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Sparsity-Exploiting Moment-Based Relaxations
of the Optimal Power Flow Problem

Daniel K. Molzahn, Member, IEEE, and Ian A. Hiskens, Fellow, IEEE

Abstract—Convex relaxations of non-convex optimal power flow
(OPF) problems have recently attracted significant interest. While
existing relaxations globally solve many OPF problems, there are
practical problems for which existing relaxations fail to yield phys-
icallymeaningful solutions. This paper appliesmoment relaxations
to solve many of these OPF problems. The moment relaxations
are developed from the Lasserre hierarchy for solving general-
izedmoment problems. Increasing the relaxation order in this hier-
archy results in “tighter” relaxations at the computational cost of
larger semidefinite programs. Low-order moment relaxations are
capable of globally solvingmany small OPF problems for which ex-
isting relaxations fail. By exploiting sparsity and only applying the
higher-order relaxation to specific buses, global solutions to larger
problems are computationally tractable through the use of an iter-
ative algorithm informed by a heuristic for choosingwhere to apply
the higher-order constraints.With standard semidefinite program-
ming solvers, the algorithm globally solves many test systems with
up to 300 buses for which the existing semidefinite relaxation fails
to yield globally optimal solutions.
Index Terms—Global solution, moment relaxations, optimal

power flow, semidefinite optimization.

I. INTRODUCTION

T HE optimal power flow (OPF) problem determines an op-
timal operating point for an electric power system in terms

of a specified objective function (typically generation cost per
unit time), subject to both network equality constraints (i.e., the
power flow equations, which model the relationship between
voltages and power injections) and engineering limits (e.g., in-
equality constraints on voltage magnitudes, active and reactive
power generations, and line flows). While the OPF problem is
often augmented with security constraints that ensure robust-
ness to contingencies (see, e.g., [1]–[4]), the formulation con-
sidered in this research does not consider contingencies.
The OPF problem is generally non-convex due to the non-

linear power flow equations [5] and may have local solutions
[6]. Non-convexity of the OPF problem has made solution
techniques an ongoing research topic. Many OPF solution
techniques have been proposed, including successive quadratic
programs, Lagrangian relaxation, genetic algorithms, particle
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swarm optimization, and interior point methods [7]–[12].
Some of these techniques are quite mature and capable of
finding at-least-locally optimal solutions to many large-scale
OPF problems with reasonable computational burden. (For
instance, [3] and [4] report computationally tractable methods
for finding at-least-locally-optimal solutions to security-con-
strained OPF problems with approximately 3000 and 9000
buses, respectively.)
However, while typical local solution techniques often in fact

find globally optimal solutions [3], [13], they may fail to con-
verge or converge to a local optimum. See, for instance, the ex-
ample problems and discussion in [6] as well as the five-bus
system in [5]. For many of these problems, MATPOWER's [10]
default interior point solver with default options and a variety of
initialization heuristics either fails to converge or finds locally
optimal solutions. See also [14], which reports on a study by the
Federal Energy Regulatory Commission of convergence charac-
teristics for a variety of commercial solvers, OPF problem for-
mulations, and initialization heuristics.
Recently, significant attention has focused on a semidefinite

relaxation of the OPF problem [15]. If the relaxed problem sat-
isfies a rank condition (i.e., the relaxation is said to be “exact”
or “tight”), the global solution to the original OPF problem can
be determined in polynomial time. Prior OPF solution methods
do not guarantee finding a global solution in polynomial time.
Further, infeasibility of a relaxation certifies infeasibility of the
OPF problem, which is a capability not available with typical
existing solution techniques. Additionally, unlike local solution
techniques whose convergence characteristics generally depend
on a chosen initialization, the semidefinite relaxation provides
the global solution regardless of the choice of initialization
when the relaxation is exact. While not as mature as existing
solution techniques, semidefinite programming approaches
thus have substantial advantages over traditional techniques.
However, the rank condition is not satisfied for all practical

OPF problems [6], [16]. For such problems, the relaxation pro-
vides a lower bound on the optimal objective value but does not
provide physically meaningful decision variables (i.e., voltage
phasors). The bounds obtained from the semidefinite relaxation
are often close to the global optimum and are therefore useful
for many applications (e.g., calculating voltage-stability mar-
gins [17] and determining the potential suboptimality of an OPF
solution that is only guaranteed to be locally optimal). How-
ever, determining both the globally optimal objective value and
the globally optimal decision variables is important in many
contexts.
To address problems for which the rank condition is not

satisfied, this paper presents moment relaxations1 that globally
solve a broader class of OPF problems than existing relaxations.

1The terminology moment relaxation, adopted from [18], [19], refers to the
relaxation's derivation from a special case of the generalized moment problem.
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Building on the results of [20] (many of which are indepen-
dently studied in [21] and [22]), this paper describes a method
for globally solving large OPF problems by exploiting sparsity
and only applying computationally intensive “higher-order”
moment relaxations to specific buses.
Much of the related work in this area focuses on sufficient

conditions for which existing convex relaxations are exact
[23]–[25]. While the sufficient conditions developed thus far
are promising, they only apply to a limited subset of problems.
For more general cases, [26] proposes a heuristic method

for finding a global optimum that is “hidden” in a higher-rank
subspace of solutions to the semidefinite relaxation. However,
the semidefinite relaxation yields an optimal objective value
strictly less than the global minimum of some OPF problems
[16]. For such cases, other heuristics may obtain at-least-lo-
cally optimal solutions [25], [26] with the optimal objective
value of the semidefinite relaxation indicating the potential
suboptimality.
While deserving of further study, heuristics eliminate the

global optimality guarantee that is one of the main advantages
of the semidefinite relaxation. We propose an alternative mo-
ment relaxation that, when exact, yields the global optimum.
Using polynomial optimization theory [18], [19], moment
relaxations globally solve a broad class of OPF problems,
including many problems for which existing relaxations are not
exact. Moment relaxations exploit the fact that the OPF problem
is composed of polynomials in the voltage phasor components
and is therefore a polynomial optimization problem.
Global solution of a broader class of OPF problems has a

computational cost. Whereas the matrix in the semidefinite re-
laxation of [15] is composed of all second-order combinations
of the voltage phasor components, the moment relaxation's
matrices are composed of higher-degree combinations. The
semidefinite program for the order- moment relaxation of
an -bus system has a positive semidefinite constraint on a

matrix, where (i.e., this matrix
is composed of all combinations of voltage components up
to order ). For example, the moment matrices for the first-,
second-, and third-order moment relaxations of a 10-bus system
have size 21 21, 231 231, and 1771 1771, respectively,
as compared to 20 20 for the semidefinite relaxation of
[15]. Thus, the computational requirements of the moment
relaxations can be substantially larger than the semidefinite
relaxation of [15], especially for high-order relaxations.
Fortunately, experience with small systems suggests that low-

order relaxations globally solve a broad class of OPF problems,
including problems for which the semidefinite relaxation of [15]
is not exact. As an example of the effectiveness of the moment
relaxations, consider the 9-bus OPF problem in [6]. MATPOWER
[10] with the default interior point solver and default solver
options either fails to converge or converges to one of three
local optima depending on the initialization.2 (The local op-
tima have objective values that are 10.0%, 37.5%, and 38.1%
greater than the global optimum.) The semidefinite relaxation
of [15] yields a lower bound that is 11% less than the global op-
timum. Thus, an existing convex relaxation and a typical inte-

