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Abstract—The level of uncertainty in power systems is in-
creasing due to substantial growth in renewable generation and
increasing reliance on cyber-enabled system-wide responsiveness.
In order to guarantee dynamic security of networks, power
system designers are in need of practical reachability analysis
tools that allow them to assess vulnerability of the system to
undesirable outcomes and evaluate the impact of parameter
uncertainty. This paper describes a novel suite of parameter
continuation algorithms that may be applied to large-scale, stiff,
hybrid power systems. They allow the impact of parameter
uncertainty to be quantified, thereby enabling secure design
through efficient exploration of critical parameter values and
initial conditions.

I. INTRODUCTION

The dynamic behavior of power systems is affected by many
parameters, whose influence cannot be easily quantified. It is
well known, for example, that in many power systems, the
behavior of loads can have a significant influence on dynamic
performance. Substantial work has been undertaken, both in
industry and the research community, to develop methods of
quantifying load models. Yet when major disturbances occur,
more often than not the match between the measured and
simulated responses is substandard, with poorly validated load
models being a major contributing factor.

Load models can never be known precisely, as load compo-
sition is continually varying. Likewise, as renewable genera-
tion grows, its inherent variability will challenge the usefulness
of traditional approaches to dynamic security assessment that
currently rely almost exclusively on forward simulation.

The concept of grazing is important in quantifying the influ-
ence of parameters on the dynamic behavior of power systems.
Grazing refers to the situation where a state-space trajectory
tangentially encounters a hypersurface that has significance in
the context of system dynamic performance. As shown in [1],
grazing situations dictate the boundary between acceptable and
unacceptable behavior. Grazing phenomena may thus form the
basis for reachability analysis that can be used to assess the
vulnerability of power systems to undesirable outcomes. Com-
putational algorithms can be applied to obtain approximate
covers of implicitly defined manifolds in state/parameter space
corresponding to grazing-related boundaries between safe and
unsafe operation. The analysis of these boundaries provides an
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opportunity to quantify the dependence of dynamic security on
parameter variations.

II. REACHABILITY ANALYSIS OF POWER SYSTEMS

A. Hybrid System Representation

Power system models belong to the class of hybrid dy-
namical systems [2], in which continuous-in-time changes in
the state may be characterized by a family of distinct state-
space flows, and discrete-in-time changes in the state (or
the governing equations) are triggered by zero crossings of
event surfaces and associated with the application of state-
space resets. Such systems can be represented by a model that
consists of a system of differential-algebraic equations of the
form

ẋ = f(x, y) (1)
0 = g(x, y) (2)

adapted to incorporate impulsive (state reset) action and
switching of the algebraic equations. We refer to x ∈ Rn as
dynamic states, to y ∈ Rm as algebraic states, and assume that
f : Rn+m → Rn and g : Rn+m → Rm. Here, the governing
functions f and g may change along a time history, as dictated
by the physical model.

Under the assumption that the Jacobian ∂yg is invertible,
it is possible to reduce the differential-algebraic equations
locally to a system of ordinary differential equations in the
dynamic states only. It follows that the dynamic behavior can
be described analytically by the flow φ, i.e., x(t) = φ(x0, t)
where the time-dependence of the algebraic states is implicitly
defined by the algebraic constraints g(φ(x0, t), y(t)) = 0.

B. Grazing

Grazing is characterized by a tangential encounter of a state-
space trajectory with a performance constraint, characterized
by a zero-level surface of some function h : Rn+m → R
(cf. Fig. 1). At such a point of tangential contact, it follows
that h(x, y) = 0 and, in terms of the gradients of h with
respect to x and y,

hx · f + hy · v = 0 (3)

where v is implicitly defined by differentiation of (2) to obtain

gx · f + gy · v = 0. (4)
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Fig. 1. Grazing manifold.

A multi-segment trajectory with a grazing terminal point
may then be characterized in terms of an unknown initial con-
dition x0, an unknown final condition xf , the corresponding
value yf , the time of flight tf , and the unknown vector v
that collectively satisfy the zero problem F = 0, where the
function F : R2n+2m+1 → Rn+2m+2 is given by

F (x0, xf , yf , tf , v) =


φ(x0, tf )− xf
g(xf , yf )
h(xf , yf )

hx · f(xf , yf ) + hy · v
gx · f(xf , yf ) + gy · v

 (5)

and where the partial derivatives are evaluated at the grazing
point (xf , yf ). Given a regular solution point to the zero
problem, i.e., one for which the corresponding Jacobian has
full rank, it follows from the implicit function theorem that
there exists a locally unique, (2n+2m+1)− (n+2m+2) =
(n− 1)-dimensional manifold of solutions through this point.
Each point on this manifold corresponds to a state-space
trajectory that terminates at a point of grazing contact with
the target surface. This grazing manifold thus distinguishes
between trajectories that reach the target, and experience the
corresponding switching action, and those that do not.

