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Abstract— An auction-based game is formulated for coordi-
nating the charging of a population of electric vehicles (EVs)
over a finite horizon. The proposed auction requires individual
EVs to submit bid profiles that have dimension equal to
two times the number of time-steps in the horizon. They
compete for energy allocation at each time-step. Use of the
progressive second price (PSP) auction mechanism ensures that
incentive compatibility holds for the auction game. However,
due to cross-elasticity between the charging time-steps, the
marginal valuation of an individual EV at a particular time
is determined by both the demand at that time and the total
demand over the entire horizon. This difficulty is addressed by
partitioning the allowable set of bid profiles according to the
total desired energy over the entire horizon. It is shown that
the efficient bid profile over the charging horizon is a Nash
equilibrium of the underlying auction game. A dynamic update
mechanism for the auction game is designed. A numerical
example demonstrates that the auction system converges to the
efficient Nash equilibrium.

I. INTRODUCTION

It is anticipated that the penetration of electric vehicles
(EVs) will substantially increase over the next few years
[1]. If such growth does eventuate, it will become necessary
to account for EV charging patterns in grid operation.
Centralized coordination faces numerous challenges, from
computational complexity to the loss of EV decision-making
autonomy. Many distributed coordination methods have been
proposed to address those difficulties. This paper studies EV
charging coordination over multiple time intervals, as formu-
lated in [2], [3], under an incentive compatibility mechanism
[4], [5]. In particular, the paper utilizes a progressive second
price (PSP) mechanism, designed by Lazar and Semret
[6], [7] and initially applied in the allocation of network
resources.

In a single divisible resource allocation problem under the
PSP auction mechanism, each player only reports a two-
dimensional bid profile. This bid profile is composed of a
maximum amount of demand and an associated buying price,
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and is used to replace the player’s complete (private) utility
function. Under the PSP mechanism, the money transfer
(or payment) of a player measures the externality that they
impose on the system through their participation. As ana-
lyzed in [6], [7], the PSP auction mechanism is a VCG-style
auction [8]–[10]. Therefore incentive compatibility holds,
ensuring that all players submit truth-telling bid profiles,
and indivisible items are allocated efficiently. Under this
mechanism, as verified in [7], [11] in the context of single-
unit network resource allocations, the efficient bid profile is
a Nash equilibrium.

This paper studies EV charging coordination over a multi-
period time horizon, where players (EVs) must consider
tradeoffs between energy costs that vary over the charging
horizon, the benefit derived from the total acquired energy,
and battery degradation. Individual EVs are inter-temporal
cross-elastic loads, as defined in [12]. As a result, the un-
derlying auction has the form of an auction-based allocation
of a collection of divisible resources, with electric energy
at each time-step of the horizon being a separate divisible
resource. The dimension of each EV’s bid profile is double
the number of divisible resources to be shared (equivalently
double the number of time intervals in the charging horizon).
Such auctions have received limited attention in the literature.
A key contribution of the paper is to show that the efficient
bid profile over the charging horizon is a Nash equilibrium
of the underlying auction game. However, due to the inter-
temporal cross-elasticity of a bid profile over the multi-step
time horizon, it is infeasible to directly verify the Nash
equilibrium property of the efficient bid profile using analysis
that is applicable for a single-resource auction game [7], [11].
An alternative approach is proposed in this paper.

The paper is organized as follows. Section II establishes
the problem structure by formulating a class of EV charging
coordination problems over a multiple time-step horizon.
Distributed charging problems under the PSP auction mech-
anism are introduced in Section III. Section IV shows that
the efficient (truth-telling) bid profile is a Nash equilibrium
of the underlying PSP auction game. A dynamic process is
designed in Section V to implement the PSP auction. Sec-
tion VI provides an example that illustrates the convergence
of this process to the efficient Nash equilibrium. Section VII
concludes the paper.

II. COORDINATION OF ELECTRIC VEHICLE CHARGING

This paper focuses on charging coordination of a pop-
ulation of EVs, N , {1, · · · , N}, over a finite charging
horizon, T , {0, · · · , T − 1}. For each EV, n ∈ N , the
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energy delivered1 over the t-th time period is denoted xnt,
and the battery state of charge (SoC) evolves according to

sn,t+1 = snt +
1

Θn
xnt (1)

where Θn is the battery capacity and snt is the normalized
SoC for the n-th EV at time t. An admissible charging
strategy, xn ≡ (xnt, t ∈ T ), satisfies the constraints:

xnt

{
≥ 0, when t ∈ Tn
= 0, otherwise

, with
T−1∑
t=0

xnt ≤ Γn, (2)

where Tn ⊂ T denotes the charging interval of the n-th EV,
Γn = Θn(s

max
n −sn0) gives the maximum energy that it can

receive, and 0 ≤ sn0 ≤ smax
n ≤ 1 gives the (normalized)

minimum and maximum SoC, respectively. The values for
Tn, Γn and sn0 follow from the driving style and vehicle
battery capacity, see for example [13]. The set of all possible
admissible charging strategies is denoted by Xn. Also, define
the collection of admissible charging strategies for all EVs
by x ≡ (xn;n ∈ N ), with its corresponding set being X .