2Initialization heuristics included 1) a “flat start” with unity voltage magni-
tudes and zero voltage angles, 2) the solution to the linear “DC” OPF approxi-
mation, 3) a power flow solution calculated using active power injections at the
midpoints of the generators' operating ranges, 4) a power flow solution calcu-
lated using power injections corresponding to an economic dispatch, and 5) a
power flow solution calculated using the power injections resulting from a DC
OPF.

rior point technique both perform poorly for this problem while
a second-order relaxation finds the global solution [20]. The ca-
pabilities of low-order relaxations for small OPF problems are
further described in [20], which includes an exploration of the
feasible spaces of second-order relaxations, and independently
in [21] and [22].
However, large OPF problems are computationally in-

tractable even for low-order relaxations. Solving existing
semidefinite relaxations of large OPF problems requires ex-
ploiting power system sparsity. Using a matrix completion
decomposition, existing semidefinite relaxations are computa-
tionally tractable for problems with thousands of buses [27],
[28]. Naïve application of related techniques for the moment
relaxations [29] enables solution of systems with up to ap-
proximately forty buses. Solving larger systems requires more
judicious use of the higher-order relaxation. Exploiting the
observation that power injection “mismatches” typically occur
only in small regions of realistic large OPF problems [16],
this paper applies a higher-order relaxation to specific buses.
This enables global solution of large problems. With standard
semidefinite programming solvers, the proposed approach is
successfully applied to OPF problems with up to 300 buses
for which the semidefinite relaxation of [15] fails to yield the
globally optimal decision values. Further improvements in
solving larger OPF problems may be achieved by combining
emerging semidefinite programming solvers with the method
proposed in this paper.
Selective application of the moment relaxation is indepen-

dently proposed in [22]. The method described in [22] is limited
to second-order relaxations of OPF problems with less than 40
buses due to a computationally expensive subproblem and lack
of concurrent exploitation of sparsity.
After introducing the OPF problem formulation in

Section II, we describe the moment relaxations in Section III.
Section IV then presents the method for globally solving large
OPF problems by exploiting sparsity and only applying the
higher-order relaxations to specific buses. Section V presents
results from the proposed method. Section VI concludes the
paper and discusses future research directions.

II. OPF PROBLEM FORMULATION

We first present an OPF formulation in terms of rectangular
voltage coordinates, active and reactive power generation, and
apparent-power line-flow limits. Consider an -bus power
system, where is the set of all buses,
is the set of generator buses, and is the set of all lines. Let

represent the active and reactive load demand
at each bus . Let denote the voltage
phasors in rectangular coordinates at each bus . Su-
perscripts “max” and “min” denote specified upper and lower
limits. Buses without generators have maximum and minimum
generation set to zero. Let denote the network
admittance matrix. Shunt conductances and susceptances at bus
contribute to the diagonal element .
The power flow equations describe the network physics:

(1a)
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(1b)

Define a convex quadratic cost of active power generation:

(2)

Note that while we focus on minimization of a quadratic func-
tion of active power generation, one can substitute other cost
functions (e.g., loss minimization, voltage regulation, convex
piecewise-linear generation cost functions, reactive power dis-
patch, etc.) for (2). (The moment relaxation approach described
in this paper is applicable for any polynomial or convex piece-
wise-polynomial objective function.)
Define a function for squared voltage magnitude:

(3)

Squared apparent-power line flows are polynomial functions
of the voltage components and . To account for flow limits
on transformers with non-zero phase shifts and/or off-nominal
voltage ratios, we model the line from bus to bus as a
-model circuit with series admittance and total

shunt admittance in series with an ideal trans-
former with a specified complex turns ratio as in
[10] (note that the conductance in the -model is gener-
ally neglected in typical power system data sets, and that shunt
susceptances are often neglected for transformers):

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

The classical OPF problem is then

(5a)

(5b)
(5c)

(5d)
(5e)
(5f)
(5g)

Constraints (5e) and (5f) limit the apparent-power flow at each
line terminal. Constraint (5g) sets the reference bus angle to
zero.
Note that the OPF problem is often extended to consider con-

tingency, voltage-stability, and transient-stability constraints.
(See [1]–[4] for discussions of these and other extensions.) As a
starting point for the methods developed in this paper, we only
consider OPF problems without these constraints. Future work
includes extension to more general OPF problem formulations.
(See [30] and [31] for initial research on applications of convex
relaxations to OPF problems with contingency constraints.)
Further, the OPF formulation studied in this paper does not

consider the decision variables associated with controllable
power system devices such as high-voltage DC (HVDC)
lines, tap-changing and phase-shifting transformers, and
switched-shunt devices. Incorporating the continuous and
potentially discrete decision variables necessary for modeling
these devices in convex relaxations of the OPF problem is an
area of ongoing research. For instance, a convex, second-order
cone programming formulation for HVDC lines is available
in [32]. One possibility is modeling discrete variables as poly-
nomial equality constraints (e.g., is equivalent to

), which can be incorporated in the moment relax-
ations discussed in this paper. This is a promising direction for
future work.

III. MOMENT RELAXATIONS

A. Overview
TheOPF problem (5) is comprised of polynomial functions of

the voltage components and and can therefore be solved
using moment relaxations [18], [19]. We next present moment
relaxations of the OPF problem (5). The material in this sec-
tion builds on [20]. More detailed descriptions of moment re-
laxations are available in [18] and [19], and application of mo-
ment relaxations to the OPF problem is independently proposed
in [21] and [22].
Polynomial optimization problems, such as the OPF problem,

are a special case of generalized moment problems [19]. Global
solutions to generalized moment problems can be approximated
using moment relaxations that are formulated as semidefinite
programs. For polynomial optimization problems with bounded
variables, such as OPF problems, the approximation approaches
the global solution(s) as the relaxation order increases [19].
While moment relaxations can find all global solutions to
polynomial optimization problems, we focus on problems with
a single global optimum.
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Formulating the moment relaxations requires several defini-
tions. Define the vector , which
contains all first-order monomials of the decision variables in
(5). Given a vector representing monomial exponents,
the expression defines the monomial
associated with and . A polynomial can be expressed
as

(6)

where is the scalar coefficient corresponding to the mono-
mial .
Next define a linear functional :

(7)

This functional replaces the monomials in a polynomial
function with scalar variables . When is a matrix,
the functional is applied to each element of .
Consider, for example, the vector

corresponding to the voltage components of a two-bus system,
where the angle reference constraint (5g) is used to eliminate

, and the polynomial
. (The constraint forces the

voltage magnitude at bus 2 to be greater than or equal to 0.95
per unit.) Then . Thus,

converts a polynomial to a linear function of .
The order- relaxation forms a vector composed of all

monomials of the voltage components up to order :

(8)

We now define moment and localizing matrices. The sym-
metric moment matrix has entries corresponding to
all monomials up to order :

(9)

Symmetric localizing matrices3 are defined for each
constraint of (5). The localizing matrices consist of linear
combinations of the moment matrix entries . Each poly-
nomial constraint of the form in (5) (e.g.,

) corresponds to the localizing matrix

(10)

where the polynomial has degree . Example moment and
localizing matrices for the second-order relaxation of a two-bus
system are presented in (13) and (14), respectively.
The order- moment relaxation of (5) is

(11a)

(11b)
(11c)

3The terminology localizing matrix is adopted from [18], [19].

