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Model-Predictive Cascade Mitigation in Electric
Power SystemsWith Storage and Renewables—Part I:

Theory and Implementation
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Abstract—A novel model predictive control (MPC) scheme is
developed for mitigating the effects of severe line-overload dis-
turbances in electrical power systems. A piece-wise linear convex
approximation of line losses is employed to model the effect of
transmission line power flow on conductor temperatures. Control
is achieved through a receding-horizon model predictive control
(MPC) strategy which alleviates line temperature overloads and
thereby prevents the propagation of outages. The MPC strategy
adjusts line flows by rescheduling generation, energy storage and
controllable load, while taking into account ramp-rate limits and
network limitations. In Part II of this paper, the MPC strategy is
illustrated through simulation of the IEEE RTS-96 network, aug-
mented to incorporate energy storage and renewable generation.

Index Terms—Cascade mitigation, convex relaxation, energy
storage, model predictive control, modeling, optimization, thermal
overloads.

I. INTRODUCTION

T HE National Academy of Engineering named the elec-
tric power grid the greatest engineering achievement of

the 20th century [2]. However, recent large-scale power grid
failures suggest the electric grid is becoming increasingly con-
gested, and as a consequence, is being operated closer and closer
to its limits [3].
Currently, abnormal conditions are handled either through

protection operation or operator intervention, depending on the
severity of the abnormality. In the latter case, where conditions
do not immediately threaten the integrity of plant or loads, op-
erators institute corrective procedures that may include altering
generation schedules, adjusting transformer tap positions, and
switching capacitors/reactors. For more extreme abnormalities,
the protection associated with vulnerable components will op-
erate to ensure they do not suffer damage. This myopic response
may, however, weaken the network, exacerbating the conditions
experienced by other components. They may subsequently trip,
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initiating an uncontrolled cascade of outages. This pattern was
exhibited during the blackout of the U.S. and Canada in August
2003 [4].
As the amount, type and distribution of controllable resources

increases, operators will find it ever more challenging to de-
termine an appropriate response to unanticipated events. At a
minimum, operators will require new tools to guide their deci-
sion-making. Given the increased complexity of response ac-
tions, a closed-loop feedback process will become indispens-
able. Furthermore, since power systems are suffused with con-
straints and limits on states and inputs, model predictive control
(MPC) schemes can be particularly useful within the context of
contingency management. For a general overview of MPC, see
[5]–[7].
The first application of MPC to emergency control of power

systems was [8], where voltage stability was achieved through
optimal coordination of load shedding, capacitor switching, and
tap-changer operation. A tree-based search method was em-
ployed to obtain optimal control actions from discrete switching
events. To circumvent tree-based search methods, [9] and [10]
employed trajectory sensitivities to develop MPC strategies.
However, those methods focused on voltage stability and did
not take into account energy storage nor thermal overloads of
transmission lines. Distributed forms of MPC have also been
proposed, with mitigation of line-outage cascades considered
in [11].
The authors in [12] and [13] proposed a framework for elec-

trothermal coordination in power systems, and developed tem-
perature-based predictive algorithms that are amenable to en-
ergy markets and applicable within existing system controls.
Other recent literature, cf. [14], [15], focused on model-predic-
tive control of electrical energy systems to alleviate line over-
loads within a standard DC power flow framework. Specifi-
cally, the authors in [15] extended the ideas of [14] to include a
linearized current-based thermodynamical model of conductors
and an auto-regressive model of the weather conditions (i.e.,
wind speed and ambient temperature) near transmission lines.
This allowed [15] to set a hard upper limit on conductor temper-
ature to ensure control objectives, and allowed MPC to operate
the system closer to actual physical limits than if using standard
(worst-case weather-based) thermal ratings. Furthermore, [15]
illustrated that temperature-based control can outperform cur-
rent control within a predictive framework.
The control scheme developed in this paper is motivated

by the bilevel control structure that was introduced in [16] for
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large-scale energy-hub systems. The first level operated on
an hour-by-hour timescale with a 24-hour prediction horizon
and was in charge of economic dispatch. The second level
responded to contingencies and was implemented as a simple
deterministic shrinking (fixed-point) horizon model predic-
tive cascade mitigation scheme, which shed minimal load
in the process of halting the cascade. The effectiveness of
the cascade mitigation process in maximizing economic and
secure operation was due to proper management of available
energy storage and renewable energy sources. The impact of
different energy storage scenarios on cascade mitigation was
investigated in [17], where it was concluded that the MPC
scheme alone provided considerable protection against cascade
failures and that appropriate storage schemes further improved
performance. However, the use of shrinking horizon MPC in
[16] required that the system recover from the initial outage by
the fixed terminal time, potentially leaving insufficient time to
respond to late disturbances. Therefore, to improve robustness,
this paper extends [16] by implementing a receding-horizon
MPC scheme (henceforth referred to simply as MPC).
The main contribution of this paper is the formulation of a