The utility function of the n-th EV, for the charging
strategy xn, is given by:

wn(xn) = −
T−1∑
t=0

fn(xnt)− δn

( T−1∑
t=0

xnt − Γn

)2
, (3)

where δn > 0 is a fixed parameter, and fn(·) denotes
the battery degradation cost of the n-th EV. This cost is
governed by the charging rate xnt, and provides a measure
of the cost associated with the decrease in the battery energy
capacity due to battery resistance growth [14]. The second
term in (3) captures the cost of not fully charging the EV,
with δn weighting the relative importance of delivering the
maximum energy over the charging interval, see [15]. There-
fore, wn(xn) establishes the tradeoff between the battery
degradation cost and the benefit derived from delivering the
full charge.

Subject to a collection of admissible charging strategies
x, the system cost is given by:

Js(x) =
T−1∑
t=0

c(Dt +
N∑

n=1

xnt)−
N∑

n=1

wn(xn), (4)

where c(·) denotes the generation cost, Dt the aggregate
inelastic background demand at time t, and Dt +

∑N
n=1 xnt

is the total demand at time t.
It is desirable to determine the collection of efficient

(socially optimal) charging strategies x∗∗ that minimizes the
system cost (4). This centralized EV charging coordination
problem can be formulated as the following optimization
problem.

Optimization Problem 1:

min
x∈X

Js(x) (5)

1It is assumed that the energy is delivered at a constant rate (power) over
each time interval, and that the time intervals are of unit length. Therefore
the charging rate is also given by xnt.

such that x satisfies constraints (2) for all n ∈ N . �
The efficient charging strategy x∗∗ of Optimization Prob-

lem 1 can be characterized by its associated KKT conditions.
Firstly, the Lagrangian can be written:

L(x,λ) = Js(x) +

N∑
n=1

λn

( T−1∑
t=0

xnt − Γn

)
,

where λn is the Lagrangian multiplier associated with the
constraint

∑T−1
t=0 xnt ≤ Γn from (2). The KKT conditions

for Optimization Problem 1 are therefore given by:

∂

∂xnt
L(x,λ) ≥ 0, xnt ≥ 0,

∂

∂xnt
L(x,λ)xnt = 0

(6a)
T−1∑
t=0

xnt − Γn ≤ 0, λn ≥ 0, λn

( T−1∑
t=0

xnt − Γn

)
= 0,

(6b)

for all t ∈ T and n ∈ N , where:

∂

∂xnt
L(x,λ) = c′(Dt+

N∑
n=1

xnt)−
∂

∂xnt
wn(xn)+λn. (6c)

Assumptions: The following conditions will be assumed
throughout the remainder of the paper.

(A1) c(y) is monotonically increasing, strictly convex
and differentiable on y;

(A2) fn(x), for all n ∈ N , is monotonically increasing,
strictly convex and differentiable on x.

Remarks: The generation cost c(·) is widely assumed to be
a convex function of the total generation, see for example
[16]–[18]. The battery degradation cost fn(·) is governed by
the chemical processes inherent in charging. It is shown in
Fig. 7 of [14] that the growth of battery resistance, hence
the fade of battery energy capacity, is generally increasing
and convex with respect to charging rate. This provides some
justification for (A2) since fn measures the cost related to
the fade of battery capacity with respect to charging rate.

Lemma 2.1: The collection of efficient charging strategies
x∗∗ for Optimization Problem 1 is unique.

Proof. Under Assumptions (A1,A2), the cost function
Js(x) is strictly convex and differentiable. Also, the con-
straints (2) determine a convex domain. Therefore Optimiza-
tion Problem 1 is a strictly convex optimization problem.
Thus there exists a unique solution. �

This centralized charging coordination strategy can only
be effectively implemented when the system has complete
information and can directly schedule the behavior of all
EVs. In practice, however, individuals are often unwilling to
share their private information with others. Thus the paper
focuses on the development of a distributed control method
that is based on the progressive second price (PSP) auction
mechanism.

3000



III. DISTRIBUTED EV CHARGING COORDINATION
UNDER A PSP AUCTION MECHANISM

A. Bid profiles of individual EVs

Each EV n ∈ N submits a 2T -dimensional bid profile,
bn ≡ (bnt, t ∈ T ), where bnt = (βnt, dnt), with βnt

specifing the price that the n-th EV is willing to pay for
energy at time t, and

dnt

{
≥ 0, when t ∈ Tn
= 0, otherwise

, and
T−1∑
t=0

dnt ≤ Γn, (7)

establishing the maximum electrical energy that is desired
at that time. The corresponding feasible allocation xn ≡
(xnt, t ∈ T ) with respect to bn must satisfy:

0 ≤ xnt ≤ dnt, (8)

for all t ∈ T . Let Bn denote the allowable set of bids for
the n-th EV, so that bn ∈ Bn.

