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Sparsity-Exploiting Moment-Based Relaxations
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Abstract—Convex relaxations of non-convex optimal power flow
(OPF) problems have recently attracted significant interest. While
existing relaxations globally solve many OPF problems, there are
practical problems for which existing relaxations fail to yield phys-
ically meaningful solutions. This paper applies moment relaxations
to solve many of these OPF problems. The moment relaxations
are developed from the Lasserre hierarchy for solving general-
ized moment problems. Increasing the relaxation order in this hier-
archy results in “tighter” relaxations at the computational cost of
larger semidefinite programs. Low-order moment relaxations are
capable of globally solving many small OPF problems for which ex-
isting relaxations fail. By exploiting sparsity and only applying the
higher-order relaxation to specific buses, global solutions to larger
problems are computationally tractable through the use of an iter-
ative algorithm informed by a heuristic for choosing where to apply
the higher-order constraints. With standard semidefinite program-
ming solvers, the algorithm globally solves many test systems with
up to 300 buses for which the existing semidefinite relaxation fails
to yield globally optimal solutions.

Index Terms—Global solution, moment relaxations, optimal
power flow, semidefinite optimization.

I. INTRODUCTION

HE optimal power flow (OPF) problem determines an op-

timal operating point for an electric power system in terms
of a specified objective function (typically generation cost per
unit time), subject to both network equality constraints (i.e., the
power flow equations, which model the relationship between
voltages and power injections) and engineering limits (e.g., in-
equality constraints on voltage magnitudes, active and reactive
power generations, and line flows). While the OPF problem is
often augmented with security constraints that ensure robust-
ness to contingencies (see, e.g., [1]-[4]), the formulation con-
sidered in this research does not consider contingencies.

The OPF problem is generally non-convex due to the non-
linear power flow equations [5] and may have local solutions
[6]. Non-convexity of the OPF problem has made solution
techniques an ongoing research topic. Many OPF solution
techniques have been proposed, including successive quadratic
programs, Lagrangian relaxation, genetic algorithms, particle
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swarm optimization, and interior point methods [7]-[12].
Some of these techniques are quite mature and capable of
finding at-least-locally optimal solutions to many large-scale
OPF problems with reasonable computational burden. (For
instance, [3] and [4] report computationally tractable methods
for finding at-least-locally-optimal solutions to security-con-
strained OPF problems with approximately 3000 and 9000
buses, respectively.)

However, while typical local solution techniques often in fact
find globally optimal solutions [3], [13], they may fail to con-
verge or converge to a local optimum. See, for instance, the ex-
ample problems and discussion in [6] as well as the five-bus
system in [5]. For many of these problems, MATPOWER's [10]
default interior point solver with default options and a variety of
initialization heuristics either fails to converge or finds locally
optimal solutions. See also [14], which reports on a study by the
Federal Energy Regulatory Commission of convergence charac-
teristics for a variety of commercial solvers, OPF problem for-
mulations, and initialization heuristics.

Recently, significant attention has focused on a semidefinite
relaxation of the OPF problem [15]. If the relaxed problem sat-
isfies a rank condition (i.e., the relaxation is said to be “exact”
or “tight”), the global solution to the original OPF problem can
be determined in polynomial time. Prior OPF solution methods
do not guarantee finding a global solution in polynomial time.
Further, infeasibility of a relaxation certifies infeasibility of the
OPF problem, which is a capability not available with typical
existing solution techniques. Additionally, unlike local solution
techniques whose convergence characteristics generally depend
on a chosen initialization, the semidefinite relaxation provides
the global solution regardless of the choice of initialization
when the relaxation is exact. While not as mature as existing
solution techniques, semidefinite programming approaches
thus have substantial advantages over traditional techniques.