linear MPC scheme for bulk power systems, which balances
economic and security objectives, thereby driving the system to
a secure and economical operating region. In addition, the paper
develops a piece-wise linear convex relaxation for branch losses
that significantly reduces the computational complexity of the
optimization problem underpinning MPC. The resulting MPC
scheme exploits the thermal inertia inherent in transmission line
conductors to allow time for controllable resources, including
generation and energy storage, to reschedule, thereby alleviating
line overloads and mitigating cascading failures. The proposed
approach represents a departure from current practice because it
envisions a corrective control strategy that shifts the operating
paradigm of power systems from “generation follows load” to
“energy positioning”.
This paper (Part I) motivates and develops the MPC frame-

work, while the benefits of the proposed approach are illustrated
in Part II [1], where the IEEE RTS-96 system forms the basis
for a contingency management case-study. The remainder of
this paper is organized as follows. Section II establishes the pro-
posed two-level control framework, and discusses the roles of
Levels 1 and 2, and their interactions. The Level 2 (MPC) con-
troller model, including a convex relaxation of line losses, is
developed in Section III. Section IV summarizes the paper and
suggests future research directions.

II. SYSTEM OPERATION AND CONTROL

Economic dispatch computes an economically optimal trajec-
tory, for a given load forecast. However, if a significant distur-
bance takes place, it may be necessary to operate sub-optimally
for some time to prevent overloads andminimize the risk of sub-
sequent line outages. This motivates the need for a contingency
(safety) controller, which responds quickly to a disturbance, and
subsequently drives the system back to a secure and econom-
ical state. From that state, economic dispatch can be re-initiated
and normal (economic) operation can resume. This suggests a
bilevel hierarchical control strategy for electric power systems.

Fig. 1. Overview of proposed control scheme showing Level 1 (economical)
and Level 2 (corrective) interaction.

Fig. 1 provides an overview of the proposed bilevel hierarchical
operation of the system. A discussion of each level follows.

A. Level 1: Optimal Energy Schedule

Level 1 uses forecasts of load demand and renewable re-
sources to compute an optimal 24-hour ahead schedule for
energy storage, conventional generation, flexible loads, and
available renewable energy. This scheduling process is similar
to standard economic dispatch [18], though the dynamics
(and hence temporal coupling) introduced by energy storage
state-of-charge and generator ramp-rate limits must be taken
into account. This implies optimization over a horizon rather
than a single time-step.
The Level 1 model enforces line flow (thermal) limits to en-

sure that, under accurate model and forecast scenarios, no lines
are overloaded (i.e., the system is secure). Line losses are mod-
eled with a standard piece-wise linear (PWL) DC approxima-
tion as presented in [19]. The dispatch schedule is computed as
a multi-period quadratic programming (QP) problem whose ob-
jective is to minimize energy (fuel) costs of conventional gen-
erators:

(1)

where - ] and - ] are constant parameters
for generator , and is its output power.
The Level 1 schedule establishes a reference signal over a

multi-hour horizon, consisting of the economically optimal
system set-points , and the operator control actions
required to achieve those optimal set-points. The schedule
is submitted to the operator and recomputed every hour. For
details on the Level 1 formulation, see [16] and [20].
Remark II.1: Level 1 may take advantage of existing energy

management system (EMS) tools to assess voltage conditions
and identify corrective behavior [21], [22]. Required actions can
be encapsulated in the set-points submitted to Level 2. Then,
Level 2 can focus on resolving short-term line overloads while
driving the system to a long-term voltage secure and economi-
cally optimal state.
Online monitoring of voltage conditions may necessitate re-

configuring network limits andmodifying set-points for Level 2.
This could be achieved by considering real-time measurements
from phasor measurement units, see for example [23]. Such
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schemes are beyond the scope of this paper, though are iden-
tified as future work in Section IV.

B. Level 2: Corrective Control

This lower level controller operates in the background to
track the reference trajectories computed by Level 1 (i.e., the
economic set-point values). Since the Level 2 time-step
( 1 minute) is much shorter than that of the Level 1 reference
signals ( 1 hour), linear interpolation is employed between
state reference values, while a zero-order-hold is used for
control reference values.1

The corrective controller employs a linear model of the actual
system. If a disturbance takes place (e.g., line outage), Level 2
uses MPC to compute corrective control actions that steer the
system towards a safe and economically optimal state as pro-
vided by the Level 1 post-disturbance reference.
Level 2 relies on a discrete-time model of the system. Dis-

crete dynamics are obtained by forward Euler discretization
with sample time . Controls are step-wise, with step-width
, such that for . For each

time , the dynamic states are measured and represent the
initial state of the system. The MPC scheme can be summarized
as follows:
1) At time , with initial states and updated Level 1
reference signals and , solve an open-loop op-
timal control problem over the interval
taking into account current and future constraints. This
yields a sequence of optimal open-loop control actions

, where the notation
implies prediction time relative to the actual time .

