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Abstract— It has been a hot research topic to research the
incorporation of large-scale PEVs into smart grid, such as
the valley-fill strategy. However high charging rates under the
valley-fill behavior may result in high battery degradation cost.
Consequently in this paper, we novelly setup a framework
to study a class of charging coordination problems which
deals with the tradeoff between total generation cost and the
accumulated battery degradation costs for all PEVs during
a multi-time interval. Due to the autonomy of individual
PEVs and the computational complexity for the system with
large-scale PEV populations, it is impractical to implement
the solution in a centralized way. Alternatively we propose a
novel decentralized method such that each individual submits a
charging profile, with respect to a given fixed price curve, which
minimizes its own cost dealing with the tradeoff between the
electricity cost and battery degradation cost over the charging
interval; the price curve is updated based upon the aggregated
PEV charging profiles. We show that, following the proposed
decentralized price update procedure, the system converges to
the unique efficient (in the sense of social optimality) solution
under certain mild conditions.

Index Terms— Plug-in electric vehicle (PEV); battery degra-
dation cost; decentralized method; real-time price; generation
marginal cost; efficiency.

I. INTRODUCTION

Along with the rapid consumption of exhaustible nonre-
newable petroleum energy resources and high emission of
green gas, the plug-in electric vehicles (PEVs) achieve a
high-speed development. However the charging behaviors of
high-penetration PEVs have significant negative impacts on
power grid, see [1], [2]. In order to support the accommoda-
tion of high-penetration PEVs in power grid, it is important
to study how to coordinate the PEV charging behaviors.

Quite a few studies have explored the potential impacts
of high-penetration PEVs on power grid, e.g., [3]–[6]. In
general, these studies assume that PEV charging patterns “fill
the valley” of night-time demand, that is to say, the overnight
demand valley can be filled by the charging demand of large-
scale plugged vehicles. In [7]–[9] and references therein,
centralized methods are implemented to schedule the charg-
ing power of PEVs to minimize theirs effects on utilities.
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However due to the autonomy of individual PEVs and
the computational complexity for large-scale PEVs, it is
impractical to implement the solution in centralized way. As
an alternative to centralized approach, decentralized methods
may preserve individual authority and only requires limited
individual information, e.g., [10], [11] and so on.

As discussed above, the work in the literature mainly deals
with how to minimize the impact on the power grid by
scheduling the charging behaviors of high-penetration PEVs,
and ignores the negative effects of the charging behavior of
a PEV on itself. A few of research works, e.g., [12], [13],
studied the optimal charging behavior for a single PEV in a
way that takes into account both total energy cost and state
of health of battery. In this paper we study the decentralized
charging coordination for large-scale PEVs in power grid
dealing with the total generation and accumulated battery
degradation costs over multi-time interval.

The challenge of coordinating large-scale autonomous
individuals in a decentralized way to achieve an optimal or
near-optimal outcome is non-trivial. Because time-based and
fixed schedule price based charging behaviors have difficulty
effectively filling the night-time valley as studied in [14], in
this paper we adopt the real-time price model which has
been widely applied in the literature, e.g., [15], [16] for
demand response management, and [17]–[19] for electric
vehicle charging and discharging coordination. The adopted
real-time electricity price represents the generation marginal
cost which is determined by the total demand.

We propose a novel decentralized charging coordination
method in this paper such that all of PEVs simultaneously
update their own best charging behaviors with respect to
a given price curve, which is updated with respect to the
generation marginal cost associated to the charging behavior
implemented at last step. More specifically, the system set a
lower price at an instant to encourage PEVs to raise their
charging demand at this instant in case the price at this
instant was higher than the generation marginal cost at this
instant; and set a higher price, otherwise. The price is not
updated any longer only if the price curve is coincident
with the generation marginal cost over the whole charg-
ing interval. As a consequence, the implemented charging
behavior is efficient (or socially optimal). We specify a
sufficient condition and show that under this condition the
system converges to the unique efficient solution following
the proposed decentralized algorithm.

Due to the cross-elastic correlation, as studied in [20],
over the whole charging interval, the best updated charging
behavior of an individual PEV, at an instant, is determined
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by both the demand at this instant and the total demand,
over the whole interval, which is related to the given price
curve. Moreover it is worth to note that, in the decentralized
framework proposed in the work, each of individual PEVs
deals with the tradeoff between battery degradation cost and
electricity price cost. The battery degradation cost plays a
same role as congestion pricing used in the traffic control in
communication networks, see [21], which has been adopted
by Fan in [19] to schedule PEV charging behavior in smart
grid.