However, the rank condition is not satisfied for all practical
OPF problems [6], [16]. For such problems, the relaxation pro-
vides a lower bound on the optimal objective value but does not
provide physically meaningful decision variables (i.e., voltage
phasors). The bounds obtained from the semidefinite relaxation
are often close to the global optimum and are therefore useful
for many applications (e.g., calculating voltage-stability mar-
gins [17] and determining the potential suboptimality of an OPF
solution that is only guaranteed to be locally optimal). How-
ever, determining both the globally optimal objective value and
the globally optimal decision variables is important in many
contexts.

To address problems for which the rank condition is not
satisfied, this paper presents moment relaxations! that globally
solve a broader class of OPF problems than existing relaxations.

IThe terminology moment relaxation, adopted from [18], [19], refers to the
relaxation's derivation from a special case of the generalized moment problem.
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Building on the results of [20] (many of which are indepen-
dently studied in [21] and [22]), this paper describes a method
for globally solving large OPF problems by exploiting sparsity
and only applying computationally intensive “higher-order”
moment relaxations to specific buses.

Much of the related work in this area focuses on sufficient
conditions for which existing convex relaxations are exact
[23]-[25]. While the sufficient conditions developed thus far
are promising, they only apply to a limited subset of problems.

For more general cases, [26] proposes a heuristic method
for finding a global optimum that is “hidden” in a higher-rank
subspace of solutions to the semidefinite relaxation. However,
the semidefinite relaxation yields an optimal objective value
strictly less than the global minimum of some OPF problems
[16]. For such cases, other heuristics may obtain at-least-lo-
cally optimal solutions [25], [26] with the optimal objective
value of the semidefinite relaxation indicating the potential
suboptimality.

While deserving of further study, heuristics eliminate the
global optimality guarantee that is one of the main advantages
of the semidefinite relaxation. We propose an alternative mo-
ment relaxation that, when exact, yields the global optimum.
Using polynomial optimization theory [18], [19], moment
relaxations globally solve a broad class of OPF problems,
including many problems for which existing relaxations are not
exact. Moment relaxations exploit the fact that the OPF problem
is composed of polynomials in the voltage phasor components
and is therefore a polynomial optimization problem.

Global solution of a broader class of OPF problems has a
computational cost. Whereas the matrix in the semidefinite re-
laxation of [15] is composed of all second-order combinations
of the voltage phasor components, the moment relaxation's
matrices are composed of higher-degree combinations. The
semidefinite program for the order-y moment relaxation of
an n-bus system has a positive semidefinite constraint on a k
x k matrix, where k = (2n 4+ ¥)!/((2n)¥!} (i.e., this matrix
is composed of all combinations of voltage components up
to order 2+). For example, the moment matrices for the first-,
second-, and third-order moment relaxations of a 10-bus system
have size 21 x 21, 231 x 231, and 1771 x 1771, respectively,
as compared to 20 x 20 for the semidefinite relaxation of
[15]. Thus, the computational requirements of the moment
relaxations can be substantially larger than the semidefinite
relaxation of [15], especially for high-order relaxations.

Fortunately, experience with small systems suggests that low-
order relaxations globally solve a broad class of OPF problems,
including problems for which the semidefinite relaxation of [15]
is not exact. As an example of the effectiveness of the moment
relaxations, consider the 9-bus OPF problem in [6]. MATPOWER
[10] with the default interior point solver and default solver
options either fails to converge or converges to one of three
local optima depending on the initialization.2 (The local op-
tima have objective values that are 10.0%, 37.5%, and 38.1%
greater than the global optimum.) The semidefinite relaxation
of [15] yields a lower bound that is 11% less than the global op-
timum. Thus, an existing convex relaxation and a typical inte-

2Initialization heuristics included 1) a “flat start” with unity voltage magni-
tudes and zero voltage angles, 2) the solution to the linear “DC” OPF approxi-
mation, 3) a power flow solution calculated using active power injections at the
midpoints of the generators' operating ranges, 4) a power flow solution calcu-
lated using power injections corresponding to an economic dispatch, and 5) a
power flow solution calculated using the power injections resulting from a DC
OPF.
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rior point technique both perform poorly for this problem while
a second-order relaxation finds the global solution [20]. The ca-
pabilities of low-order relaxations for small OPF problems are
further described in [20], which includes an exploration of the
feasible spaces of second-order relaxations, and independently
in [21] and [22].