2) Apply the first instance of the control sequence:
.

3) Measure the actual system state at time .
4) Set and repeat step 1).
Level 2 considers ramp-rate limits on conventional genera-

tors, dynamics and power ratings of grid storage devices, and
incorporates the thermal response of overloaded lines. Note that
in Level 2, lines are no longer necessarily subject to a hard flow-
limit constraint. Rather, the controller seeks to drive line tem-
peratures below their respective limits. The Level 2 open-loop
MPC optimization is formulated as a quadratic programming
problem (QP) over the finite prediction horizon :

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

1Assume the Level 1 time-step is , and consider two adjacent Level 1
state reference values and . Then the value of the Level 2 state refer-
ence at time , between and , is ,

. If the corresponding Level 1 control reference values are
and , then the Level 2 control references take the values ,

and .

where , , and represent the dynamic state,
control input, and algebraic state variables, respectively, at
predicted time , given initial measured state

at time . The appropriately-sized matrices and
describe dynamic and algebraic constraints,

respectively. The objective function in (2a) is defined by

(3)

where and refer to the Level 1 trajectory interpolated
at time , the norms are defined by , and
weighting matrices and are non-negative def-
inite while is positive definite. Expressions (2b) and
(2c) describe the differential-algebraic (DAE) dynamics. Ex-
pressions (2d), (2e), and (2f) define static inequality constraints,
bounds on states and inputs, and a terminal state constraint set,
respectively. Equation (2g) establishes the initial state for MPC.
The details of the Level 2MPC systemmodel are developed and
discussed in Section III.

III. CONTROLLER MODEL

An electric power system network can be described in a
graph-theoretic sense as consisting of a set of nodes and edges,
(i.e., edge for nodes ). The physics that
explicitly relate the nodes and the edges of the network must
be considered. Physical power flows in an electric network
are generally modeled with the nonlinear, non-convex AC
power flow [18]. In order to circumvent issues associated with
non-convexity, the Level 2 MPC controller utilizes a simplified
but sufficient linear (i.e., “DC”) power flow model.
In subsequent model developments, the index

denotes discrete time-steps, and the MPC
scheme is employed with prediction and control horizon .
For notational convenience, the time index is excluded for
constraints that are point-wise in time.

A. Unified DC Power Flow

A large power system may consist of multiple interconnec-
tions between differing voltage levels. In order to include the
effects of in-phase (IPT) and phase-shifting (PST) transformers
on branch flows, a “Unified Branch Model”, developed in [24]
and illustrated in Fig. 2, is employed. In the standard way, line
impedance and admittance are related through

(4)

where are line resistance, reactance, conduc-
tance and susceptance, respectively. Define the complex voltage
at node as and complex transformer tap-ratio as

. This allows a unified representation for trans-
mission lines , IPTs
, and PSTs . Using standard DC

assumptions:
• ,
• ,
• losses are negligible (i.e., ), and
• reactance is much greater than resistance ,
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Fig. 2. Unified branch model ( -model) with complex voltages, currents, taps,
admittance, and shunts.

the AC (nonlinear) expression for active power flow can be sim-
plified to give a “unified DC model”:

(5)

where , , and is the active
power flowing from node to node . Note that the expression
(5) is similar to a standard DC transmission line branch model,
except that the phase-shift and tap turns-ratio modify the stan-
dard phase-angle difference and reactance terms, respectively.
To maintain linearity in the model, assume is a constant pa-
rameter over the prediction horizon.
Remark III.1: The unified DC model retains the ability of

PSTs to direct line flow via . This affords the proposed MPC
scheme additional control of networks with PSTs.

B. Line Losses

1) Derivation of Line Losses for the DC Power Flow: The
unified DC power flow model presented above ignores active
line losses. However, to alleviate temperature overloads caused
by ohmic heating in transmission lines, it is necessary for the
MPC controller to model line losses. To establish a rela-
tionship for losses on branch , the AC expression for active
power flow can be manipulated to give

(6)

Assuming voltage magnitudes are close to 1 pu and approxi-
mating by a second-order Taylor series expansion gives

(7)

(8)

Furthermore, assuming the nominal tap ratio gives

(9)

where the final step follows because for most trans-
mission lines. Thus, the unified “DC” line losses can be written

