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Abstract-A time-coupled instanton method for characterizing 
transmission network vulnerability to wind generation fluctuation 
is presented. To extend prior instanton work to multiple-time-step 
analysis, line constraints are specified in terms of temperature 
rather than current. An optimization formulation is developed to 
express the minimum wind forecast deviation such that at least 
one line is driven to its thermal limit. Results are shown for an 
IEEE RTS-96 system with several wind-farms. 
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I. INTRODUCTION 

The prevalence of renewables in modern transmission net
works has researchers and system operators asking: What 
happens when the wind changes, and could fluctuations harm 
the grid? The instanton problem provides an answer, and 
this paper extends instanton analysis to the temporal setting. 
Though small deviations from wind forecasts are typically 
harmless, it is possible for certain wind generation patterns to 
drive the system to an insecure operating point. Out of all trou
blesome wind generation patterns, the one that deviates least 
from the forecast is called the instanton. Instanton analysis 
uses optimization to find the set of troublesome wind patterns, 
each of which causes a particular line to encounter its flow 
limit. By ranking these wind patterns according to distance 
from forecast, we can characterize the system's vulnerability 
to forecast inaccuracy and enhance system operator awareness. 

The instanton problem was initially considered in [1] and [2] 
where a DC power flow approximation was used to turn instan
ton analysis into a convex problem with an analytic solution. 
The physically accurate AC power flow formulation was used 
in [3], with an iterative scheme required for finding instanton 
candidates. Current instanton research is exploring the trade
off between problem complexity and solution accuracy, with 
the goal of developing the most accurate model that remains 
convex (and therefore guarantees a solution). Instanton work 
to date has focused on instantaneous vulnerability by seeking 
to find the smallest wind generation change that drives a line to 
its power or current limit. Thus, the troublesome wind patterns 
uncovered by such instanton analysis may be fleeting. 

The authors acknowledge the support of the Los Alamos National Labora
tory Grid Science Program, subcontract 270958. 

It is safe to temporarily operate a line above its current limit. 
Transmission system operators know this and periodically 
allow lines to operate above their limits to promote smooth 
operation under heavy, though temporary, flow patterns (see 
the introduction of [4] for a history of dynamic line rating 
starting in the 1970s). It takes time for line conductors to 
heat sufficiently that they sag to an unacceptable level (as 
defined by statute and nearby tree limbs). As long as the 
line is allowed to cool before reaching this point, no harm 
will be done. If an operator is comfortable with temporarily 
overloaded lines, information from existing instanton analysis 
may be too conservative to aid decision making. 

In this paper we bring instanton analysis into the temporal 
setting. We consider multiple time steps and replace line 
current limits with heat constraints. A line's temperature is 
a function of heat input (primarily Ohmic losses and heat 
from the sun) and dissipation (convection and radiation, which 
depend on ambient conditions), and is represented as a differ
ential equation (see Section 3.4 of [5] for a standard set of 
equations governing line temperature dynamics). Ohmic loss 
heating is related to power flow analysis via angle difference 
variables. By modeling line temperature over an appropriate 
time horizon, the proposed method discovers multiple-time
step wind patterns that are both likely to occur and sure to 
induce excessive sag for at least one line in the network. 

The remainder of the paper describes the temporal instanton 
problem (Section II), translates it into an optimization problem 
(Section III), presents a solution method (Section IV), and 
illustrates temporal instanton analysis using a modified RTS-
96 network (Section V). 

II. PROBLEM FORMULATION 

Section II-A describes an approximate line loss formulation 
that forms the basis of a dynamical model developed in Sec
tion II-B. Finally, Section II-C incorporates line temperature 
dynamics into a complete mathematical model. 

A. Line losses 

Starting with the AC line loss expression, [6] derived the 
following approximate relationship between line losses and 



TABLE I 
LINE HEATING PARAMETERS 

Parameter Units Description 
Ts s Sample time 

mCp J/(m·C) Per-unit-length heat capacity 
of the conductor 

W/(m· C) Conductive heat loss 
TIc rate coefficient 

W/(m· C) Radiative heat loss 
Tlr rate coefficient 

T1im C Line temperature at 
steady-state current limit. 

f),.qs,ij W/m Solar heat input 
into conductor 

f),.Tamb C 
Change in 

ambient temperature 

voltage angle differences for line (i,j): 

floss � .. (Bij ) 2 i· � rt) ) Xij (1) 

In this expression, fl'r is the approximate active power loss 
on the line; Bij is the difference between angles Bi and Bk; and 
rij + jXij is the impedance of the line between nodes i and 
j. Three assumptions underpin (1): voltage magnitudes are all 
1 pu, cosine may be approximated by its second-order Taylor 
expansion, and Xij 2: 4rij' Thus, (l) uses DC power flow 
assumptions to approximate line losses, but remains nonlinear. 