Fig. 1. Two-bus system from [33].

(11d)
(11e)
(11f)
(11g)
(11h)
(11i)
(11j)
(11k)
(11l)

where indicates that the corresponding matrix is positive
semidefinite. The moment relaxation is thus a semidefi-
nite program. (A dual form of the moment relaxation is a
sum-of-squares program [19].) Note that the constraint (11k)
enforces the fact that . The constraint (11l) corresponds
to the angle reference constraint (5g); the in (11l) is in the
index , which corresponds to the variable . Note that
the angle reference can alternatively be used to eliminate all
terms corresponding to to reduce the size of the semidefi-
nite program.

B. Two-Bus Example
We next present an illustrative two-bus example problem

from [33]. Fig. 1 gives the system's one-line diagram assuming
a 100 MVA base power. The generator at bus 1 has no limits on
active or reactive outputs and there is no line-flow limit. Bus 1
voltage magnitude is in the range [0.95, 1.05] per unit, while
bus 2 voltage magnitude is in the range [0.95, 1.02] per unit.
Specify a $1/MWh cost of active power generation at bus 1.
With three degrees of freedom, the entire feasible space of the
two-bus OPF problem can be visualized in three dimensions as
shown in [20, Section IV].
Note that while this system has a radial network topology,

the OPF problem does not satisfy the sufficient conditions for
exactness of the semidefinite relaxation described in [23], [24],
and the first-order moment relaxation is, in fact, not exact for
this problem.
The second-order relaxation has the vector given in

(12) and the moment matrix in (13). The localizing ma-
trix corresponding to the voltage magnitude constraint

in (5d) is given in (14). Note that the
angle reference constraint (5g) is used to eliminate so that

. See (12)–(14) at the bottom of the
next page.
The second-order moment relaxation yields the global solu-

tion of per unit. This corre-
sponds to active and reactive power generation at bus 1 of 456.6
MW and 162.3 MVAr, respectively, and an operating cost of
456.55 $/MWh.
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C. Implementation Details

This section next discusses several implementation details for
the moment relaxations, including removing linear dependency
resulting from equality-constrained polynomials, recovering the
global solution(s) to the OPF problem from a solution to the mo-
ment relaxation, elimination of unnecessary portions of the mo-
ment relaxation's matrices, and reformulation of the cost func-
tion and apparent-power line-flow constraints. Note that, in con-
trast to the example in Section III-B, the notation in this section
does not use the angle reference constraint to eliminate

.
1) Equality-Constrained Polynomials: Given that the local-

izing matrices are symmetric, the constraints
and imply that the matrix

. Thus, all entries of a localizingmatrix
corresponding to an equality-constrained polynomial
(e.g., the power flow constraints at load buses) are zero. That is,
equality-constrained polynomials result in equality constraints
that are linear in the variables rather than positive semidefinite
matrix constraints.
The non-uniqueness of the entries of the localizing matrices

[see, e.g., the repeated terms in (14) due to the matrix's sym-
metry] creates linearly dependent equality constraints which can
introduce numerical difficulties. To eliminate these redundant
constraints, the localizing matrix constraints for equality-con-
strained polynomials are therefore replaced by the equivalent
vector of constraints , where denotes
any equality-constrained polynomial in (5).
2) Solution Extraction: The order- moment relaxation

yields a single global solution if . The
global solution to the OPF problem (5) is then determined
by a spectral decomposition of the diagonal block of the
moment matrix corresponding to the second-order terms.
Specifically, let be a unit-length eigenvector corresponding
to the non-zero eigenvalue from the diagonal block of the

moment matrix corresponding to the second-order monomials
(i.e., , where and subscripts indicate
the vector entries in MATLAB notation). Then the vector

is the globally optimal voltage
phasor vector.
If , there are either multiple global solu-

tions (i.e., there are multiple points in the feasible space of the
original non-convex OPF problem with the same globally op-
timal objective value) requiring the solution extraction proce-
dure described in [19, Section 5.3.1]4 or the order- moment
relaxation is not exact and only yields a lower bound on the ob-
jective value. If the order- moment relaxation is not exact, the
order- moment relaxation will improve the lower bound
and may give a global solution.
3) Elimination of Unnecessary Terms: Since the polynomials

in (5) are composed solely of constant, second-, and fourth-
order monomials, off-diagonal blocks of the moment matrix
corresponding to odd-order monomials are not required. Fur-
ther, all terms in the off-diagonal blocks of the moment matrix
corresponding to even-order monomials are duplicated in the
diagonal blocks and are therefore unnecessary. [See (13) for an
illustration of this matrix partitioning.] Thus, positive semidefi-
nite matrix constraints are only enforced for the diagonal blocks
of the moment matrix corresponding to even-order monomials
(i.e., such that is even). Similarly, positive semidef-
inite constraints are only applied to the diagonal blocks of the
localizing matrices which correspond to the even-order mono-
mials of the matrix (e.g., the diagonal blocks of

4If , then there are at least
globally optimal solutions to the OPF problem. The globally

optimal decision variable vectors can be extracted using Algorithm 4.2 in [19],
which only uses linear algebra operations.
While practical OPF problems can have multiple local solutions, we expect

that multiple global solutions are uncommon. Reference [15] uses example OPF
problems with multiple global solutions to show that the OPF problem is, in
general, NP-hard. As discussed in [20], these example problems are atypical,
but are useful for exploring the limits of the moment relaxation approach.

(12)

(13)

(14)
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(14)). By reducing the size of the semidefinite program, this de-
creases the relaxation's computational burden.
After elimination of terms corresponding to the first-order

monomials, the moment matrix for the first-order relaxation
contains only the second-order monomials. Further, the local-
izing “matrices” are in fact positivity constraints on scalars.5
Thus, the first-order relaxation is equivalent to the semidefinite
relaxation of [15]. The higher-order moment relaxations are
generalizations of the semidefinite relaxation of [15].
4) Quadratic Cost Function and Apparent-Power Line-Flow

Limits: The order of the moment relaxation must be greater
than or equal to half of the degree of any polynomial in the OPF
problem (5). Relaxations of all polynomials can then be written
as linear functions of the entries of . For instance, the OPF
problem with a linear cost function and without apparent-power
line-flow limits requires . Although direct implemen-
tation of (5) requires due to the fourth-order polyno-
mials in the cost function (5a) and apparent-power line-flow
limits (5e)–(5f), these fourth-order polynomials can be rewritten
as second-order polynomials using a Schur complement for-
mulation [15]. Specifically, rather than (11h)–(11i), enforce the
constraints

(15a)

(15b)

Similarly, define new variables for each generator
and replace the quadratic cost function in (11a) with
and the additional constraint

(16)

Note that a second-order cone programming (SOCP) formula-
tion can also be employed to represent the quadratic cost func-
tion and apparent-power line-flow limits [34].
The OPF problem reformulated using (15) and (16) only re-

quires . Use of both the Schur complement formulations
and direct implementation for the apparent-power line-flow
constraints (5e)–(5f) and quadratic cost function (11a) generally
gives superior results for as compared to implementing
either the Schur complement or direct formulations separately.
That is, when possible, enforce both (11h)–(11i) and (15)
for the apparent-power line-flow constraints and include the
constraints (16) and while minimizing

for the quadratic cost function).