(10)

with the unified DC flow defined in (5). Note that the loss
term is quadratic in and is therefore not suitable for
the strictly linear constraint formulation. A meaningful model
of losses can be incorporated into this formulation by applying
a (piece-wise) linear approximation of losses that circumvents
the need for integer optimization; see [19] and [25].
Remark III.2: For lines with (e.g., without trans-

formers), the PWL approximation can be applied directly to the
term , rather than its Taylor series expansion. In cases
where , though, a PWL approximation of the term

gives , which does
not represent a standard DC relationship between phase-angle
difference and flow. In contrast, (10) satisfies the standard DC
relationship . Thus, to simplify no-
tation and maintain a unified line-loss model, (10) is employed
throughout the paper.
2) PWL Approximation of Line Losses: The approximate

losses in (10) can be replaced by a piece-wise linear (PWL) for-
mulation consisting of linear segments of width , as indi-
cated in Fig. 3(a). To represent (10), the slope of each segment
is given by

(11)

Define the variables , such
that

(12)

Then the loss formulation (10) can be approximated by

(13)

where denotes the piece-wise linear approximation. Im-
plementation of within an optimization framework gen-
erally requires binary integers to enforce adjacency conditions
for the PWL segments [26]. Adjacency conditions ensure that if

then . However omitting
integers and relaxing the adjacency conditions gives a strictly
continuous linear approximation of line losses that is equiva-
lent to a bounded convex relaxation of :

(14)

where now gives the relaxed value of the computed losses.
This linear relaxation is convex. Because (7) is strictly locally
convex for and , the seg-
ment slopes satisfy and are therefore mono-
tonically increasing. This is illustrated in Fig. 3(a) for .
Note that with the adjacency condition relaxed, can take
any value in the convex space labeled “convex relaxation” in
Fig. 3(a).



ALMASSALKHI AND HISKENS: MODEL-PREDICTIVE CASCADE MITIGATION—PART I 71

Fig. 3. Relaxing adjacency conditions and absolute value complementarity
condition (i.e., ) for PWL approximation with .

The (non-convex) absolute value constraint in (12) can be in-
corporated into the linear formulation using the standard relax-
ation:

(15)

(16)

where . This is equivalent to a bounded convex

relaxation, since ,
which is demonstrated in Fig. 3(b).
Remark III.3: To ensure , the complemen-

tarity condition must be enforced. Other-
wise, the absolute-value relaxation (15)–(16) may over-estimate
absolute phase-angle values. Complementarity can be achieved
using a mixed-integer formulation:

However, integer implementation prevents a strictly QP formu-
lation of line losses, and is not pursued. Rather, it is proven in
Theorem III.8 that explicit enforcement of complementarity is
unnecessary.
To summarize, the convex relaxation of active line losses is

described by the following relations:

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

The linear constraint formulation presented in (17) is a convex
relaxation of a lossy DC power flow, and gives a value for
that is greater than or equal to the piece-wise linear approxima-
tion given by (13). Equality occurs only when both ab-

solute value complementarity (i.e., ) and PWL adja-
cency conditions are satisfied. Under such conditions, the relax-
ation is considered “tight” and the model is exact (i.e., equality
is achieved in (14)). When the losses are relaxed (i.e., not tight),
overestimated losses are denoted “fictitious losses”, as they exist
only as an artifact of the MPC controller model and not in the
actual system.
Remark III.4: Theorem III.8 and Appendix B establish a suf-

ficient condition that ensures a tight relaxation. Under tight con-
ditions, the convex relaxation of line losses provides a more ac-
curate method for estimating line losses than standard lineariza-
tion.

C. Generation, Load, Storage, and Power Balance

For conventional (controllable) generator , the injections are
denoted , with ramp-rate limits and . The
following constraints are included in the controller model:

(18a)

(18b)

The discrete-time equation (18a), with sampling time (i.e., time-
step width) , represents the dynamics of generator ramping.
Power injections from non-dispatchable wind-turbine gener-

ator , , are not subject to ramp-rate conditions but may
be curtailed (i.e., spilled) from their (forecast and actual) nom-
inal output level:

(19)

where represents the controlled reduction from the nom-
inal available wind power.
It is assumed that load is (partially) controllable through

fast-acting demand response schemes. That is, for all loads

(20)

where is the nominal (forecast and actual) load and
represents the reduction in nominal load.
Energy storage is also available (e.g., grid-scale battery sys-

tems, pumped hydro, hydrogen fuel cells), with energy storage
devices located at various nodes throughout the network. The
state of charge (SOC) of the th energy storage device,

