], [16]

1. Note that the loading parameter typically cannot be locally in-
creased beyond a local maximum in the originally specified direction,
but an alternate loading path may yield a region of stable operation
further in the originally specified loading direction.
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depend on the choice of initialization. In many opera-

tional settings, initialization from the state estimator is

likely to be suitable. The importance of the initialization

is more apparent for planning purposes or after a large

operational change without a known operating point.

To supplement existing methods, previous work [17]

has proposed a semidefinite programming (SDP) relax-

ation whose solution yields an upper bound on the

voltage stability margin. Solution of this convex SDP

relaxation does not depend on the initialization. Further,

the SDP relaxation is proven to be feasible, ensuring

reliable calculation of the voltage stability margin. By

exploiting network sparsity [18], [19], the SDP relaxation

is computationally tractable for large systems.

The SDP relaxation is exact if its solution satisfies

a rank condition. This indicates that the upper bound

provided by the SDP relaxation is tight and the nose

point can be obtained directly. However, the bound on the

voltage stability margin provided by the SDP relaxation

is valid regardless of the solution’s rank characteristics.

The work in [17] models generators as ideal voltage

sources regardless of their reactive power output. Two

formulations that consider reactive-power-limited gener-

ators are proposed in [20]. The first reformulates the

complementarity conditions in [15] using integer con-

straints to obtain a mixed-integer SDP relaxation. The

second develops infeasibility certificates using sum-of-

squares programming. Both formulations are computa-

tionally limited to small problems.

To achieve large-scale computational tractability, this

paper proposes a further relaxation of the SDP formu-

lation described in [17]. Specifically, this paper employs

a convex second-order cone programming (SOCP) relax-

ation of the power flow equations adopted from [21]. This

paper also presents a further relaxation for cases that only

enforce upper limits on reactive power generation.

Computation of the SOCP relaxation is significantly

faster than the SDP relaxation. Additionally, by apply-

ing a commercial solver (e.g., MOSEK) to the mixed-

integer SOCP problems corresponding to voltage stability

margins with reactive-power-limited generators, systems

with thousands of buses are computationally tractable.

The intermediate results from the mixed-integer SOCP

solver provide useful upper bounds on the voltage stabil-

ity margins within a few seconds. These computational

advantages come at the cost of tightness of the SOCP

bounds in comparison to the SDP bounds. This paper

analyzes the trade-off between computational speed and

tightness using large-scale test cases representing portions

of European power systems.

Closely related to calculating voltage stability margins,

there has been significant work on conditions proving

the existence or non-existence of power flow solutions.

We next present a selection of the broad literature on

this topic. Reference [22] describes (often conservative)

sufficient conditions for power flow solution existence.

Other work includes [23] and [24], which analyze approx-

imate forms of the power flow equations. Reference [25]

describes a modified Newton-Raphson iteration tailored

to handle ill-conditioning. References [26] and [27] calcu-

late the voltage profile with the closest power injections to

those specified. The worst-case load shedding necessary

for power flow solvability is discussed in [28].

Certifying power flow insolvability is not possible with

traditional techniques, such as Newton-Raphson, which

only yield locally optimal solutions and depend on the

chosen initialization. Further, existing work often does

not consider generators with reactive power limits; power

flow equations identified as solvable under the conditions

in many of these works may not have any solutions within

the generators’ reactive power capabilities.

Leveraging the ability to globally solve the convex

SDP relaxation, previous work [17] develops sufficient

conditions for insolvability of the power flow equa-

tions, including consideration of reactive-power-limited

generators [20]. By appropriate selection of the loading

direction, the convex relaxations give a specific voltage

stability margin as a factor of the specified power injec-

tions. If this margin is less than one, the specified set

of power flow equations is infeasible. This paper extends

the work in [17] and [20] to develop computationally

advantageous SOCP-based insolvability conditions.

This paper is organized as follows. Section 2 overviews

the power flow equations including reactive-power-

limited generators. Section 3 reviews the optimization

problem used to calculate voltage stability margins. Sec-

tion 4 first describes the SDP relaxation developed in [17]

and [20] and then presents the SOCP relaxation for the

voltage stability margin calculation and power flow in-

solvability certification. Section 5 presents an illustrative

example. Section 6 provides numerical results comparing

the tightness and computational burden of the relaxations.

Section 7 concludes the paper.

2. Overview of Power Flow Equations

The power flow equations describe the sinusoidal

steady state equilibrium of a power network, and hence

are formulated in terms of a complex “phasor” represen-

tation of circuit quantities. The non-linear relationship

between the voltage phasors and the power injections

results in non-linearity of the power flow equations.