The paper is organized as follows. We firstly formulate
a class of PEV charging coordination problems in power
grid in Section II; then, in Section III, we propose a novel
decentralized charging update algorithm, and show that the
system converges to the unique efficient charging behavior
under certain mild conditions. Simulations are studied in
Section IV to demonstrate the results developed in the paper.
Section V presents conclusions of the paper.

II. FORMULATIONS OF PEV CHARGING COORDINATION
PROBLEMS

We consider charging control of a population of PEVs
with size N over a horizon T . For each PEV n, we call
un ≡ (unt; t ∈ T ) an admissible charging control of PEV
n, if

unt

{
≥ 0, t ∈ Tn
= 0, t ∈ T /Tn

, ||un||1 ≡
∑
t∈T

unt ≤ Γn, (1)

where Tn, with Tn ⊂ T and Γn represent respectively the
charging interval, the charging energy capacity of individual
PEV n. The set of admissible charging controls for PEV n
is denoted by Un.

Due to the wide application of the LiFePO4 battery, we
will analyze the battery degradation cost for LiFePO4 battery,
with respect to the analysis given in [22] where a degradation
cost model for LiFePO4 battery cell is formulated based upon
the evolution of charging and discharging behaviors.

Denote gn(unt) as the battery degradation cost of PEV n
during the charging interval t under the charging power unt;
then we can verify that gn(unt) has a quadratic form such
that

gn(unt) = anu
2
nt + bnunt + cn, (2)

which represents the total monetary loss on the battery over
charging interval t under charging power unt on PEV n,
and where an, bn, cn are individual parameters related to the
battery characteristics.

A. Formulations of PEV charging coordination concerning
battery degradation costs

We suppose that the system deals the tradeoff between
the total cost composed of the generation cost and the PEV
battery degradation cost and the benefit to supply the energy
for PEV populations over the charging intervals.

Denote by J(u) the system cost function under a collection
of admissible charging behaviors u ∈ U , such that

J(u) ,
∑
t∈T

{
c(yt) +

∑
n∈N

gn(unt)

}
−
∑
n∈N

{
hn(||un||1)

}
,

(3)

where (i) c(yt), with yt ≡ Dt + ||ut||1, represents the
generation cost with respect to the total demand Dt+ ||ut||1
with Dt denoting the aggregated inelastic base demand in
power grid at instant t; (ii) gn(·) is the battery degradation
cost of PEV n formulated in (2); and (iii) hn(||un||1) denotes
the benefit function of PEV n with respect to the total
charged energy to PEV n over the whole interval.

In [23], a specific quadratic form is specified for
hn (||un||1), such that

hn(||un||1) = −δn(||un||1 − Γn)
2, (4)

with δn representing a proportional factor which reflects the
relative importance of the desire to drive the individual PEV
n to be fully charged over the whole charging interval.

In the literature, e.g., [24], [25] and references therein, the
electricity generation cost, c(·), has been widely considered
in a quadratic form on the supply, say

c(yt) =
1

2
ay2t + byt + c, (5)

with properly valued parameters a, b and c; then the marginal
generation cost evolves linearly with respect to the total
demand, say pt(yt) , c′(yt) = ayt + b.

We denote by vn(un) the utility function of PEV n under
un ∈ Un, such that

vn(un) , hn(||un||1)−
∑
t∈T

gn(unt). (6)

We formally formulate a class of centralized PEV charging
coordination problems as follows:

Problem 1:

min
u∈U

{J(u)} , (7)

that is to say, the objective of system is to implement a
collection of socially optimal charging behaviors for PEVs,
denoted u∗∗, minimizing the system cost (3). �

We consider the following assumptions in the paper:
• (A1). c(y) is monotonically increasing, strictly convex

and differentiable on y;
• (A2). gn(x), for all n ∈ N , is monotonically increasing,

strictly convex and differentiable on x. �
Based on Assumptions (A1,A2), the efficient (socially op-

timal) charging behavior is unique and can be characterized
by its associated KKT conditions [26]. When the benefit
function takes the form (4), the optimal solution u∗∗ obtained
by minimizing J(u) is therefore given by:

p∗∗t

{
= ∂

∂unt
vn(u

∗∗
n ), when u∗∗

nt > 0,

≥ ∂
∂unt

vn(u
∗∗
n ), when u∗∗

nt = 0,
(8)

where p∗∗t = c′
(
dt +

∑
n∈N u∗∗

nt

)
is the generation marginal

cost over the charging horizon with respect to the efficient
allocation u∗∗.
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B. Numerical simulation

As discussed in (5), we firstly suppose that the generation
cost function c(·) is in a quadratic form, such that

c(yt) = 2.9× 10−7 · y2t + 0.06 · yt, (9)

where yt = Dt + ||ut||1, and the base demand D, which
is a typical demand in hot summer season, is illustrated in
Fig. 1.