B. Line temperature dynamics 

According to analysis in [6] (which is based on [5]), 
changes in line temperature may be approximated using Euler 
integration: 

�Tij[t + 1] = Tij�Tij[t] + Pij�flTS[t] + Oij�dij[t], (2) 

where the initial condition is �Tij [0] = O. Constants Tij and 
"Ie are defined as, 

Ts"le Tij = 1 - mCp' (3) 

where Pij = Ts/mCp. Finally, �dij = [�qs,ij �Tamb]T, 
and Oij represents exogenous inputs and is equal to [Pij lij], 
where 

Ts"la lij = mCp' (4) 

Integration sample time is constrained by numerical stability 
requirements, which necessitate Tij E (-1, 1): { 2mC .. } Ts < min 

p,t) . t) le,ij 
(5) 

Table I summarizes the line temperature parameters in (2)-(5). 
Assuming line parameters and ambient conditions are inde

pendent of the power flow, (2) is driven by network conditions 
through the angle difference variables Bij [t]. Repeated substi
tution and use of (1) yields an expression for the change in 
line temperature at a final time in terms of angle differences 

at all other time steps. If there are T total time steps, this 
relationship may be expressed as: 

T 
�Tij[T] = P�;ij LTfj-1B;j[T + 1-t] 

'J t=l 
T 

+ Oij L Tfj-l �dij [T + 1 - t]. (6) 
t=l 

The first term in (6) varies with angle differences. The second 
term, which is based on external conditions, is constant with 
respect to power flow. Switching the order of summation and 
moving constants to the left side yields 

T T 
A rp [T] s: '"'" T-t Ad [ ]  Pijrij '"'" T-tB2 [ ] U.L ij - U ij � Tij U ij t = -2- � Tij ij t . (7) 

t=l Xij t=l 
This summation may be written in matrix form by defining 
an angle difference vector, a constant vector, and a coefficient 
matrix: 

Oij := [Bij[l] Bij[2] 
ddij := [�dij[l] �dij[2] 

d· ([ T-l T-2 T ij:= lag Tij Tij 

Bij[TlJ T 

... �dij[TlJ T 

1]) . 

(8a) 

(8b) 

(8c) 

In terms of these newly-defined symbols (whose dependence 
on T is hidden for conciseness), (7) becomes, 

(9) 

The left side of (9) is constant with respect to power flow, 
while the right side is a weighted, scaled two-norm of the 
vector of angle difference variables 0 ij. 

The approximate line temperature dynamics developed here 
will be used in Section III to model line temperature over an 
optimization horizon. 

C. Instanton formulation 

The preceding discussion developed an approximate line 
loss expression to relate line temperature to angle variables 
according to (9). Here we describe the remaining parts of the 
temporal instanton model. 

The following equations describe an optimization problem 
that minimizes deviation from the wind forecast while heating 
a certain line to a specified (limiting) temperature: 

T 
min '"'" devJ Qdevdevt dev � 

t=l 
subject to: 

j 

where: 

Gt = Go,t + kat 
Brej,t = 0 

�Tij [T] = �Tl�m 

Vi E L .N, t E L .T 
Vt E 1 ... T 
Vt E 1 ... T 
for some (i,j) E 9 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

(lOe) 



• deVi,t is the difference between actual output and forecast 
output at wind-farm i and time t. Thus, devt is the vector 
of wind forecast deviations at time t. 

• Qdev may be set to the identity matrix or used to encode 
correlation between wind sites. 

• Ri,t is renewable generation forecast at bus i and time t. 
• Yij is the (i, j)-th element of the admittance matrix, 

which assumes zero resistance. 
• Oij,t is the difference between voltage angles Oi and OJ 

at time t. 
• Gi,t is conventional active power generation at node 

and time t, and Gt is a vector including all nodes. 
• Di,t is active power demand at bus i and time t. 
• N is the number of buses (nodes). 
• Go,t is scheduled conventional active power generation 

(without droop response). 
• k is the vector of participation factors for conventional 

generators, with Li ki = 1. (The case where ki = 1 
corresponds to generator i taking all slack.) 