Denote the complex voltage phasors as V and the

network admittance matrix as Y.2 Using “active/reactive”

representation of complex power injections Pk + jQk,

where j =
√−1, power balance at bus k yields

2. The voltage phasors are often represented by real quantities
using either polar coordinates (i.e., Vk = |Vk| e

jθk ) or rectangular
coordinates (Vk = Vdk+ jVqk). We maintain a complex representation
in order to more naturally introduce the SDP relaxation in Section 4.1.
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Re
(
Vk

(
Yk·V ))

= Pk (1a)

Im
(
Vk

(
Yk·V ))

= Qk (1b)

where (·) indicates the complex conjugate operator, Re (·)
and Im (·) represent the real and imaginary parts of a

complex quantity, and subscripts indicate the correspond-

ing vector or matrix entry, with subscript k· denoting the

kth row of a matrix.

The squared voltage magnitude at bus i is

VkV k = |Vk|2 (1c)

where | · | denotes the magnitude.

To represent typical equipment behavior, each bus is

traditionally classified as PQ, PV, or slack. PQ buses,

which typically correspond to loads and are denoted by

the set PQ, treat Pk and Qk as specified quantities and

enforce the active power (1a) and reactive power (1b)

equations. PV buses, which typically correspond to gen-

erators and are denoted by the set PV , enforce (1a) and

(1c) with specified Pk and |Vk|2. The associated reactive

power Qi may be computed as an “output quantity” via

(1b). Finally, a single slack bus is selected with specified

Vk (typically chosen such that the reference angle is 0◦,
i.e., Im (Vk) = 0). The set S denotes the slack bus.

The active power Pk and reactive power Qk at the slack

bus are determined from (1a) and (1b); network-wide

conservation of complex power is thereby satisfied.

Note that while we consider a constant-power load

model, more general “ZIP” models which also have

constant-current and constant-impedance components can

be incorporated into the convex relaxations [29].

Additionally, generator reactive power outputs must be

within specified limits. If a generator’s reactive power

output is between the upper and lower limits, the gen-

erator maintains a constant voltage magnitude at the bus

(i.e., behaves like a PV bus). If a generator’s reactive

power output reaches its upper limit, the reactive power

output is fixed at the upper limit and the bus voltage

magnitude is allowed to decrease (i.e., behaves like a

PQ bus with reactive power injection given by the upper

limit). If the generator’s reactive power output reaches its

lower limit, the reactive power output is fixed at the lower

limit and the voltage magnitude is allowed to increase

(i.e., the bus behaves like a PQ bus with reactive power

injection determined by the lower limit). Figure 1 shows

this reactive power versus voltage characteristic with a

voltage magnitude setpoint of V ∗ and lower and upper

reactive power limits of Qmin and Qmax.

3. Non-Convex Optimization Formulation

for Calculating Voltage Stability Margins

This section reviews a non-convex optimization prob-

lem adopted from [15] whose solution provides a voltage

0

Qmax

Qmin

V ∗

Figure 1. Reactive Power vs. Voltage Characteristic

stability margin. This problem maximizes a parameter

η in a specified loading direction (typically a direction

of changing power injections, i.e., the right hand sides

of (1a) and (1b)). The optimization problem is constrained

by the power flow equations with one degree of freedom

in the specified loading direction:

max
V,η,ψL,ψU

η subject to (2a)

Re
(
Vk

(
Yk·V

))
= Pk (η) ∀k ∈ {PQ, PV} (2b)

Im
(
Vk

(
Yk·V

))
= Qk (η) ∀k ∈ PQ (2c){

Im
(
Vk

(
Yk·V

))
≥ Qmaxk ψUk +Qmink (1− ψUk)

Im
(
Vk

(
Yk·V

))
≤ Qmink ψLk +Qmaxk (1− ψLk)

∀k ∈ {PV, S} (2d){
VkV k ≥ |V

∗
k |

2 (1− ψUk)

VkV k ≤ |V
∗
k |

2 (1− ψLk) +MψLk
∀k ∈ {PV, S} (2e)

ψLk + ψUk ≤ 1 ∀k ∈ {PV, S} (2f)∑
k∈{PV,S}

(ψLk + ψUk) ≤ ng − 1 (2g)

ψUk ∈ {0, 1} ψLk ∈ {0, 1} ∀k ∈ {PV, S} (2h)

where ng is the number of PV and slack buses; M is

a large constant; Pk (η) and Qk (η) are specified linear

functions of η providing the active and reactive power

loading directions, respectively, at bus k; and V ∗k denotes

specified voltage magnitudes at slack and PV buses.