Each EV’s revealed utility function is defined as:

ŵn(xn(bn); bn) ,
T−1∑
t=0

βnt min(xnt, dnt) =
T−1∑
t=0

βntxnt

(9)
where the last equality holds by (8). The revealed system cost
with respect to a collection of bid profiles b ≡ (bn, n ∈ N )
is then given by:

J(x(b); b) =
T−1∑
t=0

c(Dt +
N∑

n=1

xnt)−
N∑

n=1

ŵn(xn(bn); bn).

(10)
Auction-based EV charging allocation can be written as the
following optimization problem.

Optimization Problem 2:

J∗(b) = min
0≤x≤d

J(x(b); b), (11)

where the bid profile b satisfies the constraint (7) and x
satisfies (8). The objective of the auctioneer is to assign an
optimal allocation x∗(b) with respect to bid profiles b to
minimize the revealed system cost given by J . �

Lemma 3.1: Suppose x∗(b) ≡ (x∗
t , t ∈ T ) is the optimal

allocation subject to bid profile b. Then

x∗
t (b) ≡ x∗

t (bt), for all t ∈ T , (12)

i.e., the optimal allocation at time t is completely determined
by the bid profile at that time.

The proof follows directly from (9) and (10).
The optimal charging allocation x∗ of Optimization Prob-

lem 2 can be characterized by the associated KKT conditions.
Firstly, the Lagrangian can be written:

La(x,σ; b) = J(x(b); b) +
N∑

n=1

T−1∑
t=0

σnt(xnt − dnt),

where σnt is the Lagrangian multiplier associated with
the constraint (8). The KKT conditions for Optimization

Problem 2 are given by:

∂

∂xnt
La(x,σ; b) ≥ 0, xnt ≥ 0,

∂

∂xnt
La(x,σ; b)xnt = 0

(13a)
xnt − dnt ≤ 0, σnt ≥ 0, (xnt − dnt)σnt = 0,

(13b)

for all t ∈ T and n ∈ N , where

∂

∂xnt
La(x,σ; b) = c′(Dt +

N∑
k=1

xkt)− βnt + σnt. (13c)

It is now possible to establish a connection between the
optimal charging strategies given by the two optimization
problems (5) and (11).

Lemma 3.2: Consider a collection of bid profiles,

b∗nt = (β∗
nt, d

∗
nt) =

(
∂

∂xnt
wn(x

∗∗
n ), x∗∗

nt

)
, (14)

for all n ∈ N and t ∈ T . Then, under Assumptions (A1,A2),
x∗(b∗) = x∗∗, i.e., the optimal charging allocation x∗ of
Optimization Problem 2 with respect to b∗ is efficient. Also,

β∗
nt

{
= c′(Dt +

∑N
k=1 d

∗
kt), if x∗

nt > 0

≤ c′(Dt +
∑N

k=1 d
∗
kt), if x∗

nt = 0
, (15)

for all n ∈ N and t ∈ T , i.e., the EVs with an allocation
larger than zero share the same marginal price as the gener-
ation, which is larger than or equal to the price of EVs with
zero allocation.

Lemma 3.2 is essentially the so-called fundamental the-
orem of welfare economics [19]. Verification uses the KKT
conditions (6) and (13), with full details provided in [20].

Incentive compatibility holds under the PSP auction mech-
anism [6], [7]. Therefore, a bid profile with price satisfying
βnt = ∂

∂dnt
wn(dn), for all t ∈ T , as is the case in (14),

is the best choice among all possible bid profiles. It follows
from (3) that the truth-telling bid profile of the n-th EV is
given by:

βnt = −f ′
n(dnt) + 2δn

(
Γn −

T−1∑
t=0

dnt

)
. (16)

This implies that an EV’s marginal valuation at each time-
step is determined by both its electrical energy request dnt at
that time and its total energy request

∑
t dnt over the entire

multi-period charging horizon.

B. Calculation of EV payment and payoff

The payment incurred by each EV will be specified with
respect to the allocation law defined by Optimization Prob-
lem 2. Each EV’s payment is exactly the externality imposed
on the system through its participation in the auction. For
the n-th EV, this is given by the system-wide utility when
it does not join the auction process, minus the system-wide
utility (but excluding its own contribution) when it joins the
auction.