, is defined by the discrete dynamics

(21)

where is the constant charging (discharging) effi-
ciency of device . Charging and discharging rates are limited
according to , . The total
power injected by storage device is ,
where represent charging (discharging)
behavior.
Remark III.5: This model permits simultaneous charging and

discharging. While this is mathematically feasible, it is gener-
ally not physically realizable (i.e., some hydro-storage can si-
multaneously charge/discharge, but most electrical storage de-
vices cannot). Amore accurate energy storage model would em-
ploy the complementarity condition , but
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that results in a difficult nonlinear model [27]. Instead of ap-
plying an integer-based approach to model the complementarity
condition (see Remark III.3), the MPC model relaxes comple-
mentarity. This introduces modeling inaccuracy between plant
and controller that is proportional to . However, as
discussed in Appendix A, a heuristic algorithm can be employed
to reduce the occurrence and effects of simultaneous charge/dis-
charge events. Any remaining modeling inaccuracy is rejected
through the feedback process, as evidenced in [1].
Networks must satisfy Kirchhoff’s laws, which implies that

the net power flow into any node must equal the net flow out.
Generators (loads) may inject (consume) power at a node. If
energy storage devices are available at a node, then discharging
(charging) corresponds to additional injections (demands). The
power balance equation at each node is formulated as

(22)

where is the total flow on line and
• —set of generators at node (wind and conventional)
• —set of nodes adjacent to node
• —set of demands at node
• —set of energy storage devices at node .

As well as contributing to the power balance (22), line losses
also drive the temperature dynamics associated with line

overloads. This dual role must be carefully considered to ensure
a tight formulation of the PWL approximation.
Remark III.6 (Fixing losses over the prediction horizon):

Under the standard convex relaxation of a PWL approximation
of line-losses [19], it is implicitly assumed, for tightness of the
formulation, that nodal prices (i.e., LMPs) are non-negative.
Negative nodal prices arise for nodes where increasing power
consumption leads to decreased overall system costs. For ex-
ample, if a line is congested or trips at time and forces a gener-
ator at node to decrease output (i.e.,
for ), then it can be shown that the nodal price at
that node at time will become negative. This breaks the
assumption of non-negative nodal prices and prevents a tight
formulation of losses. Fictitious losses can then “consume”
power via the power balance equation (for nodes with negative
LMPs) and reduce the overall objective function value. Similar
but more thorough conclusions have been reached by authors
in [25], [28] in relation to convex relaxations in power systems.
To overcome the challenge of negative LMPs, losses are fixed

in (22), with line flows given by

(23)

where is obtained from the state estimate of the AC
system at time (i.e., the initial point of the MPC horizon).
The proof of tightness of the convex relaxation, given in
Appendix B, does not, therefore, require consideration of nodal
prices. Furthermore, by fixing losses in the power balance
equation, the network structure does not affect the convex
relaxation.
It should be emphasized that losses are not omitted from (22),

but rather are held constant through (23). Therefore, only the

variation in losses over the prediction horizon is neglected. As
the system settles to its post-disturbance steady-state, this loss
variation approaches zero and the approximation disappears.

D. Line Overloads

Protection schemes, such as over-current relays, detect ab-
normal conditions and trip affected components (i.e., remove
them from service.) These devices operate automatically on
a sub-second timescale and are, therefore, not considered in
this work. Rather, this paper considers a time-scale of minutes,
which shifts the focus from fault conditions to thermal consid-
erations of transmission line conductors and sagging.
Transmission lines have prescribed power flow limits to

prevent dangerous sagging and permanent conductor damage.
These limits are related to the thermal capacity of the conduc-
tors and their ability to dissipate heat arising from resistive
losses. Generally, there is an inverse relationship between the
current flow on a line and the time allowed before the line must
be taken out of service. In most common overload scenarios,
this time response is on the order of 10–20 min.
Let be the (3-phase MVA) thermal limit on line
. To ensure secure line flows, it is desirable for an operator

to enforce

(24)

While it is feasible to take inequality (24) into consideration in
determining an hourly energy dispatch schedule (i.e., Level 1),
it is unrealistic to expect such a constraint to be enforced imme-
diately following a significant disturbance (e.g., line outage).
This is because power flows depend on the physics of the net-
work and are uncontrollable in the short term. Consequently line
flows may temporarily exceed their limits following contingen-
cies. Therefore, in the Level 2 control strategy, line overloads
are tracked via the conductor temperature, and the controller
seeks to alleviate sustained temperature overloads.
To model conductor temperature, the IEEE Standard 738

[29] for calculating the current-temperature relations of bare
overhead conductors was employed. Consider an overhead con-
ductor as a per-unit length thermal mass with continuous-time
temperature dynamics:

(25)

where and are the conductor and ambient temperatures
, respectively, and is the active power loss per unit

length [W/m] in conductor , calculated according to (17).
Values , and represent per unit length conductor
heat capacity - , solar heat gain rate [W/m], conduc-
tive heat loss rate coefficient - , and radiative heat loss
rate coefficient - , respectively. Coefficients
depend on the conductor characteristics. Besides the variation in
resistance with conductor temperature, nonlinearities arise from
the radiative heat losses. However, for conductor temperatures
below , it is approximately linear.
To allow for tractable implementation of the MPC scheme,