Equations (2b) and (2c) correspond to the power flow

equations (1a) and (1b). Equations (2d)–(2h) use binary

variables to implement the complementarity constraints

from [15] that model the reactive power versus voltage

magnitude characteristic shown in Figure 1. When the

binary variable ψUk is equal to one, the upper reactive

power limit of the generator at bus k is binding. Accord-

ingly, (2d) fixes the reactive power output at the upper

limit and (2e) sets the lower voltage magnitude limit to

zero. When the binary variable ψLk is equal to one, the

lower reactive power limit of the generator at bus k is

binding. Accordingly, (2d) fixes the generator reactive

power output at the lower limit and (2e) removes the

upper voltage magnitude limit. When both ψUk = 0 and

ψLk = 0, (2d) constrains the reactive power output within

the upper and lower limits and (2e) fixes the voltage
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magnitude to the specified value V ∗k . Consistency in the

reactive power limits is enforced by (2f); a generator’s

reactive power output cannot simultaneously be at both

the upper and lower limits. Constraint (2g) ensures the

existence of at least one voltage-controlled bus. This is

not necessary but improves convergence characteristics.

The optimal solution to (2), denoted η∗, provides a

stability margin in the specified loading direction.

4. Convex Relaxations

This section employs convex SDP and SOCP relax-

ations of the non-convex power flow equations (1) to

upper bound the voltage stability margin η∗ from (2).

The formulations in this section are developed from relax-

ations of optimal power flow problems in [30] and [21].

When combined with the integer constraints in (2d)–(2h),

the resulting formulations are mixed-integer SDP and

mixed-integer SOCP problems. Despite the non-convexity

resulting from the integer constraints, global solution

of these problems is enabled by the convexity of the

underlying relaxations of the power flow equations and

the availability of lower and upper bounding techniques

for mixed-integer conic programs [31], [32].3 The SDP

relaxation was first presented in [17] and extended to

handle reactive-power-limited generators in [20]. The

SOCP relaxation is the main contribution of this paper.

4.1. SDP Relaxation

Using the quadratic relationship between the power

injections and the voltage phasors, the SDP relaxation

is developed by isolating the power flow non-convexity

to a rank constraint. Relaxation of this rank constraint

to a less stringent positive semidefinite matrix constraint

yields the SDP relaxation.

Denote the kth column of the n×n identity matrix as

ek. Define the Hermitian matrices

Hk =
YHeke

ᵀ

k + eke
ᵀ

kY

2
(3)

H̃k =
YHeke

ᵀ

k − ekeᵀkY
2j

(4)

where (·)ᵀ and (·)H indicate the transpose and conjugate

transpose, respectively. Let W denote the n×n rank-one

Hermitian matrix

W = V V H (5)

The active and reactive power injections are

3. When the meaning is clear from the context, we occasionally abuse
terminology by referring to formulations with both convex constraints
and non-convex integer variables as “convex relaxations.”

Pk = tr
(
HkW

)
(6a)

Qk = tr
(
H̃kW

)
(6b)

where tr (·) is the trace operator. The squared voltage

magnitudes are

|Vk|2 = tr (eke
ᵀ

kW) (6c)

The expressions in (6) are linear in the entries of W.

Thus, all the non-linearity is isolated to the rank con-

straint (5). The SDP relaxation is formed by using (6) to

replace all terms involving V in (2) with terms involving

W and then relaxing the rank constraint W = V V H to

the positive semidefinite matrix constraint W � 0:

max
W,η,ψL,ψU

η subject to (7a)

tr
(
HkW

)
= Pk (η) ∀k ∈ {PQ, PV} (7b)

tr
(
H̃kW

)
= Qk (η) ∀k ∈ PQ (7c)⎧⎨

⎩
tr

(
H̃kW

)
≥ Qmaxk ψUk +Qmink (1− ψUk)

tr
(
H̃kW

)
≤ Qmink ψLk +Qmaxk (1− ψLk)

∀k ∈ {PV, S} (7d){
tr (eke

ᵀ

kW) ≥ (V ∗
k )

2 (1− ψUk)

tr (eke
ᵀ

kW) ≤ (V ∗
k )

2 (1− ψLk) +MψLk

∀k ∈ {PV, S} (7e)

W � 0 (7f)

ψLk + ψUk ≤ 1 ∀k ∈ {PV, S} (7g)∑
k∈{PV,S}

(ψLk + ψUk) ≤ ng − 1 (7h)

ψUk ∈ {0, 1} ψLk ∈ {0, 1} ∀k ∈ {PV, S} (7i)

Denote the globally optimal objective value to (7)

as η∗SDP .

A global solution to the SDP relaxation which satisfies

the rank condition (5) is exact and thus yields both the

globally maximal voltage stability margin and the voltage

phasors at the “nose point” of the P–V curve. However,

η∗SDP provides an upper bound on the voltage stability

margin even if the rank condition (5) is not satisfied.