To express this payment, it is convenient to introduce a
slight abuse of notation by writing the collection of bid
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τn(b) =

T−1∑
t=0

−c(Dt +
∑
m ̸=n

x∗,−n
mt ) + c(Dt +

∑
m ̸=n

x∗
mt + x∗

nt) +
∑
m ̸=n

βmt

(
x∗,−n
mt − x∗

mt

)
︸ ︷︷ ︸

, τnt(bt)

(18)

profiles as b ≡ (bn, b−n), where b−n ≡ (bk, k ∈ N \ {n}).
The payment of the n-th EV, for a collection of bid profiles
b, is then given by:

τn(b) = −J∗(0n, b−n)−

(
−J∗(b)−

T−1∑
t=0

βntx
∗
nt(b)

)
(17)

where (0n, b−n) denotes the bid profile without the n-th
EV’s participation, i.e., with the bid dnt replaced by dnt = 0
for all t ∈ T , and x∗(b) is the optimal charging allocation
given by (11), with respect to b. Thus by (10), (17) and
Lemma 3.1, the payment of the n-th EV can be expressed
as (18), where x∗,−n

mt denotes the optimal charging allocation
of EVs m ̸= n given by Optimization Problem 2 with respect
to (0n, b−n)t. (Recall from Lemma 3.1 that the allocations
at time t are unrelated to other times.)

The payoff function of the n-th EV is given by the
difference between the EV’s utility and its payment:

un(b) = wn(x
∗
n(b))− τn(b). (19)

This payoff function provides the basis for defining a Nash
equilibrium for the PSP auction game.

Definition 3.1: A collection of bid profiles b0 is a Nash
equilibrium for Optimization Problem 2 if:

un(b
0
n, b

0
−n) ≥ un(bn, b

0
−n),

for all bn ∈ Bn and for all n ∈ N . That is, no EV can
benefit by unilaterally deviating from its bid profile b0n. �

IV. EFFICIENCY OF THE CHARGING COORDINATION PSP
AUCTION GAME

Suppose b∗ is the bid profile specified in Lemma 3.2,
such that the corresponding optimal charging allocation is
efficient. It will be shown in this section that b∗ is a Nash
equilibrium for the underlying auction game. By Defini-
tion 3.1, this implies:

un(b
∗
n, b

∗
−n) ≥ un(bn, b

∗
−n), for all bn ∈ Bn. (20)

Due to the cross-elasticity arising from the second term
in (16), it is infeasible to directly verify that the efficient
bid profile is best for every individual EV. Accordingly, the
approach developed in [11] for auction games of a single
divisible resource is not applicable. In order to overcome this
difficulty, an alternative approach is required. This involves
partitioning the set of bid profiles Bn into a collection of
subsets:

Bn(A) ,
{
bn ∈ Bn; s.t.

T−1∑
t=0

dnt = A

}
, (21)

each of which is composed of those bid profiles that are
admissible for the n-th EV and that possess a common total
for the desired charge energy over the charging horizon T .
The set of bid profiles is then given by:

Bn =
∪

A∈[0,Γn]

Bn(A), (22)

noting that Bn(Â)
∩
Bn(Ã) = ∅ whenever Â ≠ Ã. For all

bid profiles in a subset Bn(A), it follows from (16) that the
marginal valuation price βnt at any time t includes a variable
part −f ′

n(dnt) that is dependent upon the request dnt at that
time, and a fixed part 2δn(Γn − A) that is identical for all
bid profiles in Bn(A).

By Definition 3.1 and the specification of Bn(A), it is
sufficient to show that b∗ is a Nash equilibrium, if for every
fixed A ∈ [0,Γn]:

un(b
∗
n, b

∗
−n) ≥ un(b̂n, b

∗
−n), for all b̂n ∈ Bn(A), (23)

and for all n ∈ N . This is easier to verify than (20),
since the difficulty associated with cross-elasticity is avoided
when considering each specific subset Bn(A) with fixed
A ∈ [0,Γn]. To do so requires the following lemma.

Lemma 4.1: Suppose βnt(dnt;A) is the bidding price
given by (16) for the n-th EV at time t, but with the
summation

∑
t dnt in the second term replaced by A. Then

βnt(dnt;A) satisfies the properties:

βnt(d
1
nt;A) > βnt(d

2
nt;A) > 0, when d1nt < d2nt, for all A,

(24a)
βnt(dnt;A1) > βnt(dnt;A2), when A1 < A2, for all dnt.

(24b)

In other words, βnt(dnt, A) decreases with increasing dnt
and A.

Proof. By (16), βnt(dnt;A) = 2δn(Γn −A)− f ′
n(dnt). It

is straightforward to verify (24) under Assumption (A2). �
The desired result (23) will be established by considering

the two cases A ≥
∑T−1

t=0 d∗nt and 0 ≤ A <
∑T−1

t=0 d∗nt
separately.

A. Verification of (23) when A ≥
∑T−1

t=0 d∗nt

For notational simplicity, let x∗ and x̂ denote the optimal
allocations with respect to b∗ and (b̂n, b

∗
−n) respectively.

Lemma 4.2: If A ≥
∑T−1

t=0 d∗nt then x̂mt = d∗mt, for all
m ∈ N \ {n}, i.e., each of the EVs m ∈ N \ {n} is fully
allocated.

The proof relies on Lemmas 3.2 and 4.1, and KKT
conditions (13). Full details are given in [20].

The main result for this section can now be established.
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Theorem 4.1: Under Assumptions (A1,A2), (23) holds
when A ≥

∑T−1
t=0 d∗nt.