However, large OPF problems are computationally in-
tractable even for low-order relaxations. Solving existing
semidefinite relaxations of large OPF problems requires ex-
ploiting power system sparsity. Using a matrix completion
decomposition, existing semidefinite relaxations are computa-
tionally tractable for problems with thousands of buses [27],
[28]. Naive application of related techniques for the moment
relaxations [29] enables solution of systems with up to ap-
proximately forty buses. Solving larger systems requires more
judicious use of the higher-order relaxation. Exploiting the
observation that power injection “mismatches” typically occur
only in small regions of realistic large OPF problems [16],
this paper applies a higher-order relaxation to specific buses.
This enables global solution of large problems. With standard
semidefinite programming solvers, the proposed approach is
successfully applied to OPF problems with up to 300 buses
for which the semidefinite relaxation of [15] fails to yield the
globally optimal decision values. Further improvements in
solving larger OPF problems may be achieved by combining
emerging semidefinite programming solvers with the method
proposed in this paper.

Selective application of the moment relaxation is indepen-
dently proposed in [22]. The method described in [22] is limited
to second-order relaxations of OPF problems with less than 40
buses due to a computationally expensive subproblem and lack
of concurrent exploitation of sparsity.

After introducing the OPF problem formulation in
Section II, we describe the moment relaxations in Section III.
Section IV then presents the method for globally solving large
OPF problems by exploiting sparsity and only applying the
higher-order relaxations to specific buses. Section V presents
results from the proposed method. Section VI concludes the
paper and discusses future research directions.

II. OPF PROBLEM FORMULATION

We first present an OPF formulation in terms of rectangular
voltage coordinates, active and reactive power generation, and
apparent-power line-flow limits. Consider an n-bus power
system, where NV = {1,2,...,n} is the set of all buses, G
is the set of generator buses, and £ is the set of all lines. Let
Ppr + jQ@py represent the active and reactive load demand
at each bus & € N. Let Vi, = Vg + jV, denote the voltage
phasors in rectangular coordinates at each bus & € N. Su-
perscripts “max” and “min” denote specified upper and lower
limits. Buses without generators have maximum and minimum
generation set to zero. Let Y = G + 5B denote the network
admittance matrix. Shunt conductances and susceptances at bus
k contribute to the diagonal element Y y,.

The power flow equations describe the network physics:

Poy = fre(Va, V) = Vi Z(Gikvdi - B Vi)
=1

+ Vi Z(B'ikvdi + GikVyi) + Ppy,

i=1

(1a)
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Qar = for(Va, Vg

Z

Define a convex quadratic cost of active power generation:

dez

szdz -

zk‘/dz - 1k‘/vqi)

BirVyi) + Q. (1b)

for(Va, V) = era(Fre(Va, Vo)) + exr ek (Via, Vi) + cro-
)

Note that while we focus on minimization of a quadratic func-
tion of active power generation, one can substitute other cost
functions (e.g., loss minimization, voltage regulation, convex
piecewise-linear generation cost functions, reactive power dis-
patch, etc.) for (2). (The moment relaxation approach described
in this paper is applicable for any polynomial or convex piece-
wise-polynomial objective function.)
Define a function for squared voltage magnitude:

(Vi)? = fvr(Va, V) =

Squared apparent-power line flows are polynomial functions
of the voltage components V; and V. To account for flow limits
on transformers with non-zero phase shifts and/or off-nominal
voltage ratios, we model the line from bus / to bus m as a
II-model circuit with series admittance g;,,, + 7b;,, and total
shunt admittance ggp im + jbsh,im in series with an ideal trans-
former with a specified complex turns ratio 7p,,¢’%: 1 as in
[10] (note that the conductance gy, i in the II-model is gener-
ally neglected in typical power system data sets, and that shunt
susceptances by, 1, are often neglected for transformers):