• at is the power mismatch at time t. 
• 6.Tfjm is the change in temperature that will push line 

(i, j) to its thermal limit. 
• Oref is the voltage angle of the reference bus. 
• 9 is the set of edges (lines). 
Equation (lOa) expresses the desire to find wind patterns 

that remain close to the wind forecast. The first constraint 
equation (lOb) enforces DC power balance. The next con
straint (lOc) models conventional active power generation as 
a sum of scheduled generation and droop response (where 
generators share the task of compensating for mismatch be
tween total generation and load). The system angle reference 
is established by (lOd). Last is (lOe), which constrains the 
temperature of a particular line to be equal to its limit at the 
final time T. Using (9) we can express (lOe) as 

(11) 

Thus, (10) has a quadratic objective function, a set of linear 
constraints, and a single quadratic constraint. By solving (10) 
for each line in the network, we obtain a set of instanton 
candidate wind patterns, each of which will heat a particular 
line to its thermal limit. Of these candidates, the one that 
deviates least from the wind forecast (across all time steps) 
is the instanton wind pattern. 

The form of (10) suggests a QCQP optimization formula
tion. The next section establishes this QCQP. 

III. CONVERSION TO OPTIMIZATION PROBLEM 

Previous instanton work relied on convex optimization to 
quickly find instanton wind patterns. Heat-constrained tempo
ral instanton analysis is more complicated: it cannot be for
mulated as anything simpler than a quadratically-constrained 
quadratic program (QCQP). QCQPs are NP-hard in general; 
reasonable solutions may exist, but unless the quadratic con
straint matrices are positive-definite there is no solution guar-

antee (see [7]). Because system operators require robustness, 
"no solution found" is an unacceptable output. With this 
criterion in mind, we proceed to develop an optimization 
model whose structure permits us to find solutions despite 
nonconvexity. 

With all deviation, angle, and mismatch variables stacked 
into a single vector, (10) takes the form: 

min Z T QobjZ 
s.t. Az = b 

Z T Qez = c. 

(12a) 

(12b) 

(12c) 

The objective (12a) is equivalent to (lOa), the linear equality 
constraints (12b) represent (lOb)-(lOd), and the quadratic 
equality constraint (12c) is equivalent to (lOe). The vector z 
consists of (N + NR + 2) T variables, where N is the number 
of nodes, N R is the number of nodes with wind-farms, and T 
is the number of time steps. Note that N RT of the variables 
represent deviations from forecast at each wind-farm and time 
step. There are also NT angle variables (of which T are 
fixed to zero according to (lOd» and T mismatch variables 
at (one per time step). The last T variables are auxiliary 
angle difference variables used to convert (lOe) into a norm 
constraint; they are defined later in (15). 

Variables may be stacked in any order. One convenient 
ordering is T groups of (N + NR + 1) variables, with 
the T auxiliary angle difference variables at the end. At a 
particular time step t, the group of (N + N R + 1) variables 
is [devJ OJ at]T, with devt representing deviations from 
forecast at the N R wind nodes, Ot is the column of Nangle 
variables at time t, and at is the mismatch between generation 
and demand at time t. 

The remainder of this section describes the components of 
(12). The objective matrix Qobj is described in Section III-A, 
linear constraint parameters A and b are considered in Sec
tion III-B, and the constraint matrix Qe is addressed in 
Section III-C. 

A. Objective function and Qobj 

The objective function depends solely on deviation vari
ables, so Qobj is a matrix that weights only the dev variables 
in z. If there are two time steps, for example, the vector of vari-
ables would be z = [devJ OJ a1 devJ OJ a2 e] T , 

and Qobj would be, 

Qdev 0 0 0 0 0 
0 0 0 0 0 0 

Qobj = 

0 0 0 0 0 0 
0 0 0 Qdev 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Note that Qdev represents the correlation between wind-farms 
(if any). In the Section IV numerical analysis, we will assume 
Qdev = J, the identity matrix. 



B. Linear constraints: A and b 

All constraints except the temperature limit may be grouped 
into a single linear system Az = b. Setting aside the T 
auxiliary variables for the moment, the A matrix has a block 
diagonal structure where each block consists of (N + 1) rows 
and (NR + N) columns. The first N rows describe power 
balance and distributed slack behavior at each node. For node 
i and time t, we fix elements of A and b to establish 

L lijBj,t = (C?,t + kiat) + (Ri,t + devi,t) -Di,t. (13) 
j 

The first pair of terms on the right-hand side of (13) represents 
conventional generation with distributed slack (generator i is 
taking a portion ki of the mismatch at). The second pair 
of terms is renewable generation: forecast Ri,t plus deviation 
devi,t. The final term is demand at node i and time t. (Note 
that renewable generation terms are zero for nodes without 
wind-farms.) In addition to the N rows corresponding to (13) 
at the N nodes, there is one additional equation associated 
with time t that fixes the angle reference: 

Bre!,t = O. (14) 

The (N + 1) rows of Az = b expressed in (13) and (14) 
pertain to a single time step t, with T blocks of this form 
arranged diagonally to form (N + l ) T rows of A and the 
corresponding b vector. There is one additional block of A 
used to define auxiliary angle difference variables eij,t in terms 
of angle variables Bi,t and Bj,t at each time step: 

A T-t 
B t=T-2- (B t-B t) . 