Proof. Considering the n-th EV, the first step is to compute
the difference between the payoff given by the optimal
strategy un(b

∗) and that obtained from an alternative strategy
un(b̂n, b

∗
−n). Using (19), these payoffs are given by,

un(b
∗) = wn(d

∗
n)− τn(b

∗) (25a)

un(b̂n, b
∗
−n) = wn(x̂n)− τn(b̂n, b

∗
−n). (25b)

Hence, the difference is:

∆un , un(b
∗)− un(b̂n, b

∗
−n)

= wn(d
∗
n)− wn(x̂n)

+

(
J∗(b̂n, b

∗
−n) +

T−1∑
t=0

β̂ntx̂nt − J∗(b∗)−
T−1∑
t=0

β∗
ntd

∗
nt

)
where the equality follows from (17). Straightforward anal-
ysis using Lemma 4.2 gives:

∆un = wn(d
∗
n)−wn(x̂n)+

T−1∑
t=0

{
c(Dt+

∑
m ̸=n

d∗mt+ x̂nt)

− c(Dt +
∑
m ̸=n

d∗mt + d∗nt)
}
. (26)

Also, using Lemma 4.2,

Js(x
∗)− Js(x̂) = Js(d

∗)− Js(x̂n,d
∗
−n)

=

T−1∑
t=0

{
c(Dt +

∑
m ̸=n

d∗mt + d∗nt)− c(Dt +
∑
m ̸=n

d∗mt + x̂nt)
}

− wn(d
∗
n) + wn(x̂n)

= −∆un.

Since x∗ is the efficient allocation, Js(x∗) ≤ Js(x̂), so

∆un = Js(x̂)− Js(x
∗) ≥ 0.

This implies that the n-th EV cannot benefit by unilaterally
changing its bid profile b∗n to any other bid profile b̂n ∈
Bn(A) with A ≥

∑T−1
t=0 d∗nt. �

B. Verification of (23) when 0 ≤ A <
∑T−1

t=0 d∗nt

In considering 0 ≤ A <
∑T−1

t=0 d∗nt, it is convenient to
first establish the n-th EV’s optimal bid profile in the set
Bn(A) and under the constraint,

0 ≤ d̂nt

{
< d∗nt, when d∗nt > 0,

= 0, otherwise,
for all t ∈ T . (27)

It will then be shown that the resulting bid profile remains
optimal when the constraint (27) is released.

Lemma 4.3: Consider a bid profile b̂∗n ≡ b̂∗n(A) ≡(
(β̂∗

nt, d̂
∗
nt), t ∈ T

)
, with A ∈ [0,

∑T−1
t=0 d∗nt), such that

b̂∗n = argmax
b̂n∈Bn(A)

Constraint (27)

un(b̂n, b
∗
−n). (28)

Let x̂∗ ≡ (x̂∗
kt, k ∈ N , t ∈ T ) denote the optimal allocations

with respect to (b̂∗n, b
∗
−n). Then,

x̂∗
n = d̂∗

n, x̂∗
m = d∗

m for all m ∈ N \ {n}, (29)

i.e., all EVs are fully allocated. Furthermore, define the
function,

gnt(d) , c(Dt +
∑
m ̸=n

d∗mt + d) + fn(d). (30)

Then, under Assumptions (A1,A2), b̂∗n satisfies the property:

g′nt(d̂
∗
nt)

{
= µ, when d̂∗nt > 0

≥ µ, when d̂∗nt = 0
, for all t ∈ T , (31)

where µ is a constant. �
Proof. The proof uses Lemmas 3.2 and 4.1, together with

the KKT conditions (13), to establish (29). The argument
also indicates that x∗,−n

mt = x∗
mt for all m ∈ N \ {n}, and

so (18) becomes,

τn(b̂n, b
∗
−n) =

T−1∑
t=0

c(Dt +
∑
m ̸=n

d∗mt + d̂nt)− c(Dt +
∑
m ̸=n

d∗mt)

 .

(32)

The KKT conditions for (28) then give (31). Full details are
provided in [20].

It will now be shown that the bid profile b̂∗n established
in Lemma 4.3 remains optimal when the constraint (27) is
released.

Theorem 4.2: Suppose that b̂∗n is the optimal bid profile
from Lemma 4.3. Then, under Assumptions (A1,A2) and
with A ∈ [0,

∑T−1
t=0 d∗nt), b̂

∗
n satisfies:

b̂∗n = argmax
b̂n∈Bn(A)

un(b̂n, b
∗
−n). (33)

Proof. Consider a bid profile b̂n ≡
(
(β̂nt, d̂nt), t ∈ T

)
∈

Bn(A) such that d̂nt ≥ d∗nt for some t ∈ T . Then the
desired result follows if it can be proven that b̂n cannot be
the optimal bid profile in the subset Bn(A).