IV. EXPLOITING SPARSITY IN MOMENT RELAXATIONS
The moment relaxations globally solve a broader class of

OPF problems than existing convex relaxations [20]–[22].
However, the superior capabilities of the moment relaxations
have a computational cost: the semidefinite program needed to

5For the first-order moment relaxation, the localizing matrix for the poly-
nomial constraint is

(i.e., a positive scalar constraint).

solve the moment relaxation quickly becomes computationally
intractable with both increasing problem size and relaxation
order. Direct implementation of the formulation presented in
Section III is computationally tractable for a second-order
relaxation of OPF problems with up to 10 buses.
Solving larger OPF problems requires exploiting power

system sparsity. Similar to methods for existing semidefinite
relaxations [27], [28], matrix completion decomposition is
applicable to moment relaxations of polynomial optimization
problems [29]. This decomposition extends computational
tractability to OPF problems with approximately 40 buses.
Solving OPF problems with more than forty buses requires

exploiting the observation that the first-order relaxation is suffi-
cient for large regions of typical OPF problems [16]. By selec-
tively applying second- and third-order relaxations to specific
buses or small groups of buses, larger OPF problems become
computationally tractable. With standard semidefinite program-
ming solvers, OPF problems of up to 300 buses can be solved.
After reviewing the matrix completion decomposition [29],

this section proposes a method for selectively applying the mo-
ment relaxation and presents a heuristic method for determining
where to apply higher-order relaxations.

A. Matrix Completion Decomposition
Thematrix completion decomposition, which is adopted from

[29], exploits power system sparsity. The decomposition relies
on amatrix completion theorem [35], [36] which draws on graph
theory. Several graph theoretic definitions are necessary for un-
derstanding the matrix completion theorem. A clique is a subset
of the graph nodes for which each node in the clique is con-
nected to all other nodes in the clique. A maximal clique is a
clique that is not a proper subset of another clique. Denote the
set of maximal cliques by , with representing the set
of buses associated with the th maximal clique. A graph is
chordal if each cycle of length four or more nodes has a chord,
which is an edge connecting two nodes that are not adjacent in
the cycle.
The graph in question for the moment relaxations of the OPF

problem is defined with a set of nodes and a set of undirected
edges . This graph is derived from the power system network.
The set of nodes is equal to the set of buses in the power system
(i.e., ). The set of edges is a superset of
the topology of the power system network . Define as the
subset of buses connected to bus in the power system network
(i.e., ). For each bus , add to all edges
between each bus in . That is, all neighboring buses of each
bus are connected in .6
The maximal cliques of a chordal graph can be determined in

linear time [37]. However, identifying the maximal cliques of a
non-chordal graph is an NP-hard problem. Since realistic power
networks are generally not chordal, we use a chordal extension
technique which adds edges to to obtain a chordal super-graph
denoted as . To form the chordal extension, denote as the

6This is a subtle but important difference from the matrix completion decom-
positions in [27] and [28] that directly use the graph with nodes and edges
from the power system network. Matrix completion decompositions for the

higher-order moment formulations use the graph defined by and so that
each bus belongs to at least one maximal clique that also contains each of that
bus' neighbors, and thus all variables necessary for the higher-order moment
constraints are well-defined [29].
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adjacency matrix of the graph defined by and . The chordal
extension is then determined using a Cholesky factorization of

, where is an identity matrix. The off-diagonal spar-
sity pattern of provides a chordal extension . An
approximate minimum-degree permutation of the buses [38] is
employed to reduce the number of added edges in relative
to .
The matrix completion theorem can now be stated. Let

be a symmetric matrix with partial information (i.e., not all en-
tries of have known values) with an associated undirected
graph. (For the moment relaxation, the graph in question has
nodes and edges .) The matrix can be completed to
a positive semidefinite matrix (i.e., the unknown entries of
can be chosen such that ) if and only if the submatrices
associated with each of the maximal cliques of the graph defined
by are all positive semidefinite.
The matrix completion theorem allows replacing the single

large positive semidefinite constraint on the moment matrix
(11j) with constraints on many smaller matrices:

(17)

where is the subset of corresponding to the buses in
and is the number of maximal cliques in the graph.

Similarly, the localizing matrices in (11b)–(11i) are each re-
placed by a single smaller matrix. Each bus is associated with
a single smallest covering maximal clique
(i.e., the maximal clique with least number of buses that com-
pletely contains bus and its neighbors in the power system
network). By construction of , each bus and its neighbors will
be entirely contained in at least one maximal clique. Form the
localizing matrix

(18)

where denotes a generic polynomial constraint in
(5) with order associated with bus .
Since the maximal cliques have non-empty intersection (i.e.,

contain some of the same buses), different decomposed moment
matrices may contain elements that refer to a common element
in the original moment matrix. The decomposed optimization
problem must be formulated such that these shared elements are
equal.
The solution to the decomposed formulation consists of many

matrices. The globally optimal voltage vector solution to the
OPF problem can be recovered if each moment matrix satis-
fies a rank condition. Specifically, the diagonal blocks corre-
sponding to the second-order monomials in all moment matrices
must have rank one. If the rank condition is satisfied, the method
described in [28] may be used to recover the globally optimal
voltage vector.
If any of the decomposed moment matrices does not satisfy

the rank condition, the decomposed moment relaxation does not
yield a solution to the OPF problem. Failure to satisfy the rank
condition may either indicate that the moment relaxation is not
exact or that there are multiple global solutions. In the former
case, the objective value from the moment relaxation serves as a
lower bound on the objective value of the OPF problem (5) and

increasing the relaxation order may result in a relaxation that
yields a global solution.7 In the latter case, unlike the formula-
tion in Section III which can recover multiple global solutions
using the method described in [19], there is only limited ability
to recover multiple global solutions to the decomposed moment
relaxation. Adding a small perturbation to the objective func-
tion may result in recovery of a single global solution [29].

B. Selective Application of Higher-Order Constraints
The matrix completion decomposition described in

Section IV-A significantly reduces the size of the semidefinite
program for large, sparse power networks. With this decom-
position, second-order relaxations of OPF problems with up to
approximately forty buses are computationally tractable.
Solving larger OPF problems is accomplished by exploiting

the observation that the first-order relaxation is sufficient for
large regions of typical OPF problems. A voltage vector is
obtained from the closest matrix that satisfies the rank condi-
tion (i.e., the rank-one matrix with smallest Frobenius-norm
difference to the moment matrix from the relaxation's solution).
This matrix is determined using an eigen decomposition of
the higher-rank diagonal block of the moment matrix corre-
sponding to the second-order monomials. A power injection
“mismatch” is determined by comparing the value of the power
injections calculated from the higher-rank matrix (
and ) to the power injections implied by the voltage
vector from the closest matrix satisfying the rank condition.8
First-order relaxations typically yield voltage vectors that

have small power injection mismatches at the majority of buses
while a few buses have large mismatch [16]. For example,
Fig. 2 shows the power injection mismatches, sorted in in-
creasing order, resulting from the first-order moment relaxation
of the IEEE 300-bus system. This suggests that selective ap-
plication of higher-order relaxations to specified buses may be
sufficient to globally solve larger OPF problems.
To selectively apply the higher-order constraints, each bus

has an associated relaxation order rather than a uniform order
for the entire OPF problem. (A heuristic for specifying the
values is presented in Section IV-C.) Determine the relaxation
order for each maximal clique , denoted as ,
which is the highest relaxation order of any bus for which is
the smallest covering maximal clique.9 The decomposed mo-
ment matrix constraints in (17) are formed according to this
order:

(19)

7The lower bound may in fact be the global minimum objective value without
the relaxation providing globally optimal decision variables (i.e., a “hidden”
rank one solution [26]).