Ysh, lm) / 2

gim COS (‘91111)) /Tlm
V;]lvdm) (glm Sin(‘glm) + blm COS(elm)) /Tl'm
(4a)

Vi VA 3)

I)lm = fle(Vda Vvq) - (VdQZ + ‘/(121) (gl'm
+ (‘/dl‘/dm + qul‘/qm) (blm sin (91171)
+ (le‘/qm -

Pml - me'l (Vd’ VZI) = (Vc?m + V:}lzm) (gl.m + gs};lm>

- (‘/dl‘/dm + qul‘/qm.) (glm cos (elm) + blm Sln(
+ (VartVam — Vgt Vam) (9im sin (01,)

Qun = form Va,Vy) = = (Vi + V) (blm bshzlm>

+ (VatVam + Vi Vam,) (bim, cos (64, )
+ (leV:]'m - )

)) /Tlm

Im )) /Tlm
(4b)

— by cos (8

/Tlm
)/ Tim
(4¢)
: bS m
Qi = Jamt (Vi Vo) = = (Vi + Vi) <b + = )

(‘/dl"dm + V, l‘/qm.) (blm Ccos (gl'm) Gim sin ( )) /Tlm
H(=VarVam+VaVam) (Gim €08 (1) + bign sin (010.)) /Tim

) + gim sin (elm
VatVam) (gim €08 (B1m) — by sin (01,

(4d)
(Sim) = Fsim (Va, Vo) = (frim (Va, Vg))* + (faum (Va, Vy))*

(4e)
(Sma)? = Fomt (Va, Vo) = (Fpmi (Va, V))? + (fom (Va, Vi)™

(4f)
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The classical OPF problem is then

‘rfilmq kgzc for (Va, V) subject to (5a)
PEM < fpr (Va, V) < PERS Vke N (5b)
Quin < ka (Vy, V) < Qax ke N (5¢)
(vpmin)? <ka (Va, V)< (V) VYkeN (5d)
Fsim (Va, Vy) < (Smaxy? V({l,m)e L (5¢)
fsmi (Vd, V,) < (Smaxy? V({l,m)e L (50
Vo1 =0. (52)

Constraints (5e) and (5f) limit the apparent-power flow at each
line terminal. Constraint (5g) sets the reference bus angle to
zero.

Note that the OPF problem is often extended to consider con-
tingency, voltage-stability, and transient-stability constraints.
(See [1]-[4] for discussions of these and other extensions.) As a
starting point for the methods developed in this paper, we only
consider OPF problems without these constraints. Future work
includes extension to more general OPF problem formulations.
(See [30] and [31] for initial research on applications of convex
relaxations to OPF problems with contingency constraints.)

Further, the OPF formulation studied in this paper does not
consider the decision variables associated with controllable
power system devices such as high-voltage DC (HVDC)
lines, tap-changing and phase-shifting transformers, and
switched-shunt devices. Incorporating the continuous and
potentially discrete decision variables necessary for modeling
these devices in convex relaxations of the OPF problem is an
area of ongoing research. For instance, a convex, second-order
cone programming formulation for HVDC lines is available
in [32]. One possibility is modeling discrete variables as poly-
nomial equality constraints (e.g., @ € {0,1} is equivalent to
#* — ¢ = 0), which can be incorporated in the moment relax-
ations discussed in this paper. This is a promising direction for
future work.

III. MOMENT RELAXATIONS

A. Overview

The OPF problem (5) is comprised of polynomial functions of
the voltage components V; and V;; and can therefore be solved
using moment relaxations [18], [19]. We next present moment
relaxations of the OPF problem (5). The material in this sec-
tion builds on [20]. More detailed descriptions of moment re-
laxations are available in [18] and [19], and application of mo-
ment relaxations to the OPF problem is independently proposed
in [21] and [22].