The proof relies on the following:
(i) βnt(d̂nt;A) > βnt(d̂nt;

∑T−1
t=0 d∗nt) because A <∑T−1

t=0 d∗nt, by (24b).
(ii) c′(Dt +

∑
m ̸=n d

∗
mt + dnt) increases with dnt under

Assumption (A1).
(iii) (β∗

nt, d
∗
nt) is the point at which βnt(dnt;

∑T−1
t=0 d∗nt) and

c′(Dt +
∑

m ̸=n d
∗
mt + dnt) coincide, by Lemma 3.2.

Using (i)–(iii) together with (24a) gives,

0 < d∗nt < d̂1nt, β∗
nt < β̂1

nt,

where (β̂1
nt, d̂

1
nt) denotes the point of intersection between

βnt(dnt;A) and c′(Dt +
∑

m ̸=n d
∗
mt + dnt).

Let (β̂2
nt, d̂

2
nt) denote the bid profile with respect to A such

that β̂2
nt = β∗

nt, in other words β̂2
nt = β∗

nt = βnt(d̂
2
nt, A).

It follows from (24a) that d̂1nt < d̂2nt. Based on the ordering
0 < d∗nt < d̂1nt < d̂2nt, the set [0,∞) can be partitioned into
four disjoint regions,

R0 , [0, d∗nt), R1 , [d∗nt, d̂
1
nt),

R2 , [d̂1nt, d̂
2
nt), R3 , [d̂2nt,+∞).
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Suppose there exists a b̂n ∈ Bn(A) such that at time
t2, d̂nt2 ∈ R1 ∪ R2 ∪ R3. Then, because

∑T−1
t=0 d̂nt =∑T−1

t=0 d̂∗nt = A <
∑T−1

t=0 d∗nt, and d̂∗nt < d∗nt due to (27),
there must exist another time t1 such that d̂nt1 < d̂∗nt1 .

Consider two bid profiles b̂n, b̃n ∈ Bn(A) such that,

d̂nt1 < d̃nt1 < d̂∗nt1 (34a)

d∗nt2 < d̃nt2 < d̂nt2 (34b)

d̂nt1 + d̂nt2 = d̃nt1 + d̃nt2 (34c)

d̂nt = d̃nt, for all t ̸= t1, t2. (34d)

Then, by considering the cases where d̂nt2 , d̃nt2 lie in regions
R1, R2 and R3 respectively, it is shown in [20] that,

un(b̂n, b
∗
−n) < un(b̃n, b

∗
−n). (35)

Hence, b̂n cannot be the optimal bid profile with respect to
b∗−n, which is the desired result.

Moreover, because Assumptions (A1,A2) ensure differ-
entiability of c(·) and fn(.) for all n, the payoff function
of every EV is continuous in the bid profiles. Therefore, it
follows from (35) that the optimal bid profile for the n-th
EV must lie in region R0 for all t ∈ T . �

Theorem 4.3: Under Assumptions (A1,A2), (23) holds
when 0 ≤ A <

∑T−1
t=0 d∗nt.

Proof. By Theorem 4.2, b̂∗n is the optimal bid with respect
to b∗−n in Bn(A), when A ∈ [0,

∑T−1
t=0 d∗nt). Therefore, the

best possible payoff for the n-th EV is,

un(b̂
∗
n, b

∗
−n) = wn(d̂

∗
n)− τn(b̂

∗
n, b

∗
−n). (36)

Using (29) and recalling that x∗ = d∗ gives,

Js(x
∗)− Js(x̂

∗) = Js(d
∗)− Js(d̂

∗
n,d

∗
−n)

=

T−1∑
t=0

{
c(Dt +

∑
m ̸=n

d∗mt + d∗nt)− c(Dt +
∑
m̸=n

d∗mt + d̂∗nt)
}

− wn(d
∗
n) + wn(d̂

∗
n)

= −
(
un(b

∗)− un(b̂
∗
n, b

∗
−n)

)
≡ −∆un

where the final equality makes use of (25a) and (36). By
Lemma 3.2, x∗ ≡ x∗(b∗) is the efficient allocation solution,
so Js(x

∗) ≤ Js(x̂
∗). Therefore,

∆un = Js(x̂
∗)− Js(x

∗) ≥ 0,

which implies that the n-th EV cannot benefit by unilaterally
changing its bid profile b∗n to any other bid profile b̂∗n ∈
Bn(A) with A ∈ [0,

∑T−1
t=0 d∗nt). �

C. Existence of efficient Nash equilibrium

Using the results from Sections IV-A and IV-B, it can now
be shown that the efficient bid profile b∗ specified in (14) is
a Nash equilibrium of the EV charging coordination game
under the PSP auction mechanism.