8At load buses, the power injection mismatches are equal to the difference
between the specified load demands and the power injections implied by the
closest rank one matrix. At generator buses, the mismatches are equal to the
difference between the power injections derived from the localizing matrices
[i.e., the elements in the (1,1) position of (11b) and (11d) plus the load demands]
and the power injections implied by the closest rank one matrix.

9Note that is not necessarily the highest relaxation order of the buses in
maximal clique . The maximal clique may contain buses which are also
contained in other maximal cliques. The order is determined by the buses for
which is the smallest covering maximal clique (i.e., is the smallest clique
to contain that bus and all of its neighbors).
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Fig. 2. Power injection mismatches for the first-order relaxation of the IEEE
300-bus system [16].

The localizing matrices for the power injection and voltage
magnitude constraints (11b)–(11g) at bus are constructed ac-
cording to the corresponding bus order , while the localizing
matrices for the apparent-power line-flow constraints are con-
structed according to the highest order of either terminal bus.
That is, for each constraint with order in (5),
create the localizing matrix constraint

(20)

In this way, the relaxation order for the majority of buses in
a large OPF problem can be set to a computationally tractable
value with the computationally intensive higher-order relax-
ations only applied where necessary.

C. Iterative Solution Algorithm With a Heuristic for
Determining the Relaxation Order
With a method for selectively applying the higher-order con-

straints to specific buses of an OPF problem, we next present an
iterative solution algorithm for the moment relaxation. At each
iteration, the algorithm uses a heuristic for specifying the value
of for each bus . Denote as the vector containing

.

Algorithm 1: Iterative Solution for Moment Relaxation

1) Set
2) repeat
3) Solve moment relaxation with
4) Calculate power injection mismatches
5) Increase the entries according to the heuristic
6) until Tolerances are satisfied
7) Calculate optimal voltage profile

Algorithm 1 iteratively solves the moment relaxation and de-
termines the power injection mismatches. The initial relaxation
order is set to one at every bus. If the solution meets specified
tolerance criteria, the algorithm recovers the optimal voltage
vector using an eigen decomposition of the diagonal block of

the decomposed moment matrices corresponding to the second-
order monomials. Otherwise, the relaxation order is increased
at a subset of the buses with greatest power injection mismatch.
Each iteration of the algorithm tightens the relaxation by adding
higher-order constraints. The buseswith greatest mismatch typi-
cally change with the relaxation order, thus potentially requiring
multiple iterations of the loop in the algorithm.
There are several tolerance criteria used to evaluate the op-

timality of a solution. Due to numerical inaccuracies, no solver
provides a solution that exactly satisfies the rank condition. One
measure of the optimality of a candidate solution is based on
power injection mismatches. Let and be the active
and reactive power mismatches at bus , respectively, resulting
from the voltage vector derived from the closest matrix satis-
fying the rank condition. A voltage vector is accepted upon sat-
isfaction of several convergence criteria: 1) all apparent-power
injection mismatches are less
than a specified tolerance, 2) the voltage magnitudes, power
injections, and line flows satisfy the inequality constraints in
(5) to within specified tolerances, and 3) the objective function
evaluated with the voltage vector is equal to the optimal objec-
tive function from the moment relaxation to within a specified
tolerance.
We finally describe the heuristic used to update . Define

as the highest relaxation order among all buses (i.e.,
). (Note that is not a specified limit

but rather can change as the algorithm progresses.) At each
iteration of the algorithm, increment at up to buses, where
is a specified parameter, that have the largest apparent-power

injection mismatches among buses satisfying two condi-
tions: 1) is strictly less than , and 2) is greater than
the specified tolerance. If no buses satisfy these two conditions,
increment at up to buses with the largest greater than
the specified tolerance and increment . That is, in order to
avoid unnecessarily increasing the size of the moment matrices,
the heuristic avoids incrementing the maximum relaxation
order until at all buses with mismatch
greater than the mismatch tolerance.
There is a computational trade-off in choosing the value of .

Larger values of likely result in fewer iterations of the algo-
rithm but each iteration is slower if more buses than necessary
have high-order relaxations. Smaller values of result in faster
solution at each iteration, but may require more iterations. Ex-
perience indicates that is a good balance.
Note that this heuristic is just one of many possible ap-

proaches for specifying the relaxation order at each bus . In
addition to further analysis for varying , future work includes
comparison of this heuristic to alternative approaches.

V. NUMERICAL RESULTS
This section illustrates the effectiveness of the proposed algo-

rithm for the higher-order relaxations relative to the first-order
relaxation by considering several test problems. For these prob-
lems, second- and third-order relaxations are exact (i.e., the re-
laxation provides a solution with the globally minimal objective
value and the globally optimal decision variables).
Bymodifying examples in the existing literature, it is straight-

forward to find moderate-size test problems for which existing
solvers, such as the default interior point solver in MATPOWER
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[10], fail for a variety of reasonable initialization heuristics. For
instance, in an experiment conducted by randomly perturbing
the cost function in the modified 118-bus system from [6], the
default interior point solver in MATPOWER with default solver
options either fails to converge or converges to a local optimum
in 6.9% of 10 000 tested problems initialized using five typical
heuristics: 1) a “flat start” with unity voltage magnitudes and
zero voltage angles, 2) the solution to the linear “DC” OPF ap-
proximation, 3) a power flow solution calculated using active
power injections at the midpoints of the generators' operating
ranges, 4) a power flow solution calculated using power injec-
tions corresponding to an economic dispatch, and 5) a power
flow solution calculated using the power injections resulting
from a DC OPF. The first-order moment relaxation succeeds in
globally solving all of the modified 118-bus test problems and
other test problems for which traditional solution methods fail.
These test problems are not of direct interest for our purposes
but provide the context for considering the higher-order moment
relaxations.
Accordingly, it is also straightforward to modify examples

in the existing literature to obtain test problems for which
the first-order relaxation fails, but second- or third-order re-
laxations succeed. However, traditional solution methods,
such as the interior point solver in MATPOWER, succeed in
finding what turns out to be the global solution for these test
problems. With the focus of this paper on demonstrating the
effectiveness of higher-order moment relaxations relative to
the first-order relaxation (and, equivalently, relative to the
existing semidefinite relaxation [15]), we investigate these test
problems. Thus, MATPOWER with the default interior point
solver and default solver options finds the global optimum for
all the test problems in this section, with optimal objective
values listed in Table I and solution times of less than 0.5 s,
but the first-order relaxation fails to solve each test problem.
Second- and third-order moment relaxations certify that these
solutions are the global optima.
Note that the existence of small examples for which both

the first-order relaxation and traditional solution methods fail
but the higher-order moment relaxations succeed in finding the
global optimum (e.g., the five- and nine-bus systems in [6] and
the five-bus system in [5]; see [20]–[22] for analysis of these
and other small test cases) implies that similar phenomena can
occur in large practical problems as well. This suggests the need
for a wider variety of test problems, the development of which
is beyond the scope of this paper.
Descriptions of each test problem are provided in Table I.