(25) is discretized and linearized around the equilibrium point
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, where is computed from steady-state condi-
tions with line current at ampacity (i.e., set ,
with the resistance per unit length .) Values ,
describe representative ambient conditions, and may be ob-

tained from forecasts, measurements or historical records. Thus,
linearization of (25), together with forward Euler discretization,
yields

(26)

where

(27)

and - . The effects of exogenous in-
puts are captured by , where

(28)

and . Note that is a function
of conductor diameter and solar input. Numerical stability re-
quires that , which implies the sampling time
must satisfy . That is, the choice of
controller sampling time is determined based on the fastest
linearized line-temperature time-constant.
Remark III.7: The MPC mitigation scheme seeks to drive

line temperatures below limits (subject to the lossy DC model),
but once below limits there is no incentive to lower tempera-
tures further. That is, MPC should compute control actions that
only take into account lines with . Thus, a measure
of temperature that aligns with such an objective is given by

. This constraint can be relaxed to the
linear formulation

(29a)

(29b)

Because the objective function penalizes , this relaxation
will always be tight.
To ensure correct temperature dynamics in (26), the convex

relaxation of line losses given by (17) must be tight whenever
a line’s temperature rises above its limit (i.e., ). The
following theorem establishes this crucial result.
Theorem III.8 (Temperature and Convex Relaxation): As-

sume and losses in (22) are fixed to a predetermined
value, according to (23), over the duration of the prediction
horizon. If the temperature of line exceeds its limit at
time , then the convex relaxation (17) is tight with respect
to line for all previous time-steps. That is, if and

such that , then adjacency conditions
are satisfied for (17a) and . Hence the
convex relaxation associated with line is tight .

Proof: The full proof is given in Appendix B. To sketch the
proof, let be an optimal MPC temperature trajec-
tory for line and assume such that
but the solution is not tight for some . That is, losses are
overestimated via the convex relaxation (i.e.,
and/or adjacency conditions are not satisfied in the PWL relax-
ation; see Fig. 3). Then a feasible solution can be derived which

is identical to the optimal solution except that it enforces a tight
formulation at time and reduces line losses accordingly, say
from . According to (26), decreased
losses at time result in lower temperature at later times, which
implies that the temperature overload at time must be less
under the tight feasible solution. Since the objective function
penalizes , the feasible tight trajectory provides a lower
cost solution than the relaxed optimal trajectory. This is a con-
tradiction. Thus, if has a temperature overload at time ,
the formulation is locally tight .
Remark III.9 (From DAE to ODE): The DAE system pre-

sented in (2) cannot be expressed as an ordinary differential
equation (ODE) system, because there is no bijective transfor-
mation between algebraic and dynamic states. This is because
the convex relaxations employed in the MPC model beget mul-
tiple optimal algebraic solutions for lines that satisfy .
Thus, the algebraic set of equations in (2c) has singular . The-
orem III.8 yields conditions which ensure a locally unique solu-
tion for lines that exhibit temperature overloads, thus providing
the basis for MPC to take meaningful action against such over-
loads.

E. MPC Implementation

Given the complete controller model description, the state
and input vectors can be collated

(30a)

(30b)

(30c)

The objective of the MPC scheme is to determine the optimal
control actions that alleviate temperature overloads , while
minimizing deviations from the economic set-points established
by Level 1. Accordingly, the MPC objective function is com-
posed of the following terms:

line temperature
overload

generation output
deviation

generation ramping

SOC deviation

dis/charging deviation

demand response

wind spill

PST reference
deviation

where reference values, denoted , refer to the economically
optimal set-points computed in Level 1. Based on the MPC ob-
jectives and the state and input definitions in (30), the weighting
matrices in (2a), (3) are given by

(31a)

(31b)
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(31c)

where represents square identity matrices of appropriate di-
mensions, is a block-diagonal matrix, and denotes
positive-definiteness. Note that the terminal cost matrix pe-
nalizes deviations from economical references for storage SOC
and conventional generation states more severely than does the
running-cost weighting matrix . This is because MPC does
not care how these reference signals are tracked, only that they
are being considered by the end of the horizon. The objective
function weighting factors must be tuned to achieve the desired
MPC response.
To bring line temperatures at or below their limits by the end

of the prediction horizon, a terminal constraint is employed

(32)
Note that is compact and contains the “origin”, established
by line temperature limits and Level 1 reference values. The
remainder of the controller description (2) follows directly from
the model details presented in Section III.
Remark III.10 (Stability and controllability): Despite the

controller consisting of a linear model together with terminal
constraints and penalties, ensuring stability of the proposed
hierarchical control scheme (Level 1 and Level 2) is not
straightforward. Few systematic analysis methods are available
for guaranteeing performance [30]. Furthermore, the DAE
singularity discussed in Remark III.9 limits application of
standard state-space results.
It is assumed that the controllable resources defined in (30b)

exert a non-negligible influence on the power flowing through
overloaded lines. That may not be the case if an overloaded line
is remote from all the available resources. This controllability
can be assessed by evaluating sensitivities, such as “generation
shift factors” [18], for the lines in question.