Corollary 4.1: Under Assumptions (A1,A2), the efficient
bid profile b∗ ≡ (b∗n;n ∈ N ) specified in (14) satisfies the
property:

un(b
∗
n, b

∗
−n) ≥ un(bn, b

∗
−n), for all bn ∈ Bn. (37)

Proof. It was shown in Theorems 4.1 and 4.3, under
Assumptions (A1,A2), that

un(b
∗
n, b

∗
−n) ≥ un(bn, b

∗
−n), for all bn ∈ Bn(A), (38)

holds when A ≥
∑T−1

t=0 d∗nt and when 0 ≤ A <
∑T−1

t=0 d∗nt,
respectively. The desired result (37) holds since Bn =∪

A∈[0,Γn]
Bn(A). �

V. A DYNAMIC PSP AUCTION PROCESS

In order to implement the PSP-auction based distributed
charging process, each EV must be able to determine its best
bid profile, given the collection of bid profiles for the other
EVs. It will be shown that this process can be formulated as
a dynamic programming problem. This update mechanism
can then be embedded in an algorithmic description of the
underlying auction game.

Recall that b∗n(b−n) denotes the best bid profile of the n-
th EV with respect to the collection of bid profiles b−n of
all the other EVs,

b∗n(b−n) = argmax
bn∈Bn

un(bn, b−n), (39)

with un(bn, b−n) being the individual payoff of the n-th EV,
as established in (19). However, due to the cross-temporal
coupling arising from the summation term

∑T−1
t=0 dnt in

truth-telling bid profiles, as identified in (16), it is impractical
to directly implement the best response b∗n(b−n) which is
incentive compatible. This can be addressed by determining
the best response when bid profiles are constrained to possess
a common total desired demand A =

∑T−1
t=0 dnt, and then

optimizing over A ∈ [0,Γn]. The resulting optimization is
given by,

un(b
∗
n, b−n) = max

A∈[0,Γn]
max

bn∈Bn(A)
un(bn, b−n). (40)

The remainder of this section describes a dynamic program-
ming approach to solving the inner optimal bidding problem
that arises for each fixed total demand request A ∈ [0,Γn].

The dynamics associated with the physical charging pro-
cess (1) can be rewritten,

sn,t+1(bn, b−n) = snt(bn, b−n)+
1

Θn
xnt(bn, b−n), t ∈ T

(41)
where xnt(bn, b−n) denotes the allocated charging rate of
the n-th EV at time t, with respect to the collection of bid
profiles (bn, b−n).

Lemma 5.1: Consider a bid profile bn ∈ Bn(A), for any
fixed A ∈ [0,Γn]. Then the payoff function of the n-th EV
has the summation form:

un(bn, b−n) =
T−1∑
t=0

an(bt)− δnΘ
2
n (s

max
n − snT )

2
, (42)

where an(bt) ≡ −fn(xnt(bt)) − τnt(bt), and τnt(bt) is
defined in (18).
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Proof. From (19),

un(b) = wn(x
∗
n(bn))− τn(b)

=

T−1∑
t=0

{
− fn(xnt(bt))− τnt(bt)

}
− δn

( T−1∑
t=0

xnt(bt)− Γn

)2
where equality holds by (3), Lemma 3.1, and (18). Then (42)
follows directly from (41). �

Let Tt ≡ {t, ..., T − 1}, and define the value function
vn(t, snt) ≡ vn(t, snt;A, b−n), for all t ∈ T as,

vn(t, snt) ,

max
bn(Tt)∈Bn(Tt,snt;A)

{
T−1∑
s=t

an(bs)− δnΘ
2
n (s

max
n − snT )

2

}
(43)

where an(bs) is defined in Lemma 5.1, and

Bn(Tt, snt;A) ,
{(

(βns, dns), s ∈ Tt

)
s.t. βns = −f ′

n(dns) + 2δn (Γn −A) ,

and
∑T−1

s=t dns ≤ min
{
A,Θn(s

max
n − snt)

}}
,

when t > 0

Bn(A), when t = 0
(44)

with Bn(A) defined in (21). The terminal value function is
defined as,

vn(T, snT ) , −δnΘ
2
n (s

max
n − snT )

2
. (45)

Note that the set of bid profiles of the n-th EV over the
interval Tt specified in (44) is defined in such a way that the
total bidding demand over the whole interval T is guaranteed
to equal A.

Based on the value function definition,

vn(0, sn0;A, b−n) = max
bn∈Bn(A)

un(bn, b−n) (46)

and therefore,

un(b
∗
n, b−n) = max

A∈[0,Γn]
vn(0, sn0;A, b−n). (47)

Let b∗n(Tt) ≡
(
(β∗

ns, d
∗
ns), s ∈ Tt

)
≡ b∗n(Tt, snt;A, b−n)

denote the best bid profile of the n-th EV solving the optimal
problem (43) over the interval Tt with respect to A and b−n,
and let Π∗

n(t, snt;A, b−n) denote the total bidding demand
over the interval Tt of the n-th EV subject to the best bid
profile b∗n(Tt, snt;A, b−n),

Π∗
n(t, snt;A, b−n) ,

T−1∑
s=t

d∗ns(Tt, snt;A, b−n). (48)

Define Bn(t, snt) ≡ Bn(t, snt;A, b−n), for any t ∈ T , as
the set of bid profiles at time t, such that

Bn(t, snt;A, b−n) ,

{
(βnt, dnt) s.t. βnt = −f ′

n(dnt) + 2δn (Γn −A) ,

and dnt +Π∗
n(t+ 1, sn,t+1;A, b−n)

≤ min
{
A,Θn(s

max
n − snt)

}}
, when t > 0{

(βnt, dnt) s.t. βnt = −f ′
n(dnt) + 2δn (Γn −A) ,

and dnt +Π∗
n(t+ 1, sn,t+1;A, b−n) = A

}
,

when t = 0
(49)

where sn,t+1 is given by (41). As with the set of bid profiles
of the n-th EV over the interval Tt specified in (44), the set
of bid profiles of the n-th EV at each time t ∈ T specified
in (49) is defined such that the total bidding demand over
the whole interval T is guaranteed to equal A.