Except for the IEEE 300-bus system, these problems are
modifications of the IEEE test cases using one of two known
methods for inducing failure of the first-order relaxation.
Tightening apparent-power line-flow limits may induce failure
of the first-order relaxation [16]. The letter “L” denotes cor-
responding problems. Decreasing the loading while reducing
the generators' leading power factor range (i.e., decreasing the
magnitude of the lower reactive power generation limits) may
also induce failure of the first-order relaxation [6]. The letter
“Q” denotes corresponding problems.
The results in this section are generated using a computer

with a quad-core 2.70-GHz processor and 16 GB of RAM. The
moment relaxations are implemented using MATLAB 2013a,

TABLE I
TEST CASE DESCRIPTIONS

YALMIP version 2014.02.21 [40], andMosek version 7.0.0.102
[41].
Table II presents the results from applying the moment relax-

ations to the test problems in Table I. The first group of rows
in Table II shows the results from Algorithm 1. The second
group shows the results from an at-least-locally minimal set of
higher-order buses. This set is derived by individually removing
higher-order buses from the solution given by Algorithm 1. The
third group shows the results from the first-order relaxation.
The columns show the values of three convergence metrics.

The first metric is the maximum apparent-power injection mis-
match (Max ), which has a 0.5-MVA tolerance. Note that
the voltage magnitudes, power injections, and line flows satisfy
the inequality constraints in (5) to within 0.005 per unit voltage
and 0.5 MVA for both Algorithm 1 and the locally minimal set
of higher-order buses.
The second metric compares the optimal objective value

obtained directly from the moment relaxation, denoted as
and the cost implied by the voltage vector obtained

from the closest matrix satisfying the rank condition, denoted
as . In the absence of numerical inaccuracy, these objective
values are equal when the solution to the moment relaxation
is exact. With imperfect solvers, this value may be non-zero
even when the moment relaxation has an exact solution. The
column Obj. Val. Diff. shows ,
which is employed as the second convergence criterion with
a tolerance of . For a solution with small power
injection mismatches, a small value in this column indicates
global optimality for practical purposes.
Since the first-order relaxations yield large power injection

mismatches, the objective value calculated from the voltage
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TABLE II
TEST CASE RESULTS

vector is not meaningful. Therefore, the Obj. Val. Diff.
column for the first-order relaxation shows the difference be-
tween the globally optimal objective value and the
lower bound obtained from the objective value of the first-order
relaxation as .
The third metric, which is first proposed in [28], is based di-

rectly on satisfaction of the rank condition. For a solution that
satisfies the rank condition, the diagonal blocks of the moment
matrices corresponding to the second-order terms have rank
equal to one [i.e., the matrices for
have a single non-zero eigenvalue]. However, for numerical rea-
sons, solvers do not yield a “hard zero” value for “zero” eigen-
values of these matrices. On the other hand, when the moment
relaxation fails to be exact, these matrices have more than one
non-zero eigenvalue.
To measure the satisfaction of the rank condition, we use

the ratio between the largest and second-largest magnitude
eigenvalues. The minimum such ratio among all the matrices

for , is termed the minimum eigen-
value ratio. If the solution to a case for which the relaxation
was exact did have “hard zeros” for zero eigenvalues, the
largest eigenvalue would be non-zero and the second-largest
eigenvalue would be zero, resulting in a minimum eigenvalue

ratio of infinity. In practice, numerical issues result in min-
imum eigenvalue ratios that are large (typical values are on
the order of for problems that satisfy the rank condition).
Further, if the solution does not satisfy the rank condition,
both the largest and second-largest eigenvalues typically
have similar magnitudes, therefore yielding a small value for
the minimum eigenvalue ratio. Thus, a large value for the
minimum eigenvalue ratio indicates satisfaction of the rank
condition while a small value indicates failure to satisfy the
rank condition.
Note that we do not use the minimum eigenvalue ratio as a

convergence criteria. This is due to the fact that a solution to
the moment relaxation can have a relatively poor (small) min-
imum eigenvalue ratio but the closest rank one matrix can still
globally solve the OPF problem to within the other tolerances.
(See, for instance, the results for case14L and case39Q in the
second group of rows in Table II which show the results for the
locally minimal set of higher-order buses.) We report the min-
imum eigenvalue ratio in the column Min. Eigenvalue Ratio of
Table II.
Where applicable, Table II also shows the number of itera-

tions of Algorithm 1 (Num. Iter.), the time spent in the MOSEK
solver summed over all iterations (Solver Time), and the number
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Fig. 3. Test case results for each iteration of Algorithm 1. Fig. 3(a) shows the lower bound on the optimal objective value normalized by the globally op-
timal objective value. Figs. 3(b), (c), and (d) show the three convergence metrics, and Fig. 3(e) shows the solver time for each iteration. (a) Normalized Cost.
(b) Maximum (MVA). (c) Objective Value Difference. (d) Minimum Eigenvalue Ratio. (e) Solver Time (in seconds).

of higher-order buses (Num. High-Order Bus), where the quan-
tity in parentheses is the relaxation order.
Fig. 3 shows the lower bound on the objective function, the

convergence metrics, and the solver times for each iteration of
Algorithm 1. The lower bounds on the objective function in
Fig. 3(a) are normalized so that the global optimum for each test
problem has a value of one. Using a log scale, Fig. 3(b) shows
the maximum power injection mismatch in MVA (i.e., the first
convergence metric) for each iteration, Fig. 3(c) shows the ob-
jective value difference (i.e., the second convergence metric),
and Fig. 3(d) shows the minimum eigenvalue ratio (i.e., the third
convergence metric). Fig. 3(e) shows the solver time for each it-
eration of the algorithm.
We next emphasize several interesting observations from the

results in Table II and Fig. 3. Solutions to the first-order relax-
ations generally have a subset of buses with large power injec-
tion mismatches, but the objective values are often quite close to
the global optimum [see column Obj. Val. Diff. in Table II and
the fact that the first iteration in Fig. 3(a) is approximately equal
to 1 but the convergence metrics in Figs. 3(b), (c), and (d) are
not satisfied]. This suggests that there are often “hidden” or
“nearly hidden” rank one solutions for the first-order relaxation
[26]. Selective application of the higher-order constraints pro-
vides a mechanism for recovering these hidden rank one solu-
tions. However, not all problems have hidden rank one solutions
(e.g., the first-order relaxations of case39Q and case118L, which
yield solutions that are 3.54% and 0.75%, respectively, below

the global optimum, and the examples in [20]). The solver times
from Algorithm 1 illustrate that additional computational effort
is required to achieve the global solution relative to the lower
bounds from the first-order relaxation.
The Num. Iter. column in Table II and the convergence