F. Data Management and Communication

The MPC control scheme requires a model of the network,
together with measurements of the conductor temperature of
(potentially) overloaded lines, SOC of energy storage devices,
output power from both conventional and renewable generation,
power demand, and PST angles.2 These data establish the ini-
tial point for the MPC prediction trajectory, and therefore must
be updated every time MPC reinitializes, at the time-step .
These measurement requirements are consistent with existing
energy management system (EMS) capabilities, with topology
processing establishing the network model, and state-estima-
tion providing generation and load information. Technology for
measuring conductor temperature is available, though telemetry
of such measurements is not currently common. It is argued
in [12] and references therein, in the context of dynamic line
rating, that gathering line temperatures is quite feasible. Also, a
trivial modification to the MPC formulation would allow some
lines to be subject to standard (hard) power flow limits, while
modeling temperature dynamics for lines that were outfitted

2More generally, the operating points of all FACTS devices would be re-
quired.

with temperature sensors. Participation of energy storage de-
vices in electricity markets will likely require telemetry of their
SOC. This is already the case in NYISO [31].
In addition to well defined initial conditions, MPC predic-

tion also requires forecasts of demand, the power available from
renewable generation sources, and the ambient weather condi-
tions governing line temperatures. Generation and load fore-
casts are already available and used in EMS contingency anal-
ysis. Short-term weather forecasts are also typically available.
Given that the MPC prediction horizon will generally be on the
order of 15–30 min, a persistence forecast (which assumes those
external influences remain unchanged) will often be adequate.
MPC broadcasts control signals at an interval of , which

is much slower than other controls, such as AGC [32]. Thus
the input/output communications and data management require-
ments of the MPC scheme are consistent with the capabilities of
existing EMS installations.

G. Case Study

Simulation of theMPC scheme is described in Part II [1]. That
paper considers a case study that is based on the IEEE RTS-96
test system [33], augmented to include energy storage and wind
generation.

IV. SUMMARY AND FUTURE WORK

A bilevel hierarchical control scheme is proposed for man-
aging contingencies in electric power systems. The scheme
balances economic and security objectives through the use of
a higher-level optimal scheduling process and a lower-level
model predictive control (MPC) strategy. The MPC design
rejects disturbances (contingencies) while tracking the optimal
set-points established by the higher level. Disturbance rejection
exploits the thermal overload capability of transmission lines.
This allows time for adjustments to be made to controllable
resources that include generation levels, energy storage and
demand response.
A convex relaxation is applied to the AC power flow to de-

velop a piece-wise linear approximation for line losses. This for-
mulation is proven to be sufficient to enable MPC to drive line
temperatures below limits. As supported by the IEEE RTS-96
case study analyzed in Part II [1], the proposed MPC scheme
can significantly improve system reliability and economic per-
formance by leveraging the temporal nature of energy storage
and conductor temperatures.
The DC power flow used in the MPC development does

not consider voltage magnitudes (nor reactive power). There
is value in being able to include voltage information in a
linear/convex MPC scheme as that would facilitate a more
integrated approach to protecting against voltage collapse. To
accomplish this, convex relaxations and cutting plane methods
will be explored [34].

APPENDIX A
SIMULTANEOUS CHARGING AND DISCHARGING

In order to compare simultaneous charge/discharge behavior
with complementarity-based charging, define their respective
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actions by the superscripts and . Then for a given op-
timal storage device action, the following holds:

(33)

Note that there exists only one unique complementarity-based
control action (due to the condition ). However,
without complementarity (i.e., under the simultaneous charge/
discharge formulation), multiple solutions may exist. One side-
effect of allowing simultaneous charge/discharge events is iden-
tified by the following:
Theorem A.1: For a given optimal storage flow , the si-

multaneous charge/discharge model (compared with the com-
plementarity-based model) underestimates SOC (i.e.,

) by

(34)

Proof: The proof follows directly from considering the two
cases: and .
From the theorem, it is straightforward to see that the simulta-

neous charge/discharge model exactly matches the complemen-
tarity-based model when one of the following holds:
• (perfect efficiency)
• (complementarity is satisfied)
•

where has been assumed for presentation
clarity. (Generalization to is straightforward.) The
last condition stems from

(35)