Theorem 5.1: The value function vn(t, snt;A, b−n) of the
n-th EV, with respect to a fixed A ∈ [0,Γn] and a collection
of bid profiles of the other EVs b−n, can be implemented
by solving the Bellman equation,

vn(t, snt;A, b−n) =

max
bnt∈Bn(t,snt;A,b−n)

{
an(bt) + vn(t+ 1, sn,t+1;A, b−n)

}
,

(50)

for t ∈ T , where Bn(t, snt;A, b−n) is defined in (49), an(bt)
is specified in Lemma 5.1, and vn(T, snT ) is given by (45).

It is straightforward to verify Theorem 5.1 by applying the
optimality principle for the underlying optimization problem
defined in (46) for the n-th EV with respect to A and b−n.

Finally, the n-th EV’s overall best bid profile, with respect
to bid profiles of the other EVs b−n, is given by (47).

By applying Algorithm 5.1, each EV updates its own best
response with respect to the bid profiles of all the other

Algorithm 5.1: (Nash equilibrium implementation)
• Provide an initial collection of bid profiles b(0).
• Set the iterative step k = 0.
• Set the iteration termination criterion ϵ > ϵ0 for

some ϵ0 > 0.
• While ϵ > ϵ0

– For n : 1 = N
Determine the best response for the n-th EV,
b
(k+1)
n , with respect to b

(k+1)
1 , · · · , b(k+1)

n−1 , b(k)n+1,
· · · , b(k)N , by maximizing the payoff function,

b(k+1)
n = argmax

bn∈Bn

un(bn; b
(k+1)
1 , · · · , b(k+1)

n−1 , b
(k)
n+1, · · · , b

(k)
N ),

which can be achieved by applying the dynamic
programming update.

– Update ϵ := ||b(k+1) − b(k)||.
– Update k := k + 1.

End of Algorithm
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Fig. 1. Convergent updates of Algorithm 5.1.

EVs. This process continues until the updates become in-
significant. Upon convergence, on the basis of Definition 3.1,
the bid profile implemented by Algorithm 5.1 is a Nash
equilibrium.

VI. NUMERICAL ILLUSTRATION

To illustrate the auction-based coordination process, a
numerical example considers EV charging over a common
time horizon T = 24, from 12:00 on one day to 12:00
the next day, with a time-step of ∆T = 1 h. The back-
ground demand Dt is shown in Fig. 1. For the purpose of
demonstration, a small population of 5 vehicles is considered.
Each EV has a common battery capacity of 30 kWh and a
common maximum SoC value smax

n = 0.9. Heterogeneity is
introduced by letting the initial SoC values sn0 for the five
EVs take the values s0 = [0.1 0.15 0.23 0.14 0.08]ᵀ.

The generation cost is given by c(xt, Dt) =
0.005(

∑
n∈N xnt + Dt)

1.7 and the battery degradation
cost by fn(xnt) = 0.002x2

nt. Both these functions are
strictly convex. The weighting factor for the quadratic
charging deviation cost of each EV is set to δn = 10 for all
n ∈ N .

The efficient EV charging trajectory, given by Optimiza-
tion Problem 1, is shown in aggregation (

∑N
n=1 x

∗∗
nt, t ∈ T )

by the black line with squares in Fig. 1. In contrast, the
distributed approach to charging coordination, described by
Algorithm 5.1, gave the update evolution shown by the other
curves in Fig. 1. At each iteration, all EVs determine their
optimal bid profile by solving the dynamic programming
problem formalized by Theorem 5.1. Fig. 1 shows the
aggregate allocation (

∑N
n=1 x

∗
nt(b

(k)), t ∈ T ) obtained by
the auctioneer solving Optimization Problem 2 with respect
to the bid profile b(k) at the k-th iteration. It is clear that the
auction game converges to the efficient charging solution.

VII. CONCLUSIONS

The paper considers the coordination of EV charging
over a finite horizon. A distributed approach, based on the
progressive second price (PSP) auction mechanism, has been
developed. It was proven that the efficient (centrally optimal)
coordination solution is a Nash equilibrium of the PSP auc-
tion game. A dynamic update mechanism for the underlying

auction game was established. A numerical example which
implemented this update mechanism illustrated convergence
of the auction system to the efficient Nash equilibrium.
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