metrics in Fig. 3(b)–(d) shows that only a small number of
iterations are typically required to obtain a global optimum
(i.e., the higher-order moment constraints are only required at a
small number of buses). However, this is not always the case as
case39Q requires many iterations and higher-order constraints
at the majority of buses in the network. This problem demon-
strates that the approach of selectively applying higher-order
constraints to specific areas of the network may not be compu-
tationally tractable for all problems.
Since each iteration of Algorithm 1 adds constraints to the op-

timization problem, the cost shown in Fig. 3(a) should be non-
decreasing. The cost is non-decreasing for all problems with the
exception of iteration 17 for case39Q. The decrease at iteration
17 is explained by the fact that the semidefinite programming
solver does not converge to a sufficient tolerance (i.e., the con-
straints are not satisfied) at this iteration of Algorithm 1.
For case118Q, case118L, and case300, Algorithm 1 finds an

at-least-locally minimal set of buses requiring the higher-order
relaxation. For case14Q, case39L, case57Q, and case57L, Al-
gorithm 1 only uses one more bus than a locally minimal set.
While this indicates that the heuristic with is effective
in identifying a minimal or near-minimal set of higher-order
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buses for many OPF problems, we emphasize that these are
only known to be locally minimal; a different heuristic may
identify a smaller set of buses. Further, Algorithm 1 does not
identify a near-minimal set of higher-order buses for case39Q,
which results in an almost order-of-magnitude larger solution
time than necessary. More sophisticated heuristics could lead to
better performance for some problems.
Finally, note that solution times have stronger dependence

on the number of higher-order buses, the size of the maximal
cliques they are contained within, and the relaxation orders
required than the size of the system. For instance, although
case300 has 7.7 times more buses, Algorithm 1 has a factor
of 68.2 greater solution time for case39Q due to the number
of buses with second- and third-order constraints in case39Q.
Further note that although solution times for the moment relax-
ations are not yet competitive with mature local solvers, such
as the interior point method in MATPOWER which solved all test
problems in Table I in less than 0.5 seconds, the moment re-
laxations with Algorithm 1 provide a computationally tractable
approach for globally solving many problems for which the
first-order relaxation fails to yield a global solution. The mo-
ment relaxations also certify global optimality in contrast to
traditional solvers which only guarantee a local optimum.

VI. CONCLUSION
While existing convex relaxations globally solve many OPF

problems, there are practical problems for which existing relax-
ations fail to yield physically meaningful solutions. This paper
has described a hierarchy of “moment” relaxations that globally
solve many problems for which existing relaxations fail. The
moment relaxations, which take the form of semidefinite pro-
grams, are developed from the Lasserre hierarchy for general-
ized moment problems. Increasing the order in this hierarchy re-
sults in “tighter” relaxations at the computational cost of larger
semidefinite programs.
Solving the moment relaxations for larger problems re-

quires both exploiting power system sparsity and selectively
applying the higher-order moment relaxation constraints. A
matrix completion decomposition for exploiting sparsity was
first presented. Next, taking advantage of the observation
that first-order relaxations are sufficient for large regions of
typical OPF problems, this paper proposed an iterative algo-
rithm for solving the moment relaxations. A heuristic at each
iteration identifies where to enforce the higher-order relax-
ation constraints. The proposed algorithm's effectiveness was
demonstrated by globally solving several test cases for which
existing convex relaxations failed.
Future work includes improving the computational perfor-

mance of the proposed algorithm. Alternative heuristics for
determining where to apply the higher-order constraints may
reduce solution times. Distributed solution algorithms, which
have proven valuable for existing relaxations [42], may also
speed computation of the moment relaxations.
Identification and exploration of realistic test cases for which

low-order relaxations fail is another important future research
direction. The problems in [15] used to demonstrate that the
OPF problem is, in general, NP-hard serve as example cases
for which low-order moment relaxations fail to yield a global
solution [20]. However, with a large number of global optima,

these problems are very atypical. Extending the work of, e.g.,
[23]–[25], sufficient conditions for tightness of the moment re-
laxations would also be valuable contributions.
Additional future work also includes application of moment

relaxations to more general OPF formulations that include,
for instance, discrete devices, security constraints, and tran-
sient-stability constraints. Exploiting synergies with robust
and chance-constrained optimization techniques for the OPF
problem appears particularly promising [43]. Extension to
other problems in power system engineering, such as state esti-
mation, voltage-stability margins, and power flow calculations,
is another avenue of future work.

REFERENCES
[1] F. Capitanescu, J. M. Ramos, P. Panciatici, D. Kirschen, A. M. Mar-

colini, L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges,
and future trends in security constrained optimal power flow,” Elect.
Power Syst. Res., vol. 81, no. 8, pp. 1731–1741, 2011.

[2] B. Stott and O. Alsaç, “Optimal power flow—Basic requirements for
real-life problems and their solutions,” in Proc. SEPOPE XII Symp.,
Rio de Janeiro, Brazil, 2012.

[3] D. Phan and J. Kalagnanam, “Some efficient optimization methods for
solving the security-constrained optimal power flow problem,” IEEE
Trans. Power Syst., vol. 29, no. 2, pp. 863–872, Mar. 2014.

[4] L. Platbrood, F. Capitanescu, C. Merckx, H. Crisciu, and L. Wehenkel,
“A generic approach for solving nonlinear-discrete security-con-
strained optimal power flow problems in large-scale systems,” IEEE
Trans. Power Syst., vol. 29, no. 3, pp. 1194–1203, May 2014.

[5] B. Lesieutre and I. Hiskens, “Convexity of the set of feasible injections
and revenue adequacy in FTR markets,” IEEE Trans. Power Syst., vol.
20, no. 4, pp. 1790–1798, Nov. 2005.

[6] W. Bukhsh, A. Grothey, K. McKinnon, and P. Trodden, “Local solu-
tions of the optimal power flow problem,” IEEE Trans. Power Syst.,
vol. 28, no. 4, pp. 4780–4788, Nov. 2013.

[7] M. Huneault and F. Galiana, “A survey of the optimal power flow liter-
ature,” IEEE Trans. Power Syst., vol. 6, no. 2, pp. 762–770, May 1991.

[8] J. Momoh, R. Adapa, andM. El-Hawary, “A review of selected optimal
power flow literature to 1993. I. Nonlinear and quadratic programming
approaches,” IEEE Trans. Power Syst., vol. 14, no. 1, pp. 96–104, Feb.
1999.

[9] J. Momoh, M. El-Hawary, and R. Adapa, “A review of selected op-
timal power flow literature to 1993. II. Newton, linear programming
and interior point methods,” IEEE Trans. Power Syst., vol. 14, no. 1,
pp. 105–111, Feb. 1999.

[10] R. Zimmerman, C. Murillo-Sánchez, and R. Thomas, “MATPOWER:
Steady-state operations, planning, and analysis tools for power systems
research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp.
12–19, Feb. 2011.

[11] S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: A
bibliographic survey, parts I and II,” Energy Syst., vol. 3, no. 3, pp.
221–289, 2012.

[12] A. Castillo and R. O'Neill, Survey of Approaches to Solving the
ACOPF (OPF Paper 4), US Federal Energy Regulatory Commission,
Tech. Rep., Mar. 2013.

[13] D. Molzahn, B. Lesieutre, and C. DeMarco, “A sufficient condition
for global optimality of solutions to the optimal power flow problem,”
IEEE Trans. Power Syst., vol. 29, no. 2, pp. 978–979, Mar. 2014.