1,), 2, ), (15) 

The next subsection explains why these variables are helpful. 

C. Quadratic constraint: Qo and c 

Recall that (11) describes the temperature constraint on a 
chosen line (i, j). We can rearrange (11) into the form of (12c), 
with all constants on the right side: 

(16) 

This makes it clear that the appropriate value of c in (12c) is 

(17) 

From the definition of eij,t in (15), we see that the left side 
of (16) may be expressed as e"[y eij. Thus, if the eij variables 
are placed at the bottom of z, Qo must be a matrix of zeros 
with a T-by- T identity matrix in the lower-right corner. This 
ensures that z T Qoz = e"[y eij, as desired. 

Section II described the temporal instanton problem, Section 
III expressed it as a QCQP, and this section defined each 
component. Next we present a solution method for (12). 

IV. SOLUTION 

The structure of (12) is similar to that of the well-known 
trust region subproblem. Here we describe a four-step solution 
method based in part on [S]. We begin by considering the 
vector of variables z as three groups: Zl E IRNnT contains all 
wind deviations, Z2 E IR(NH)T contains angle and mismatch 
variables, and Z3 E IRT contains auxiliary angle difference 
variables involved in line temperature calculation. (This par
tition of z is independent of how the variables are ordered.) 
With this notation, the problem becomes 

min zi QzZl 

s.t. Az = b 

T z3 Z3 = c, 

(lSa) 

(1Sb) 

(lSc) 

where Qz is Qdev repeated in block-diagonal fashion T times. 
Several changes of variables may be used to obtain an 

equivalent form of (IS) whose solution is straightforward. 

A. Translation 

The first step is to change variables from z to y = z - z*, 
where z* E {z : Az = b}. This translation transforms Az = 
b into Ay = O. To prevent the change from introducing a 
linear term into the quadratic constraint, we require Z3 = O. 
To satisfy Az* = b, the subvectors zl and Z2 must satisfy, 

It is straightforward to find a min-norm z* that satisfies this 
constraint by partitioning and factorizing A appropriately. 
After translation, the problem becomes 

min yi QzYl + 2yi Qzzr 

s.t. Ay = 0 

T Y3 Y3 = c. 

B. Kernel mapping 

(l9a) 

(19b) 

(19c) 

The form of (19b) suggests an intuitive explanation: any 
solution to (19) must lie in the nullspace (kernel) of A. If 
dimN(A) = k is the dimension of this nullspace, we can 
let y = Nx where the k columns of N span N(A). (Note 
that x does not refer to reactance in this context.) This change 
of variables is akin to a rotation, but reduces the problem 
dimension to k. Partitioning N according to, 

allows (19) to be written, 

min x T (N{ QzNdx + 2x T (N{ Qzzr) (20a) 

s.t. x T NJ N3X = c. (20b) 

All feasible solutions to (20) lie in the nullspace of A, so the 
linear constraints are now implicit. 



C. Obtaining a norm constraint 

After kernel mapping, the quadratic constraint is no longer 
a norm constraint. This can be corrected in two steps. First, 
perform an eigendecomposition NJ N3 = U DUT and let x = 

UT x. The constraint is diagonal in terms of x: 
(21) 

where D is diagonal and has at most T nonzero elements, so 
the right side of (21) may be expanded into: 

xI] [� �] [;�] . (22) 

The second step is to change variables from x to w 
[wi w:iJT. The variables x, x and w are related through: 

[:�] = [� 1)�/2] [;�] = Kx (23) 

===} w = KUT x. 

(Note that x = U K-1w because UUT = I.) In terms of w, 
(20b) is transformed through (21) to give the form of a norm: 

X T Dx = xi 1)1/2 1)1/2x2 = wi W2 . (24) 

Of course, this change of variables must also be applied to 
the cost function. After substitution and simplification, the full 
problem becomes: 

min 

s.t. 
where 

wTBw+wTb 

T W2 W2 = C 

(25a) 

(25b) 

The manipulations in this section have restored the norm 
structure of the quadratic constraint. In the next section we use 
the KKT conditions of (25) to eliminate WI, the unconstrained 
part of w. This will allow us to write the objective in terms 
of W2 only. 