This means that the controller can (erroneously) employ
simultaneous charge/discharge to achieve a lower-than-actual
SOC, which could be advantageous to reduce the cost of
SOC deviations from the Level 1 reference. Furthermore, the
controller can utilize simultaneous charge/discharge to reduce
line overloads by fictitiously “burning” excess power through
energy storage inefficiencies .
To reduce the effect and occurrence of simultaneous charge/

discharge events, two steps have been implemented. Firstly, to
reduce the worst-case behavior of the simultaneous charge/dis-
charge formulation, the following constraint is utilized:

(36)

where , are the rate limits on charging and dis-
charging, respectively.
Secondly, most devices at most time-steps will satisfy

. This knowledge can be used to enforce
complementarity-like constraints, and limit occurrences of
simultaneous charge/discharge events. When MPC first runs,
the charge/discharge status of storage devices over the pre-
diction horizon is most likely unknown. In order to initialize
the status, simultaneous charging/discharging is permitted for
that first prediction trajectory. When MPC next runs, at time
, the charge/discharge status of each storage device over
the prediction horizon is determined from its status at the

Fig. 4. Reducing the effect of simultaneous charge/discharge for Level 2 MPC
at time-step .

corresponding time-step in the previous prediction trajectory
(i.e., ). It should be noted that the prediction horizon at
time-step only extends to , so no prior
value is available for initializing the status of
and . Therefore, the Level 1 status at the corre-
sponding time can be used to establish the charging state for all
devices at this terminal time-step. Fig. 4 outlines the algorithm
employed in MPC.
Remark A.2: This algorithm introduces a delay of one

time-step in the transition of storage devices from charging to
discharging, or vice-versa. To address this issue, computation
of the MPC trajectory for time can be repeated using the
latest status information. At this re-run, storage devices with

are handled in accordance with line 13
in Fig. 4.
To summarize, constraint (36) limits the worst-case behavior

of simultaneous charge/discharge, and the algorithm in Fig. 4
reduces the frequency of simultaneous charge/discharge events.
Thus, these two steps make the model more representative of
reality, but at a slightly increased computational cost.

APPENDIX B

Proof of Theorem III.8:

Proof: Let be the predicted time when line
exceeds its temperature limit. Pick an arbitrary . Since
the MPC problem embodies a QP problem (with linear
constraints), it satisfies the Linearity/Concave Constraint
Qualification trivially and the Karush-Kuhn-Tucker (KKT)
first-order conditions are therefore necessary conditions for
(global) optimality [35]. The KKT conditions relating variables

for any and give
the following:

(37)

(38)
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(39)

(40)

where
• —multiplier related to constraint that couples ab-
solute value and PWL variables in (17b);

• —multiplier related to upper bound for ;
• —multiplier related to lower bound for ;
• —multiplier related to upper bound for ;
• —multiplier related to lower bound for ;
• —multiplier related to lower bound for ;
• —multiplier related to lower bound for ;
• —multiplier related to the inequality obtained by
substituting temperature dynamics (26) into (29b);

• —multiplier related to in (29a);
• —constant based on -to-
transition from (26);

• —linear combination of multipliers based on
-to- transitions .

Lemma B.1: KKT condition (40) implies that
for some .

Proof: Consider two cases:
1) : Then,
since .

2) : Then, due to complementarity,

so as .
Thus, and set . The proof is concluded.
From the KKT conditions associated with , it is

straightforward to show that

(41)

This relationship will be used in Lemma B.2 to establish tight-
ness of the convex relaxation of the absolute value constraint
(i.e., ).
Lemma B.2: If line is predicted to exceed

its temperature limit, then the absolute value complemen-
tarity relaxation is tight for all previous time-steps. That is,
if such that then

.
Proof: Let , choose arbitrary , and

consider the following two cases:
1) Suppose , then from (17b),

and .

2) Suppose , then
such that , so . Using Lemma B.1
and (39), and re-arranging gives

(42)

Since , this implies . From (41), one or
both of , which implies that one or both of

, and hence . Because

, only one of
and can be zero.

Since was arbitrary, it has been proven that for positive
temperature overload at time , the absolute value relaxation
is locally tight for all .
Next, the goal is to prove that adjacency conditions are upheld

in the relaxed formulation for all time-steps if
. Chose arbitrary . To improve readability of the following

argument, the notation “ ” will be dropped, though all notation
is with respect to time-step .
Suppose for some . Then KKT condition

(39) has and , and so

(43)

In order to establish a contradiction, suppose
. If , then and , so

(39) implies that

(44)

where the last strict inequality derives from strict monotonicity
of over , and the guarantee that from
Lemma B.2. This contradicts with (43). The proof that

is similar. Hence,
. Since was arbitrary, adjacency conditions are upheld for

all . Thus, the convex relaxation is locally tight for all
time-steps prior to a line’s temperature exceeding its limit.
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