Polynomial optimization problems, such as the OPF problem,
are a special case of generalized moment problems [19]. Global
solutions to generalized moment problems can be approximated
using moment relaxations that are formulated as semidefinite
programs. For polynomial optimization problems with bounded
variables, such as OPF problems, the approximation approaches
the global solution(s) as the relaxation order increases [19].
While moment relaxations can find all global solutions to
polynomial optimization problems, we focus on problems with
a single global optimum.
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Formulating the moment relaxations requires several defini-
tions. Define the vector & = [Vi1  Vio Vg |7, which
contains all first-order monomials of the decision variables in
(5). Given a vector o € N?" representing monomial exponents,
the expression 2% = V' Vii? ... V22» defines the monomial
associated with & and «.. A polynomial g(&) can be expressed

as

9(#) 2 Y gad (6)

aeN2n

where g, is the scalar coefficient corresponding to the mono-
mial Z¢.
Next define a linear functional L, {g}:

Ly {g}é Z Jalo- (7)

aeN2

This functional replaces the monomials £ in a polynomial
function g(&) with scalar variables y,. When g(Z) is a matrix,
the functional L, {g} is applied to each element of g(%).

Consider, for example, the vector & = [Vin  Vao VT
corresponding to the voltage components of a two-bus system,
where the angle reference constraint (5g) is used to eliminate
V1, and the polynomial g() = —(0.95)2 + fi2(Vy, V,) =
—(0.95)? + V3 + V2. (The constraint g(&) > 0 forces the
voltage magnitude at bus 2 to be greater than or equal to 0.95
per unit.) Then L, {g} = —(0.95)*y000 + %020 + Yoo2- Thus,
L{g} converts a polynomial g(%) to a linear function of y.

The order-vy relaxation forms a vector x, composed of all
monomials of the voltage components up to order ~:

Y21 Va Van Vi
Vo Var

gn

Vi1 Vaz
ViiVa Vet ®

We now define moment and localizing matrices. The sym-
metric moment matrix M, (y) has entries y, corresponding to

all monomials £ up to order 2+:

M, {y} £ L, {z,21}. ©)

Symmetric localizing matrices® are defined for each
constraint of (5). The localizing matrices consist of linear
combinations of the moment matrix entries y. Each poly-
nomial constraint of the form f(Z) — « > 0 in (5) (e.g.,
fva(&) — V¥ > 0) corresponds to the localizing matrix

M, s{(f(#) — a)y} 2 L, {(f(2) — @)z, gl 4} (10)

where the polynomial f has degree 23. Example moment and
localizing matrices for the second-order relaxation of a two-bus
system are presented in (13) and (14), respectively.

The order-y moment relaxation of (5) is

mmL {Z fCh} subject to (11a)
keg
M, i {(frx — PPy} =0 VkeN (11b)

M, 1 {(PF"™ — frr)y} =0 VkeN

3The terminology localizing matrix is adopted from [18], [19].

(11c)

3171
Vi R 4jX =004 +j020 V2
O o
=3.525-j3.580

Fig. 1. Two-bus system from [33].
M, 1 {(for —QF™)y} =0 VkeN (11d)
M, 1 {(QF* — for)yt =0 VkeN (11e)
M, 2 {(fvr —Vi"™)y} =0 VYkeN (11f)
M, 1 {(Vi"™ — fvr)y} =0 VkeN (11g)
M, _o {(Sh2* — faim)y} =0 V({,m)e L (11h)
M, 2 {(S* — fomi) y} =0 Y(,m)e L (11i)
M, (y) = 0 (11)
Yoo..o =1 (11k)
Yo...00n0...0 = 0 n=1,...,2y (111

where > 0 indicates that the corresponding matrix is positive
semidefinite. The moment relaxation is thus a semidefi-
nite program. (A dual form of the moment relaxation is a
sum-of-squares program [19].) Note that the constraint (11k)
enforces the fact that 2 = 1. The constraint (111) corresponds
to the angle reference constraint (5g); the n in (111) is in the
index n + 1, which corresponds to the variable V,;. Note that
the angle reference can alternatively be used to eliminate all
terms corresponding to V,; to reduce the size of the semidefi-
nite program.