[14] A. Castillo and R. O'Neill, Computational Performance of Solution
Techniques Applied to the ACOPF (OPF Paper 5), US Federal Energy
Regulatory Commission, Tech. Rep., Jan. 2013.

[15] J. Lavaei and S. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb.
2012.

[16] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, “Investigation of
non-zero duality gap solutions to a semidefinite relaxation of the power
flow equations,” inProc. 47th Hawaii Int. Conf. Syst. Sci. (HICSS), Jan.
6–9, 2014.

[17] D. Molzahn, B. Lesieutre, and C. DeMarco, “A sufficient condition
for power flow insolvability with applications to voltage stability mar-
gins,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2592–2601, Aug.
2013.

[18] J. B. Lasserre, “Global optimization with polynomials and the problem
of moments,” SIAM J. Optimiz., vol. 11, no. 3, pp. 796–817, 2001.



3180 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 6, NOVEMBER 2015

[19] J.-B. Lasserre, Moments, Positive Polynomials and Their Applica-
tions. London, U.K.: Imperial College Press, 2010, vol. 1.

[20] D. K. Molzahn and I. A. Hiskens, “Moment-based relaxation of the
optimal power flow problem,” in Proc. 18th Power Syst. Comput. Conf.
(PSCC), Aug. 18–22, 2014.

[21] C. Josz, J. Maeght, P. Panciatici, and J. C. Gilbert, “Application of the
moment-SOS approach to global optimization of the OPF problem,”
IEEE Trans. Power Syst., to be published.

[22] B. Ghaddar, J. Marecek, and M. Mevissen, Optimal Power Flow as a
Polynomial Optimization Problem, IBM Research Ireland, Tech. Rep.,
2014 [Online]. Available: http://arxiv.org/abs/1404.3626

[23] S. H. Low, “Convex relaxation of optimal power flow—Parts I: For-
mulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1,
no. 1, pp. 15–27, Mar. 2014.

[24] S. Low, “Convex relaxation of optimal power flow—Part II: Exact-
ness,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177–189, Jun.
2014.

[25] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal
power flow problem: Mesh networks,” IEEE Trans. Power Syst., to be
published.

[26] R. Louca, P. Seiler, and E. Bitar, “A rank minimization algorithm to
enhance semidefinite relaxations of optimal power flow,” in Proc. 51st
Annu. Allerton Conf. Commun., Control, and Comput., Oct. 2–4, 2013.

[27] R. Jabr, “Exploiting sparsity in SDP relaxations of the OPF problem,”
IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1138–1139, May 2012.

[28] D.Molzahn, J. Holzer, B. Lesieutre, and C. DeMarco, “Implementation
of a large-scale optimal power flow solver based on semidefinite pro-
gramming,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 3987–3998,
Nov. 2013.

[29] H.Waki, S. Kim,M. Kojima, andM.Muramatsu, “Sums of squares and
semidefinite program relaxations for polynomial optimization prob-
lems with structured sparsity,” SIAM J. Optimiz., vol. 17, no. 1, pp.
218–242, 2006.

[30] J. Lavaei, “Zero duality gap for classical OPF problem convexifies fun-
damental nonlinear power problems,” in Proc. Amer. Control Conf.
(ACC), 2011, Jun. 2011, pp. 4566–4573.

[31] M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, and G.
Andersson, “Probabilistic security-constrained AC optimal power
flow,” in Proc. 2013 IEEE PowerTech in Grenoble (POWERTECH),
Jun. 2013, pp. 1–6.

[32] M. Baradar, M. Hesamzadeh, and M. Ghandhari, “Second-order cone
programming for optimal power flow in VSC-type AC-DC grids,”
IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4282–4291, Nov. 2013.

[33] W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden, Local
Solutions of Optimal Power Flow, Univ. Edinburgh, School of Math-
ematics, Tech. Rep. ERGO 11-017, 2011 [Online]. Available: http://
www.maths.ed.ac.uk/ERGO/pubs/ERGO-11-017.html

[34] M. Andersen, A. Hansson, and L. Vandenberghe, “Reduced-com-
plexity semidefinite relaxations of optimal power flow problems,”
IEEE Trans. Power Syst., to be published.

[35] R. Gron, C. Johnson, E. Sá, and H. Wolkowicz, “Positive definite com-
pletions of partial Hermitian matrices,” Linear Algebra Appl., vol. 58,
pp. 109–124, 1984.

[36] M. Fukuda et al., “Exploiting sparsity in semidefinite programming via
matrix completion I: General framework,” SIAM J. Optimiz., vol. 11,
no. 3, pp. 647–674, 2001.

[37] R. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs,” SIAM J. Comput., vol. 13, p. 566, 1984.

[38] T. Davis, J. Gilbert, S. Larimore, and E. Ng, “Algorithm 836: CO-
LAMD, a column approximate minimum degree ordering algorithm,”
ACM Trans. Math. Softw., vol. 30, no. 3, pp. 377–380, Sep. 2004.

[39] Power Systems Test Case Archive, Univ. Washington, Dept.
Elect. Eng. [Online]. Available: http://www.ee.washington.edu/re-
search/pstca/

[40] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput. Aided Control Syst. De-
sign, 2004, pp. 284–289.

[41] The MOSEK Optimization Toolbox for MATLAB Manual Version
7.0, MOSEK ApS. [Online]. Available: http://docs.mosek.com/7.0/
toolbox/

[42] A. Lam, B. Zhang, and D. Tse, “Distributed algorithms for optimal
power flow problem,” in Proc. 51st Annu. Conf. Decision Control
(CDC), Dec. 10–13, 2012.

[43] P. Panciatici, M. Campi, S. Garatti, S. Low, D. Molzahn, A. Sun, and
L. Wehenkel, “Advanced optimization methods for power systems,” in
Proc. 18th Power Syst. Comput. Conf. (PSCC), Aug. 18–22, 2014.

Daniel K. Molzahn (S’09–M’13) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering and
the Master's of Public Affairs degree from the Uni-
versity of Wisconsin-Madison, Madison, WI, USA,
where he was a National Science Foundation Grad-
uate Research Fellow.
He is a Dow Sustainability Fellow at the Univer-

sity of Michigan, Ann Arbor, MI, USA. His research
interests are in the application of optimization tech-
niques and policy analysis to electric power systems.

Ian A. Hiskens (S’77–M’80–SM’96–F’06) received
the B.Eng. degree in electrical engineering and
the B.App.Sc. degree in mathematics from the
Capricornia Institute of Advanced Education, Rock-
hampton, Australia, in 1980 and 1983 respectively,
and the Ph.D. degree in electrical engineering from
the University of Newcastle, Australia, in 1991.
He is the Vennema Professor of Engineering

in the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann
Arbor, MI, USA. He has held prior appointments in

the Queensland electricity supply industry, and various universities in Australia
and the United States. His research interests lie at the intersection of power
system analysis and systems theory, with recent activity focused largely on
integration of renewable generation and controllable loads.
Dr. Hiskens is actively involved in various IEEE societies, and is VP-Finance

of the IEEE Systems Council. He is a Fellow of Engineers Australia, and a
Chartered Professional Engineer in Australia.