We consider the charging coordination for a population of
PEVs with population size of N = 5, 000 over a common
charging interval from 12:00AM on a day to 12:00AM on
next day.

As an example, in this paper we suppose that the bat-
tery package in the PEVs is composed of a collection of
ANR26650M1-B type battery cells from the A123 system.
The nominal voltage and energy capacity of this type of
battery cell is 3.3 volts and 2.5Ah (Amp × Hour) respec-
tively, and the price of a single battery cell is about 15$. We
further consider that the battery capacity φn = 40kWh for all
n. Thus, the battery degradation cost can be approximately
specified as below:

gn(unt) = 0.003u2
nt + 0.075unt. (10)

We consider that all of the PEVs share an identical
minimal and maximum soc such that socmin

n = 15% and
socmax

n = 90% for all n; then we can get the maximum
charging energy of each PEV, Γn = φn ·(socmax

n −socn0) =
30kWh with socn0 = 15% for all n. We consider the
valuation function of individual PEVs following (4) with
δn = 0.03.

The efficient charging behaviors u∗∗ deals with the trade-
off between the total generation cost of system and the bat-
tery degradation cost of PEV populations; then as illustrated
in Figure 1, u∗∗ is much different with the valley-fill strategy
under which the total generation cost is minimized. That is
to say, the valley-fill charging behavior may be penalized
with high battery degradation cost of populations of PEVs.

12:00 16:00 20:00 0:00 4:00 8:00 12:00
5

6

7

8

9

10
x 10

4

Charging interval

T
o

ta
l 

d
em

an
d

 (
k

W
)

base demand

socially optimal strategy

Fig. 1. The aggregated efficient charging behavior which is much distinct
from the valley-fill one.

As studied, the centralized coordination can be effectively
implemented in case the system has complete information
and can directly schedule the charging behaviors of all PEVs,
which in practice are not feasible. Thus in the rest of the

paper we propose a decentralized coordination method in
this paper, such that each PEV updates its charging behavior
with respect to a common electricity price.

III. DECENTRALIZED CHARGING COORDINATION
METHOD FOR PEV POPULATIONS

In this section, we will propose a decentralized method
and study its convergence and efficiency.

A. Best response of individual PEVs with respect to a fixed
price curve

We denote by Jn(un;p) the individual cost function of
PEV n with respect to a given price curve p, such that

Jn(un;p) , pτun − vn(un), (11)

where pτ represents the transposition of the column vector
p ≡ (pt; t ∈ T ).

By (6), the individual cost function defined in (11) can be
rewritten as the following:

Jn(un;p) =
∑
t∈T

{
ptunt + gn(unt)

}
− hn

(∑
t∈T

unt

)
.

The best charging behavior of PEV n with respect to p,
denoted by u∗

n(p), minimizing the individual cost function
given in (11), such that

u∗
n(p) = argmin

un ∈ Un

{Jn(un;p)} . (12)

We first specify a set of charging behaviors of PEV n as
below:

Un(ω) ,
{
un ∈ Un; s.t. ||un||1 = ω

}
; (13)

then we have Un =
∪̇

ω∈[0,Γn]

Un(ω). To examine constant total

charging ||un||1 = ω scenarios, we begin with an individual
cost excluding hn for PEV n, such that

Fn(un;p) , pτun +
∑
t∈T

gn(unt). (14)

Lemma 3.1: Consider a fixed ω with 0 ≤ ω ≤ Γn, and
a fixed p; then the charging behavior of PEV n minimizing
(14) under Un(ω) is unique and specified as follows:

unt(p, A) = max
{
0, [g′n]

−1(A− pt)
}
, (15)

for some A, where [g′n]
−1 represents the inverse function of

the derivative of gn. �
However to determine the best behavior minimizing the

individual cost function (11), the ω and A need to be
specified. We will address this issue in Theorem 3.1. Before
that we will firstly define some notion and give some results.