Without consideration of reactive power limits (i.e.,

Qmax
k = −Qmin

k = ∞, ψUk = ψLk = 0, ∀k ∈
{PV, S}), the SDP relaxation is equivalent to the for-

mulation in [17]. By exploiting network sparsity, calcu-

lation of voltage stability margins for large systems is

computationally tractable [18], [19].

The formulation with consideration of reactive power

limits, first presented in [20], is a mixed-integer SDP.

Mixed-integer SDP solvers, such as YALMIP’s branch-

and-bound algorithm [31], are not mature and the appli-

cability of (7) is thus limited to small systems.
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4.2. SOCP Relaxation

Computational difficulties related to the immaturity of

mixed-integer SDP solvers motivates the development of

more computationally tractable alternatives to the formu-

lation in Section 4.1. This section presents a computa-

tionally advantageous mixed-integer SOCP relaxation.

We use the “branch-flow model” (BFM) relaxation

of the power flow equations from [21]. The BFM has

the same optimal objective value as a relaxation of the

complex SDP constraint W � 0 to less stringent SOCP

constraints (i.e., the “bus-injection model” relaxation

in [21]). The BFM is selected due to its superior numeric

characteristics [33].

The BFM relaxes the DistFlow equations [34], which

formulate the power flow equations in terms of active

power, reactive power, and squared current magnitude

flows, Plm, Qlm, and Llm, respectively, into terminal l

of the line connecting buses l and m as well as squared

voltage magnitudes |Vk|2 at each bus k.

As shown in Figure 2, consider a line model with

an ideal transformer that has a specified turns ratio

τlme
jθlm : 1 in series with a Π circuit with series

impedance Rlm + jXlm and shunt admittance jbsh,lm.

Llm = |Ilm|2
Ilm

+

−
Vl

τlme
jθlm : 1

Rlm
Iπ

Xlm

bsh,lm

2

bsh,lm

2

+

−
Vm

Plm + jQlm

Figure 2. Line Model

To derive the BFM relaxation, we begin with the

relationship between the active and reactive line flows

and the squared current magnitude:

Llm · |Vl|2 = P 2
lm +Q2

lm (8)

To form a SOCP, (8) is relaxed to an inequality constraint:

Llm · |Vl|2 ≥ P 2
lm +Q2

lm (9)

The current flow on the series impedance of the

Π-circuit model is

Iπ =

(
Plm − jQlm

V l

)(
τlme

−jθlm
)− j

bsh,lmVl

2τlmejθlm
(10)

The relationship between the terminal voltages is

Vl

τlmejθlm
− Iπ (Rlm + jXlm) = Vm (11)

Taking the squared magnitude of both sides of (11) and

using (8) and (10) yields

|Vm|
2 =

|Vl|
2

τ 2lm
− 2 (XlmQlm +RlmPlm)− |Vl|

2
Xlm

bsh,lm

τ 2lm

+
(
R

2
lm +X

2
lm

)(
Qlmbsh,lm + τ

2
lmLlm +

b2sh,lm |Vl|
2

4τ 2lm

)
(12)

Active and reactive line losses are

Ploss,lm =Rlmτ
2
lmLlm +

Rlmb
2
sh,lm

4τ 2lm
|Vl|

2 +QlmRlmbsh,lm

(13a)

Qloss,lm =Xlmτ
2
lmLlm +

(
Xlmb

2
sh,lm − 2bsh,lm

4τ 2lm

)
|Vl|

2

(13b)

The active and reactive injections at bus k are

P
SOCP
k =

∑
{(l,m)∈L

s.t. l=k}

Plm +
∑

{(l,m)∈L
s.t.m=k}

(Ploss,lm − Plm) + gsh,k |Vk|
2

(14a)

Q
SOCP
k =

∑
{(l,m)∈L

s.t. l=k}

Qlm +
∑

{(l,m)∈L
s.t.m=k}

(Qloss,lm −Qlm) + bsh,k |Vk|
2

(14b)

where gsh,k+ jbsh,k is the shunt admittance at bus k and

L represents the set of all lines.

The BFM-based SOCP relaxation of (2) is

max
Plm,Qlm,Llm,|Vk|2,η,ψLk,ψUk

η subject to (15a)

P
SOCP
k = Pk (η) ∀k ∈ {PQ, PV} (15b)

Q
SOCP
k = Qk (η) ∀k ∈ PQ (15c){
QSOCPk ≥ Qmaxk ψUk +Qmink (1− ψUk)

QSOCPk ≤ Qmink ψLk +Qmaxk (1− ψLk)

∀k ∈ {PV, S} (15d){
|Vk|

2 ≥ (V ∗
k )

2 (1− ψUk)

|Vk|
2 ≤ (V ∗

k )
2 (1− ψLk) +MψLk

∀k ∈ {PV, S} (15e)

ψLk + ψUk ≤ 1 ∀k ∈ {PV, S} (15f)∑
k∈{PV,S}

(ψLk + ψUk) ≤ ng − 1 (15g)

ψUk ∈ {0, 1} ψLk ∈ {0, 1} ∀k ∈ {PV, S} (15h)

Eqns. (9) and (12)–(14)

Denote the globally optimal objective value to (15)

as η∗SOCP .