B. Two-Bus Example

We next present an illustrative two-bus example problem
from [33]. Fig. 1 gives the system's one-line diagram assuming
a 100 MVA base power. The generator at bus 1 has no limits on
active or reactive outputs and there is no line-flow limit. Bus 1
voltage magnitude is in the range [0.95, 1.05] per unit, while
bus 2 voltage magnitude is in the range [0.95, 1.02] per unit.
Specify a $1/MWh cost of active power generation at bus 1.
With three degrees of freedom, the entire feasible space of the
two-bus OPF problem can be visualized in three dimensions as
shown in [20, Section IV].

Note that while this system has a radial network topology,
the OPF problem does not satisfy the sufficient conditions for
exactness of the semidefinite relaxation described in [23], [24],
and the first-order moment relaxation is, in fact, not exact for
this problem.

The second-order relaxation has the vector zs given in
(12) and the moment matrix in (13). The localizing ma-
trix corresponding to the voltage magnitude constraint
fv2(Va, V) > (0.95)% in (5d) is given in (14). Note that the
angle reference constramt (5g) is used to eliminate V,;; so that
[Vir Va2 V7. See (12)—~(14) at the bottom of the
next page.

The second-order moment relaxation yields the global solu-
tion of V' = [0.950 0.416 — j0.893]7 per unit. This corre-
sponds to active and reactive power generation at bus 1 0o 456.6
MW and 162.3 MVAr, respectively, and an operating cost of
456.55 $/MWh.

i =
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C. Implementation Details

This section next discusses several implementation details for
the moment relaxations, including removing linear dependency
resulting from equality-constrained polynomials, recovering the
global solution(s) to the OPF problem from a solution to the mo-
ment relaxation, elimination of unnecessary portions of the mo-
ment relaxation's matrices, and reformulation of the cost func-
tion and apparent-power line-flow constraints. Note that, in con-
trast to the example in Section I1I-B, the notation in this section
does not use the angle reference constraint 17;; = 0 to eliminate
Var.

1) Equality-Constrained Polynomials: Given that the local-
izing matrices are symmetric, the constraints M, {(f(Z) —
a)y} > 0and M, _1{(a — f(&))y} > 0 imply that the matrix
M, 1{(f(Z)—a)y} = 0. Thus, all entries of a localizing matrix
corresponding to an equality-constrained polynomial f(£) = a
(e.g., the power flow constraints at load buses) are zero. That is,
equality-constrained polynomials result in equality constraints
that are linear in the variables y rather than positive semidefinite
matrix constraints.

The non-uniqueness of the entries of the localizing matrices
[see, e.g., the repeated terms in (14) due to the matrix's sym-
metry] creates linearly dependent equality constraints which can
introduce numerical difficulties. To eliminate these redundant
constraints, the localizing matrix constraints for equality-con-
strained polynomials are therefore replaced by the equivalent
vector of constraints L, {g(£)x,_1} = 0, where g(&) denotes
any equality-constrained polynomial in (5).

2) Solution Extraction: The order-y moment relaxation
yields a single global solution if rank(M,(y)) = 1. The
global solution 2* to the OPF problem (5) is then determined
by a spectral decomposition of the diagonal block of the
moment matrix corresponding to the second-order terms.
Specifically, let n be a unit-length eigenvector corresponding
to the non-zero eigenvalue A from the diagonal block of the

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 6, NOVEMBER 2015

moment matrix corresponding to the second-order monomials
(.e., [Mg}(g:k’gzk), where k& = 2n + 1 and subscripts indicate
the vector entries in MATLAB notation). Then the vector
V* = VAm + JM(n+1):2n) is the globally optimal voltage
phasor vector.

If rank(M,(y)) > 1, there are either multiple global solu-
tions (i.e., there are multiple points in the feasible space of the
original non-convex OPF problem with the same globally op-
timal objective value) requiring the solution extraction proce-
dure described in [19, Section 5.3.1]* or the order-y moment
relaxation is not exact and only yields a lower bound on the ob-
jective value. If the order-y moment relaxation is not exact, the
order-(-y + 1) moment relaxation will improve the lower bound
and may give a global solution.