D. Eliminating WI 
Note that WI is unconstrained in (25). For a fixed W2, we 

can use the KKT conditions to find WI such that the objective 
is minimized. Begin by expanding the objective: 

f(w) = [wi wI] [�� ���] [:�] + [wi wI] [��] 
= wi Bll WI + 2wi B12W2 + wi B22W2 

+ wi b1 + wih 

Next, set the partial derivative with respect to WI equal to 
zero: 

(26) 

After substitution of (26), the objective depends only on W2: 
f(W2) = wi (B22 - Bi2Bl/ B12) W2 

+ wi (b2 - B�Bl/bl)' 
(Note that the constant term, which plays no role in minimiza
tion, was omitted.) The full optimization problem becomes: 

min 

s.t. 
where 

T A TA W2 BW2 + W2 b 
T w2 w2 = c, 

A T -1 A T -1 B = B22 - B12Bll B12 and b = b2 - B12Bll b1· 

(27a) 

(27b) 

This is a QCQP in T dimensions with a single norm constraint. 
It is straightforward to obtain solutions to this problem, as the 
next subsection shows. 

E. Solution via enumeration 

A straightforward method of solving (27) involves initially 
diagonalizing B through an eigendecomposition. It will be 
assumed that step has been completed. 

Let v be the Lagrange multiplier associated with (27b) and 
write the first-order optimality condition for (27): 

O'c(W2 , v) 2BA b' (2) 0 --,:--=--'- = W2 + - V W2 = 

OW2 
A 1 A ===} BW2 + 2b = VW2· (28) 

Equation (28) is a linear system that yields W2 for fixed v: 

bd2 W2 i = , , v - Bi,i 
(29) 

In addition to satisfying (29), an optimal W2 must satisfy the 
quadratic constraint. Substituting (29) into (27b) yields the 
"secular equation" (see [8]): 

s(v) = L ( bd� 
.
) 2 

= c. 
i V - B", 

(30) 

Note that s ( v ) has one pole per unique nonzero diagonal 
element of B. There are at most two solutions per pole, one 
on each side. This is best understood graphically. Figure 1 
illustrates a three-pole secular equation taken from analysis 
of the RTS-96 network. The Lagrange multiplier v is on the 
horizontal axis, and the secular equation value s ( v ) is on the 
vertical. Solutions are intersections of s ( v ) with the horizontal 
line s ( v ) = c. They can be computed numerically with a 
simple binary search algorithm. 

V. RESULTS FOR RTS-96 NETWORK 

We used data from [9] to demonstrate temporal instan
ton analysis on a wind-augmented RTS-96 network model. 
Consider a scenario unfolding over three time steps: first the 
wind forecast is 50% of some nominal value, next it is equal 
to the nominal value, and finally it is scaled to 150% of 
nominal. Throughout this wind ramping, generator dispatch 
and demand remain constant. Temporal instanton analysis with 



0.301-----,--11["""'"1-1-r-1;========il 1 - Secular Equation J - - s(v)=c 
0.25 000 Found by algorithm 

0.20 

:E 0.15 
OJ 

0.10 

0.05- ) 
�-----�----------0·�2� 0� 0==�--70------�2� 0� 0------47.0� 0�----�6�00;=====� 8�07 0:=d 

v 

Fig. 1. Plot of secular equation for a single line in the RTS-96. Note that 
s( v) approaches infinity at the three poles, and there could be as many as six 
solutions if c were large enough. 

c = 0.03 and T = 0.5 indicates that the line between buses 121 
and 325 is most susceptible to excessive heating under these 
conditions. In other words, of all dangerous wind patterns that 
could occur during the wind ramp, the most likely is a pattern 
that overheats the line between buses 121 and 325. Figure 1 
illustrates the secular equation used to find this instanton 
pattern, and Figure 2 shows the system state at the second 
time step. The largest deviation in the instanton pattern is 
0.73 pu, well within the range of wind forecast values (whose 
maximum is 1.2 pu). 

V I. CONCLUSIONS 

The paper has extended instanton analysis to consider 
the temperature dynamics of overloaded lines. The resulting 
formulation is a quadratically constrained quadratic program 
(QCQP). A computationally cheap algorithm has been devel
oped for obtaining candidate solutions of this QCQP. There is 
a great deal of flexibility in the temporal instanton model that 
has yet to be explored. In future work we plan to include 
transformers, consider the effects of ambient conditions in 
greater detail, and test the limits of the algorithm using larger 
networks with many time steps. 
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