Without consideration of reactive power limits (i.e.,

Qmax
k = −Qmin

k = ∞, ψUk = ψLk = 0, ∀k ∈
{PV, S}), (15) is a SOCP that can be solved efficiently

with commercial solvers.

With consideration of reactive power limits, (15) is

a mixed-integer SOCP. Solvers for mixed-integer SOCP
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problems, such as MOSEK, are significantly more ma-

ture than mixed-integer SDP solvers. The SOCP relax-

ation (15) is therefore applicable to large systems with

thousands of buses. At each iteration, a typical mixed-

integer SOCP solver calculates an upper bound on the

optimal objective value by relaxing the integer constraints

using techniques such as those described in [32]. Thus,

each iteration provides an upper bound on the voltage

stability margin, and waiting for full convergence of (15)

is not required. As shown in the results in Section 6,

quality bounds on the voltage stability margin are often

available within a few seconds even for large systems.

The computational speed advantage of the SOCP re-

laxation comes at the cost of the relaxation’s tightness,

with the SDP relaxation generally yielding superior upper

bounds. Section 6 explores the trade-off between tightness

and computational speed for a variety of large test cases.

4.3. Enforcing Only Upper Reactive Limits

Under the high loading conditions associated with

voltage stability, the upper reactive power limits are sig-

nificantly more relevant operational constraints than lower

limits. Neglecting lower reactive power limits enables the

development of convex relaxations that do not require

integer constraints. As will be shown in Section 6, these

relaxations are often superior to enforcing the integer con-

straints when lower reactive power limits are neglected.

In the absence of lower reactive power limits (i.e.,

Qmin = −∞), the generator capability curve shown

in Figure 1 is the border of the convex region defined

by 0 � V ≤ V ∗ and Q ≤ Qmax. Thus, a relaxation

of the reactive power capability curve is formed by

replacing (2d)–(2h) with

VkV k ≤ |V ∗k |2 (16a)

Im
(
Vk

(
Yk·V )) ≤ Qmax

k (16b)

Accordingly modifying the SDP and SOCP relaxations

yields formulations without integer constraints.

4.4. Certifying Power Flow Insolvability

The ability to globally solve the relaxations in this

section enables the development of sufficient conditions

for power flow insolvability, which is not possible with

conventional Netwon-based algorithms.

Consider a loading direction with uniformly changing

power injections at constant power factor: Pk (η) = Pk0 η

and Qk (η) = Qk0 η, where Pk0 and Qk0 are the specified

power injections for the power flow equations.

Since η∗SDP and η∗SOCP upper bound a measure of the

distance to the power flow solvability boundary,

η∗SDP < 1 (17a)

η∗SOCP < 1 (17b)

are sufficient conditions for power flow insolvability. We

emphasize that these are sufficient but not necessary

conditions: failure to satisfy (17) does not certify that a

power flow solution exists due to the potential relaxation

gap between the solution to a convex relaxation and the

global solution to (2). To potentially speed computation,

an upper bound obtained at any solver iteration can be

used to evaluate (17). Further, if lower reactive power

limits are neglected, these conditions are also valid for

bounds produced using the relaxation in Section 4.3.

Without consideration of reactive power limits, [17]

proves that (2) is feasible, and thus the insolvability

conditions can always be evaluated. On the other hand,

there is no feasibility proof for (2) when reactive power

limits are enforced. It may therefore be possible to specify

a power flow problem with reactive power limits for

which the insolvability conditions cannot be evaluated.

5. Illustrative Example

The optimization problem (2) is a mixed-integer non-

linear program, a class of problems which are generally

difficult to solve. Further, (2) inherits the non-convexity

of the power flow equations. It may therefore have local

optima even in the absence of reactive power limits. We

next present a small test case adopted from [35] which

illustrates the potential non-convexity of (2). Figure 3

shows the one-line diagram for this test case. The gener-

ators maintain voltage magnitudes of 1 per unit at each

bus without reactive power limits.