3) Elimination of Unnecessary Terms: Since the polynomials
in (5) are composed solely of constant, second-, and fourth-
order monomials, off-diagonal blocks of the moment matrix
corresponding to odd-order monomials are not required. Fur-
ther, all terms in the off-diagonal blocks of the moment matrix
corresponding to even-order monomials are duplicated in the
diagonal blocks and are therefore unnecessary. [See (13) for an
illustration of this matrix partitioning.] Thus, positive semidefi-
nite matrix constraints are only enforced for the diagonal blocks
of the moment matrix corresponding to even-order monomials
(i.e., Yo such that 22221 a; is even). Similarly, positive semidef-
inite constraints are only applied to the diagonal blocks of the
localizing matrices which correspond to the even-order mono-
mials of the matrix xv—BIIr—ﬁ (e.g., the diagonal blocks of

4f rank(M.,_1(y)) = rank(M,(y)), then there are at least
rank(M, (y)) globally optimal solutions to the OPF problem. The globally
optimal decision variable vectors can be extracted using Algorithm 4.2 in [19],
which only uses linear algebra operations.

While practical OPF problems can have multiple /ocal solutions, we expect
that multiple global solutions are uncommon. Reference [15] uses example OPF
problems with multiple global solutions to show that the OPF problem is, in
general, NP-hard. As discussed in [20], these example problems are atypical,
but are useful for exploring the limits of the moment relaxation approach.

zo=1[1 Vo Vao Ve VI VaVar VaVp V3 ViV Vfg I (12)
[ Yooo Y100 Yoi0 Yool Y200 Y110 Yio1  Yo20  Yoii Yooz |
Y100 Y200 Y110 Y101 Y300 Y210 Y201 Y120 Y111 Y102
Yo10 Yiio  Yo20 Yo11 Y210 Y120 Y111 Yo3zo0 Yo21  Yoi2
Yoo1 Y101 Yo11  Yoo2 Y201 Y111 Y102 Yo21  Yoi2  Yoos
B ™ Y200 Yso0 Y210 Y201 Ya00 Y310 Y301 Y220 Y211 Y202
MQ(y) - Ly (33212) | Y110 Y210 Y120 Y111 Y310 Y220 Y11 Y130 Y121 Y112 (13)
Y101 Y201 Y111 Y102 Y301 Y211 Y202 Y121 Y112 Y103
Y020 Y120 Yo3o0 Yo21 Y220 Y130 Y121 Yoa0 Yo31  Yo22
Yo11 Y111 Yo21  Yoiz2 Yo11 Y121 Y112 Yo31  Yo22  Yoi3
L Y002 Yio2 Yoi2  Yoo3 Y202 Y112 Y103 Yo22 Yoi3  Yoo4
M; {(fvz — (0.95)2) y}
2 2 2 2
Y020 + Yooz — (0.95) yooo | w120 + y102 — (0.95)" y100 Yoso + Yo12 — (0.95)  yo10 Yo21 + Yooz — (0.95)" yoo1
_ | Y120 T Y102 — (0~95)‘2 Y100 i Y220 + Y202 — (0~95)‘2 Y200 Y130 + Y112 — (0-95).2 Y110 Y121 + Yios — (0'95)? Y101
Yo30 + Yo12 — (0~95)2 Yo10 | Y130 + Y112 — (0~95)2 Y110 Yodo + Yo22 — (0-95)2 Yo20 Yo31 + Yo13 — (0-95)2 Yo11
Yao1 + ooz — (0.95)% Yoo | Y121+ Y103 — (0.95)% y101 yos1 + Yo13 — (0.95) w11 o2z + Yoos — (0.95)% yoos

(14)
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(14)). By reducing the size of the semidefinite program, this de-
creases the relaxation's computational burden.