As an example, consider the IEEE 14-bus system of Fig. 2
and the analysis of distance protection on transmission line
2-4 at bus 2 (see [1] for a detailed description of this system).
Specifically, consider an operating condition in which a three-
phase fault is applied at the midpoint of line 2-5, and the line
is removed from service after 0.1 sec, and assume further that
relay 24 issues an instantaneous trip signal if the apparent
impedance seen along line 2-4 passes into the protection
operation circle. The aim of the analysis is then to explore the
relationship between values of real power demand at different
buses that cause the apparent impedance trajectory to graze
the protection hypersurface.

III. CONTINUATION

A. Fundamentals of continuation

The zero problem F = 0 with F given in (5) is an example
of a general paradigm for implicitly-defined manifolds that
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Fig. 2. Modified IEEE 14-bus system.

serve to characterize a large number of mathematical models
[3], [4]. Computational techniques used to locate and locally
parameterize families of solutions to such problems are re-
ferred to as parameter continuation methods. In the general
formalism, an equation of the form F (u) = 0, for some
vector-valued function F : Ra → Rb in terms of a vector of
continuation variables u ∈ Ra, provides an implicit definition
of an (a − b)-dimensional manifold, where the dimensional
deficit d = a− b equals the excess of unknowns to equations.

Starting with a single point on the solution manifold, and a
local parameterization of the manifold in terms of coordinates
in the corresponding tangent space, a covering algorithm pro-
vides a growing cover of the manifold by iteratively computing
nearby solutions and their associated local parameterizations.
The resultant cover provides a formal atlas for the manifold, in
terms of a collection of manifold charts. Covering algorithms
are designed to generate simply connected atlases with a
minimum of overlap between charts.

The most successful covering algorithm for one-dimensional
manifolds is the pseudo-arc length continuation method, for
which an initial solution guess for each successive point on
the manifold is obtained in the affine space described by a
previous point and its tangent space. It is straightforward to
implement this algorithm in such a way as to ensure a simply
connected atlas with a minimum of chart overlap. Naı̈ve, multi-
dimensional generalizations of this paradigm, however, may
result in atlases with significant chart overlap and premature
termination without guaranteeing simple connectedness. The
manifold covering approach developed by Henderson [5] (see
an independent implementation in [6]) resolves these chal-
lenges by, i) maintaining a distinction between charts in the
atlas interior and charts on its boundary, and ii) associating a
neighbor relation on the network of charts defined in terms of
mutual overlap.
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B. An extended continuation problem

The power system example in Section II-B shows an in-
stance of a zero problem, in which a subset of the governing
equations are associated with a degenerate intersection be-
tween a state-space trajectory and a hypersurface. It is natural
to extend the continuation task by considering a relaxed zero
problem in which the terminal point is assumed to satisfy
all components of the original zero problem except for the
requirement that h(xf , yf ) = 0. To this end, we replace the
continuation problem by the extended continuation problem
F̃ = 0, for F̃ : R2n+2m+2 → Rn+2m+2 given by

F̃ (x0, xf , yf , tf , v, µ) =


φ(x0, tf )− xf
g(xf , yf )

h(xf , yf )− µ
hx · f(xf , yf ) + hy · v
gx · f(xf , yf ) + gy · v

 . (6)

Here, the continuation parameter µ characterizes the signed
deviation of the terminal point from the zero-level surface of
h.

A solution to the extended continuation problem described
by (6) does not necessarily correspond to a grazing trajectory,
but such a trajectory may be located by allowing µ to vary dur-
ing continuation. Specifically, by continuity, a zero-crossing in
the value of µ along a curve segment on the n-dimensional
solution manifold implies the existence of at least one point
along the curve segment for which µ = 0. This point may now
be located by an iterative root solver. Once a zero-crossing
of µ has been detected and located with desired accuracy,
the grazing manifold may be mapped out by restricting the
value of µ to 0, thus returning to the restricted continuation
problem (5).