1

3

P   + j Q
G1 G1

P   + j Q
G2 G2

2

0 + j Q
G4

0 + j Q
G5

0 + j Q
G345

P    + j 0
D3

j 0.4

j 0.1
j 0.1 j 0.1

j 0.1

Figure 3. Diagram for Five-Bus System in [35]

The non-convex feasible space for this test case,

projected onto the set of active power injections at

buses 1 and 2, is shown by the light gray re-

gion in Figure 4. Consider a direction of power

injection increase of
[
PG2 PG3 PG4 PG5

]ᵀ
=[

12.27 − (12.27 + η) 0 0
]ᵀ

per unit, where η is

the degree of freedom (increasing η corresponds to in-

creasing the active power demand at bus 3). Since the

system is lossless, the power supplied by the slack bus
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Figure 4. Feasible Space for Five-Bus System in [35]

PG1 = η per unit. This direction is indicated by the red

dashed line in Figure 4. A local solution method (e.g.,

continuation) initialized at a point on the red line with

0 ≤ η = PG1 ≤ 2.33 per unit finds the local maximum

at η = 2.33 per unit, denoted by the blue dot on Figure 4.

Choosing an initial condition corresponding to 5.41 ≤
η ≤ 7.05 per unit or a different loading trajectory (i.e.,

a path that goes around the non-convexity in Figure 4)

would identify solutions further in the originally specified

loading direction. Thus, this example illustrates that local

solution techniques are dependent on the initialization and

may have local maxima.

Conversely, the feasible space of power injections for

both the SDP and SOCP relaxations is the interior of

the solid black curve. For the specified direction, solving

either relaxation directly yields the global maximum

η = 7.05 per unit, which is located at the red square

in Figure 4, without the need to specify an initialization.

This example illustrates some of the advantages and

disadvantages of both the traditional and convex relax-

ation approaches. For this problem, the convex relaxations

identify (and, more generally, upper bound) the global

maximum of the voltage stability margin. Thus, the

relaxations guarantee that no power flow solution exists

in the specified direction beyond η = 7.05 per unit.

Conversely, identification of the local maximum (i.e., the

nose point) from a continuation method does not preclude

the existence of power flow solutions for larger loadings.

On the other hand, the convex relaxations do not find

the bifurcation that occurs along the originally specified

loading direction which is identified by the continuation

method. In other words, the relaxations do not indicate the

infeasible region that exists for 2.33 < η < 5.41 per unit.

The start of this infeasible region is identified by a

continuation method.

Thus, the traditional methods and the convex relax-

ations work well in concert by proving lower and upper

bounds, respectively. A large gap between these bounds

suggests a problem worthy of further investigation (e.g.,

testing alternative loading paths).

6. Results

This section presents results from applying the relax-

ations to both small problems and large test cases repre-

senting portions of European power systems. Test cases

both with and without enforcement of reactive power

limits are considered. We use the IEEE test cases [36] and

large test cases representing the Great Britain (GB) [37]

and Poland (PL) [38] power systems as well as other

European power systems from the PEGASE project [39].

These large test cases were pre-processed to remove low-

impedance lines as described in [40] in order to improve

the solver’s numerical convergence. A 1× 10−3 per unit

low-impedance line threshold was used for all test

cases except for PEGASE-1354, PEGASE-2869, and

PEGASE-9241 which use a 3× 10−3 per unit threshold.

The power injection direction is specified with uni-

formly changing active and reactive power injections at

constant power factor: Pk (η) = Pk0 η and Qk (η) =
Qk0 η, where Pk0 and Qk0 are the test cases’ specified

power injections. The condition from Section 4.4 thus

guarantees that increasing power injections by more than

the value of η implied by these results will yield an

insolvable set of power flow equations.

The relaxations are implemented using

MATLAB 2013a, YALMIP 2014.06.05 [31], and

Mosek 7.1.0.28. The relaxations were solved using a

computer with a quad-core 2.70 GHz processor and

16 GB of RAM. The “solver time” results do not include

the typically small problem formulation times.

The continuation power flow (CPF) in

MATPOWER [38], modified to consider reactive-power-

limited generators, is used to obtain a lower bound

on the voltage stability margin. In order to maintain

consistency between the CPF and convex relaxations,

we do not limit the slack bus reactive power output.4

Solution times for the CPF method are not provided for

the results in this section due to a strong dependence

on implementation details (e.g., selected step sizes,

tolerances, and methods for identifying reactive power

limit violations). We note that commercial continuation

codes are tractable for large systems.

The upper bounds provided by the convex relaxations

are reported as a relaxation gap calculated as the percent

difference from the nose point identified by the CPF.

Thus, the relaxation gap is determined by both the CPF’s

4. When the slack bus encounters a reactive power limit, this partic-
ular CPF switches the slack bus to a PQ bus and chooses a new PV
bus to serve as the slack bus. This has the potential to make the active
power differ from the specified power injection direction.
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lower bound and the relaxation’s upper bound. Future

work includes determining the relative contribution of

each bound to the relaxation gap (i.e., whether a feasible

region exists between the nose point identified by the CPF

and the upper bound from the relaxations).