After elimination of terms corresponding to the first-order
monomials, the moment matrix for the first-order relaxation
contains only the second-order monomials. Further, the local-
izing “matrices” are in fact positivity constraints on scalars.5
Thus, the first-order relaxation is equivalent to the semidefinite
relaxation of [15]. The higher-order moment relaxations are
generalizations of the semidefinite relaxation of [15].

4) Quadratic Cost Function and Apparent-Power Line-Flow
Limits: The order v of the moment relaxation must be greater
than or equal to half of the degree of any polynomial in the OPF
problem (5). Relaxations of all polynomials can then be written
as linear functions of the entries of ML,. For instance, the OPF
problem with a linear cost function and without apparent-power
line-flow limits requires ¥ > 1. Although direct implemen-
tation of (5) requires v > 2 due to the fourth-order polyno-
mials in the cost function (5a) and apparent-power line-flow
limits (5¢)—(5f), these fourth-order polynomials can be rewritten
as second-order polynomials using a Schur complement for-
mulation [15]. Specifically, rather than (11h)—(111), enforce the
constraints

[~ (S)* Ly {fpim} Ly {faum}
L‘y {fle} -1 0

L Ly {fqum} 0 -1

= (S5 LyAfemi} Ly {fom}]
Ly{frm} -1 0 <0V (l,m) € L. (15b)
_Ly {mel} 0 -1 J

Similarly, define new variables «;, for each generator & € G

and replace the quadratic cost function in (11a) with ), .- o
and the additional constraint

<0V (I,m) € L (15a)

corly {fre}+ cko —ar  J/CraL {ka}]
ezl {fe} I

(16)

Note that a second-order cone programming (SOCP) formula-
tion can also be employed to represent the quadratic cost func-
tion and apparent-power line-flow limits [34].

The OPF problem reformulated using (15) and (16) only re-
quires y > 1. Use of both the Schur complement formulations
and direct implementation for the apparent-power line-flow
constraints (5e¢)—(5f) and quadratic cost function (11a) generally
gives superior results for v > 2 as compared to implementing
either the Schur complement or direct formulations separately.
That is, when possible, enforce both (11h)—(11i) and (15)
for the apparent-power line-flow constraints and include the
constraints (16) and oy = L{fcr} Yk € G while minimizing
> heg @k for the quadratic cost function).

IV. EXPLOITING SPARSITY IN MOMENT RELAXATIONS

The moment relaxations globally solve a broader class of
OPF problems than existing convex relaxations [20]-[22].
However, the superior capabilities of the moment relaxations
have a computational cost: the semidefinite program needed to

SFor the first-order moment relaxation, the localizing matrix for the poly-
nomial constraint f(z) > 0 is L,(f(z)zezl) = Ly(f(z) -1-1T) =
L,(f(z)) > 0 (i.e., a positive scalar constraint).
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solve the moment relaxation quickly becomes computationally
intractable with both increasing problem size and relaxation
order. Direct implementation of the formulation presented in
Section III is computationally tractable for a second-order
relaxation of OPF problems with up to 10 buses.

Solving larger OPF problems requires exploiting power
system sparsity. Similar to methods for existing semidefinite
relaxations [27], [28], matrix completion decomposition is
applicable to moment relaxations of polynomial optimization
problems [29]. This decomposition extends computational
tractability to OPF problems with approximately 40 buses.

Solving OPF problems with more than forty buses requires
exploiting the observation that the first-order relaxation is suffi-
cient for large regions of typical OPF problems [16]. By selec-
tively applying second- and third-order relaxations to specific
buses or small groups of buses, larger OPF problems become
computationally tractable. With standard semidefinite program-
ming solvers, OPF problems of up to 300 buses can be solved.

After reviewing the matrix completion decomposition [29],
this section proposes a method for selectively applying the mo-
ment relaxation and presents a heuristic method for determining
where to apply higher-order relaxations.

A. Matrix Completion Decomposition

The matrix completion decomposition, which is adopted from
[29], exploits power system sparsity. The decomposition relies
on a matrix completion theorem [35], [36] which draws on graph
t