For any PEV n, the pair of values A−
n (p) and A+

n (p) are
defined explicitly as follows:

A−
n (p) = max

{
A, such that ||un(p, A)||1 = 0

}
(16)

A+
n (p) = A, such that ||un(p, A)||1 = Γn. (17)

Note that, although we include a subscript n on A−
n for

consistency, it is independent of n.
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Lemma 3.2: Consider a fixed price curve p; then (i) both
unt(p, A), and ||un(p, A)||1 are increasing on A ∈ R, and
strictly increasing on A ∈ [A−

n (p),+∞), and (ii) un(p, A)
is admissible with A ∈ [A−

n (p), A
+
n (p)], and not admissible

for any A > A+
n (p). �

Lemma 3.2 guarantees that, for a fixed p, ||un(p, A)||1
strictly increases from 0 to Γn on the interval A ∈
[A−

n (p), A
+
n (p)]. This implies that ||un(p, A)||1 is invertible

on [A−
n (p), A

+
n (p)], and we denote the inverse as follows:

An(p, .) : [0,Γn] → [A−
n (p), A

+
n (p)]. (18)

Clearly, An(p, ω) is strictly increasing on ω. In general, we
can write the inverse as follows:

An(p, ω) = A, in case ||un(p, A)||1 = ω. (19)

We will denote the individual charging control that sat-
isfies (15) with total charging quantity equal to ω as
unt(p,An(p, ω)).

Because of the non-negativity constraint on unt and the
corresponding complementary slackness requirement from
Lemma 3.1, it is not straightforward to determine the func-
tion An(p, ω). This is the purpose of Lemma 3.3.

Lemma 3.3: For any fixed price curve p,

d

dω
F ∗
n(p, ω) = An(p, ω), with ω ∈ [0,Γn], (20)

where F ∗
n(p, ω) , inf

un∈Un(ω)
Fn(un;p). �

Lemma 3.3 follows by Lemma 3.2 and the definition of
An(p, ω) given in (19). This result allows us to interpret
the Lagrange multiplier A as the marginal increase in total
instantaneous costs as a function of the total charge quantity.
At this point we have all the information necessary, with the
exception of the optimal value of ω, to fully specify the
individual optimal control for a given p. Theorem 3.1 below
brings all these results together and implicitly defines the
optimal ω in the process.

Theorem 3.1: Assume hn(ω) is continuously differen-
tiable, increasing and concave on ω; then the control
un(p, A

∗
n(p)) defined in (15) uniquely infimizes the cost

function (11) with respect to a given p, where A∗
n(p) is

defined as follows:

A∗
n(p) =


An(p,Γn), in case fn(Γn) ≤ 0

An(p, 0), in case fn(0) ≥ 0

An(p, ω
∗), in case fn(ω

∗) = 0

(21)

for all 0 < ω∗ < Γn, where fn(ω) , An(p, ω) − h′
n(ω),

with An(p, ·) defined in (18). �
B. Price curve update mechanism

By (8) and Lemma 3.1, in case p = p∗∗, with p∗∗

representing the efficient generation marginal cost specified
in (8), the collection of associated best response of individual
PEVs, denoted u∗(p), is the efficient solution. However the
system can not presumably set the system price equal to p∗∗

in advance. Hence we will design a price update procedure
in (22) below, by applying which the price may converge to
the efficient marginal cost p∗∗.

We specify, in (22) below, the updated price curve, denoted
p̂(p), with respect to a given price curve p

p̂t(p) = pt + η · (c′ (Dt + ||u∗
t (p)||1)− pt) , (22)

for all t ∈ T , where η is a fixed positive valued parameter,
and u∗

n(p), defined in (12), represents the best updated
behavior of PEV n with respect to p.

C. Decentralized PEV charging coordination algorithm

Here we are ready to formalize a decentralized charging
coordination method for PEV populations in Algorithm 1
below.

Algorithm 1: (Decentralized method)
• Specify an aggregated base demand D;
• Initialize a positive ε and a given initial price p(0);
• Define an εstop to terminate iterations;
• Set k = 0;
• While ε > εstop

– Implement a best individual charging profile
u
(k+1)
n w.r.t. p(k) for all n simultaneously by min-

imizing the individual cost function (11), such
that

u(k+1)
n

(
p(k)

)
, argmin

un ∈ Un

{
p(k),τun − vn(un)

}
;

– Implement p(k+1) w.r.t.
(
p(k),u(k+1)

(
p(k)

))
fol-

lowing (22), i.e.,

p
(k+1)
t = p

(k)
t + η ·

(
c′
(
Dt + ||u(k+1)

t ||1
)
− p

(k)
t

)
,

for all t ∈ T ;
– Update ε := ||p(k+1) − p(k)||1;
– Update k := k + 1. �

In case the system converges following the decentralized
method proposed in Algorithm 1, the system reaches the
efficient solution. However the oscillation may occur in the
price update procedure.