6.1. Without Reactive Power Limits

Table 1 presents results for the test cases without

enforcing reactive power limits (i.e., Qmax
k = −Qmin

k =
∞, ψUk = ψLk = 0, ∀k ∈ {PV, S}).

Table 1. Voltage Stability Margins Without Enforcing

Reactive Power Limits

Case SDP SOCP

Name Gap (%) Time (sec) Gap (%) Time (sec)

IEEE-9 0.00 0.5 1.30 0.6

IEEE-14 0.00 0.5 6.30 0.5

IEEE-30 0.00 0.5 0.27 0.5

IEEE-39 0.00 0.5 0.37 0.5

IEEE-57 0.00 0.5 1.88 0.5

IEEE-118 2.63 0.9 5.83 0.6

IEEE-300 0.00 0.9 0.03 0.6

GB-2224 0.90 3.2 2.48 1.2

PL-2383wp 2.20 7.4 4.96 0.8

PL-2736sp 0.37 9.0 3.13 0.9

PL-2737sop 3.76 6.6 13.03 0.9

PL-2746wop 3.55 10.0 11.33 0.8

PL-2746wp 1.31 5.9 2.20 0.3

PL-3012wp 2.33 7.4 10.78 1.0

PL-3120sp 2.00 7.6 11.82 1.0

PEGASE-89 0.10 0.6 0.46 0.5

PEGASE-1354 0.42 2.0 0.64 0.7

PEGASE-2869 1.16 5.3 3.36 1.0

PEGASE-9241 0.33 42.7 0.13 2.8

Table 1 illustrates a trade-off between computational

speed and tightness of the convex relaxations. For the

larger systems, the SOCP relaxation is between a factor of

2.6 and 16.8 faster than the SDP relaxation. However, the

SOCP relaxation has relaxation gaps that are up to 9.26%

larger than the SDP relaxation.5 The SDP relaxation is

exact (i.e., finds the nose point) for all IEEE systems

except IEEE-118, and the worst relaxation gap among all

the test cases is 3.76%. With relaxation gaps between

0.03% and 13.03%, the SOCP relaxation also yields

useful upper bounds on the voltage stability margins.

6.2. With Reactive Power Limits

Table 2 presents results for the small IEEE test cases

with enforcement of both upper and lower reactive power

limits. The SDP and SOCP relaxations are both com-

putationally tractable for these test cases, although the

SOCP relaxation is significantly faster for IEEE-39 and

IEEE-57. The SDP relaxation is exact for all of these test

cases, and the SOCP relaxation has small relaxation gaps.

5. The SDP relaxation gap for PEGASE-9241 is slightly greater than
the SOCP gap due to numerical issues with the SDP solution.

Table 2. Voltage Stability Margins Enforcing Upper
and Lower Reactive Power Limits (SDP & SOCP)

Case SDP SOCP

Name Gap (%) Time (sec) Gap (%) Time (sec)

IEEE-9 0.00 0.2 0.83 0.1

IEEE-14 0.00 0.1 0.21 0.1

IEEE-30 0.00 1.0 0.31 0.1

IEEE-39 0.00 65.6 0.04 0.4

IEEE-57 0.00 3.2 0.61 0.1

In contrast to the SOCP relaxation, the SDP relaxation

is not computationally tractable for larger systems. Ta-

ble 3 shows the upper bound from the SOCP solver after

at most approximately 1000 seconds and after the first

solver iteration. The SOCP relaxation yields larger gaps

for the systems in Table 3 than for the smaller systems

in Table 2 (up to 33.6% vs. 0.83%, respectively).

Note that the first iteration of the mixed-integer SOCP

solver yields upper bounds that are often close to the

bounds produced after approximately 1000 seconds of

solver time. For these test cases, the first iteration yields

relaxation gaps within 11.9% of the gap after 1000

seconds, and is within 2% for 8 of the 13 test cases.

Hot starting the integer variables yields significant

computational improvements for some systems. For in-

stance, hot starting with the CPF solution reduces the

solver time for IEEE-300 from 316 to 108 seconds.

Table 3. Voltage Stability Margins Enforcing Upper
and Lower Reactive Power Limits (SOCP)

Case SOCP (max. ~1000 sec) SOCP (First Iter.)