C. Multi-segment asynchronous collocation

In practice, the implementation of the first component of F
in (5) may be accomplished either by, i) computing φ(x0, tf )
through numerical integration of the governing differential-
algebraic equations, or ii) discretizing the time histories for
the dynamic and algebraic state variables, and imposing suit-
able boundary and interior conditions to ensure that the dis-
cretization is an approximate solution to the governing hybrid
dynamical system. The distinction is between a continuation
problem in terms of only the initial and terminal values along
the solution trajectory and one in which the unknowns provide
a finite-dimensional parameterization of the entire state-space
trajectory. In the first case, the number of unknowns in the
continuation problem is relatively small, but the algorithm
requires forward simulation (i.e., successive construction of
approximations to points on the state-space trajectory) and
may be sensitive to large state-space strains. In the second
case, greater robustness to state-space strains is accompanied
by a significant increase in the number of unknowns, but
without the need to perform any numerical integration. The
methods may be considered essentially equivalent by suitable
design of the linear solver used by the nonlinear root-finding
algorithm in the second case.

In the COCO continuation framework [6], trajectory dis-
cretization is implemented in terms of a segment-specific
orthogonal collocation approach. This is well-suited to dynam-
ical systems in which individual degrees of freedom are char-
acterized by a small range of distinct time scales. However,
for problems with a wide range of governing time scales (the
algebraic constraints in power systems provide an extreme case
of such a time scale separation), it is appropriate to consider
discretization schemes that partition groups of degrees of free-
dom by their governing time scales and that provide adaptive
mesh-generation algorithms to update the discretization during
continuation (see [7] for a related discussion of multistep
asynchronous splitting integrators used in forward simulation).
To this end, a COCO toolbox that supports asynchronous,
adaptive trajectory discretization has been developed by the
authors in support of general continuation analysis of power
systems.

IV. NUMERICAL EXAMPLE

We provide a numerical illustration of the continuation
paradigm described above, and its implementation in COCO,
by returning to the IEEE 14-bus system introduced in Sec-
tion II-B. The implementation relies on a COCO-specific
wrapper to the MATLAB-based DAIS model library, developed
by one of the authors [8] for simulation and continuation
analysis of power systems. In the initial analysis, we perform
continuation of solutions to the relaxed extended continuation
problem by allowing the real power demand at bus 4 to vary.
Continuation produces a one-dimensional solution manifold
along which we detect a solution with µ = 0 when the bus
4 demand has increased by 50.4% from its original value of
96.7 MW. To continue the corresponding family of grazing
trajectories, we fix the bus 4 load, and impose the constraint
that µ equal 0 throughout continuation. A one-dimensional
solution manifold results by allowing the real power demand
at buses 2 and 5 to vary.

The grazing manifold shown in Fig. 3 separates regions of
operation where the distance protection is, or is not, triggered.
This is further illustrated by the impedance trajectories in
Fig. 5 for three different cases of bus 2 and bus 5 load
values. The parameter space locations of these three cases
are identified in Fig. 3. A two-dimensional grazing manifold
(parameterized by the loads on buses 2, 3 and 5) is shown in
Fig. 4.

V. CONCLUSION

The COCO continuation framework [6] provides an inno-
vative suite of numerical algorithms for analysis and design
of hybrid dynamical systems with slow and fast timescales,
coupled components, and with state resets and switches typical
of power system models. The paper describes the outcome of
coupling this continuation framework to an existing library of
power system components. This approach supports trajectory
discretization methods, based on asynchronous collocation
and mesh-adaptation strategies, that enable scaling up to the
number of states typical of practical power systems. The
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Fig. 3. Curve relating bus 2 and bus 5 loads, produced by continuation.

3.5

4

4.5

5

5.5

6

6.5 −40

−20

0

20

40

60

80

100
91

92

93

94

95

96

P at bus 2, MWP at bus 5, MW

P
 a

t 
b
u
s 

3
, 
M

W

Fig. 4. Grazing manifold relating bus 2, bus 3 and bus 5 loads, produced
by continuation.

coupled framework allows user-driven exploration of switch-
ing, threshold and instability related grazing phenomena, and
hence provides tools for parametric uncertainty evaluation and
vulnerability assessment of networks.

All software algorithms developed as part of this project will
be disseminated through an open-source collaborative hosting
platform.
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