Name6 Gap (%) Time (sec) Gap (%) Time (sec)

IEEE-118 2.31 55.1 12.05 0.2

IEEE-300 1.16 315.9 13.06 0.2

GB-2224 6.47 1006.3 7.20 1.1

PL-2736sp 4.81 1009.2 8.33 0.9

PL-2737sop 6.06 1006.9 10.66 0.7

PL-2746wop 11.04 1017.9 12.74 1.0

PL-2746wp 5.96 1014.0 7.06 1.0

PL-3012wp 27.18 1006.1 28.34 1.0

PL-3120sp 33.60 1018.6 34.16 1.1

PEGASE-89 0.65 0.9 0.65 0.2

PEGASE-1354 11.51 1009.4 15.27 0.6

PEGASE-2869 10.26 1026.9 11.91 1.9

PEGASE-9241 24.71 1085.9 24.73 8.4

For practical systems and typical loading profiles, only

upper bounds on reactive power injections tend to be

relevant. The results in Table 4 only consider upper

reactive power limits. Reinforcing the typical importance

of upper limits over lower limits, the CPF nose points

match to within 0.64% between consideration of both

limits and only considering upper limits. The results show

the first iteration of the mixed-integer SOCP relaxation7

6. Results for PL-2383wp are excluded because MATPOWER does
not find a base case solution to initialize the CPF.

7. The mixed-integer SOCP relaxation converges to within 0.25% of
the bound obtained from the first solver iteration for these test cases.
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Table 4. Voltage Stability Margins Enforcing Only
Upper Reactive Power Limits

SOCP Qmax Qmax

Case (First Iter.) SOCP SDP

Name6 Gap Time Gap Time Gap Time
(%) (sec) (%) (sec) (%) (sec)

IEEE-118 2.37 0.2 2.37 0.5 0.00 0.9

IEEE-300 1.17 0.2 1.17 0.7 0.21 1.8

GB-2224 0.81 1.0 0.96 1.1 0.73 7.4

PL-2736sp 2.46 0.8 2.39 1.2 0.08 13.9

PL-2737sop 2.34 0.9 2.32 1.0 0.25 12.4

PL-2746wop 3.31 0.9 3.27 1.0 0.10 18.2

PL-2746wp 1.29 1.0 1.44 0.9 0.03 19.2

PL-3012wp 14.03 0.9 14.03 1.3 7.19 19.7

PL-3120sp 19.76 1.4 19.59 1.4 13.91 18.7

PEGASE-89 0.65 0.2 0.65 0.6 0.00 0.9

PEGASE-1354 0.75 0.5 0.84 0.8 0.09 4.8

PEGASE-2869 2.72 1.6 2.71 1.2 2.65 10.2

PEGASE-9241 0.59 7.8 0.62 4.2 0.31 79.6

from Section 4.2 (without lower limits) as well as the

SDP and SOCP relaxations without integer constraints

(columnsQmax SDP and Qmax SOCP) from Section 4.3.

The results in Table 4 show that gaps from the SOCP

relaxation described in Section 4.3 are very close to those

from the first iteration of the mixed-integer SOCP solver.

Further, the SDP relaxation generally obtains significantly

smaller gaps than the SOCP relaxations.

With relaxation gaps that are often significantly smaller

than in Table 3, the results in Table 4 demonstrate that the

relaxations perform better when neglecting lower reactive

power limits. Neglecting lower limits imparts the physical

intuition that these limits are usually significantly less rel-

evant than upper limits. For instance, when enforcing both

upper and lower limits, PL-2746wop has a relaxation gap

of 11.04%. By allowing a significantly longer solver time

(2.0×105 seconds on a faster workstation computer with

eight cores), this case converges to obtain a relaxation gap

of 3.85%. This gap is close to the 3.27% gap obtained in

1 second with the SOCP relaxation when lower reactive

power limits are neglected.

To summarize the results, in the absence of reactive

power limits, the SDP relaxation yields the smallest

relaxation gap and the SOCP relaxation has the fastest

computational speed. When considering reactive-power-

limited generators, the relaxations perform best when

lower reactive power limits are not enforced. In this case,

the SDP and SOCP relaxations from Section 4.3 provide

the smallest relaxation gap and fastest computational

speed, respectively. When both upper and lower limits

are enforced, the mixed-integer SDP relaxation gives the

best results for small systems, but is computationally

intractable for large systems. The mixed-integer SOCP

relaxation gives gaps that are larger but often still useful

for cases with both upper and lower reactive power limits.

7. Conclusion

This paper has proposed new relaxations formulated

as SOCP problems for calculating voltage stability mar-

gins and certifying power flow infeasibility. When aug-

mented with integer constraints, these relaxations con-

sider reactive-power-limited generators. In contrast to

a previous mixed-integer SDP formulation, the mixed-

integer SOCP relaxations are computationally tractable

for large problems. The capabilities of these relaxations

are demonstrated on several large test cases representing

portions of European power systems.
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