We define some notion as below:

ν , sup
n∈N

{
sup
ϵ>0

1

ϵ

[
[g′n]

−1(a+ ϵ)− [g′n]
−1(a)

]}
, (23a)

κ , sup
ϵ>0

1

ϵ

(
c′(us + ϵ;D)− c′(us;D)

)
. (23b)

Lemma 3.4: Assume the terminal valuation function hn

is increasing and strictly concave; then

||u∗
n(p)− u∗

n(ρ)||1 ≤ 2ν||p− ρ||1 (24)

where ||.||1 denotes the l1 norm of the associated vector. �
Corollary 3.1: (Convergence of Algorithm)
Suppose |1 − η| + 2Nκνη < 1 and consider any initial

charging price p(0); then the system converges to the efficient
solution u∗∗ which is specified in (8). Moreover, for any
ε > 0, the system converges to a price curve p, such that
||p− p∗∗||1 ≤ ε, in K(ε) iteration steps, with

K(ε) =

⌈
1

ln(α)

(
ln(ε)− ln(T )− ln(ρmax)

)⌉
, (25)
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with α ≡ |1−η|+2Nκνη, where ⌈x⌉ represents the minimal
integer value larger than or equal to x, and ρmax denotes the
maximum price under the regulation. �

Remarks: (i). Corollary 3.1 states that the system can reach
a price curve p, such that ||p− p∗∗||1 ≤ ε in iteration steps
specified in (25), however in practice, the system may reach
that price curve p in much less iteration steps than specified
in (25), see simulations illustrated in Section IV; (ii). From
(25), we obtain that the system converges to a price curve p
such that ||p − p∗∗||1 ≤ ε for any small valued ε in K(ε)
iteration steps, where K(ε) is in the order of O(|ln(ε)|), and
is independent upon the size of PEV populations.

IV. NUMERICAL EXAMPLES

We apply the decentralized charging coordination in Algo-
rithm 1 on the problem. In this section, unless specified, we
adopt the parameters considered in the example in Section II-
B.

By (9), we have p(yt) = c′(yt) = 5.8× 10−7 · yt + 0.06;
then κ = 5.8×10−7 by (23b). By (10) and (23a), ν = 1

2an
=

166.7. With the given specifications, we have

|1− η|+ 2Nκνη = |1− η|+ 0.967η, (26)

which is always less than 1 for any η with 0 < η < 1.013.
Thus by Corollary 3.1, the system can always converge to
the sufficient solution for all η ∈ (0, 1.017).

In this simulation, we consider η = 1 ∈ (0, 1.017) under
which α ≡ |1 − η| + 2Nκνη = 0.967 < 1; then by (25),
by applying Algorithm 1, we have the system converges to
a price curve p∗, such that ||p∗ − p∗∗||1 < ε, in k iteration
steps, with K(ε) =

⌈
1

ln(α)

(
ln(ε)− ln(T )− ln(ρmax)

)⌉
=

334, given ε = 0.0001, α = 0.967 in case η = 1.0, T = 24
and ρmax = 0.3.

Fig. 2 displays the evolution of ||p(k) − p∗∗||1 for the
charging coordination of PEV populations following Algo-
rithm 1, with an initial price curve p(0) specified as p

(0)
t =

c′(Dt) for all t; then as illustrated in Fig. 2, ||p(k) − p∗∗||1
converges to a value less than 0.0001 in about 10 iteration
steps, which is much less than K(ε) = 334.

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

Iteration steps

|| p
(k)

 − p** ||
1

Fig. 2. Update of ||p(k) − p∗∗||1 by applying Algorithm 1.

Fig. 3 displays the iteration updates of the PEV charging
behavior following Algorithm 1, with the initial price curve
p(0) specified as p

(0)
t = c′(Dt) for all t, such that the

system converges to the efficient coordination solution. This
is consistent with Corollary 3.1.
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Fig. 3. Update procedure of PEV charging coordination following
Algorithm 1.

To compare with the PEV charging coordination methods
in the literature, we also illustrate, in Fig. 3, the implemented
charging behavior, by applying the methods proposed in
[10], [11], which fill the valley of the base demand and
are quite different from the implemented socially optimal
solution under the proposed method in this paper.

We denote by uvf the valley-fill charging behavior by
applying the method proposed in [10], [11]. we have∑

t∈T
c (Dt + ||u∗∗

t ||1)−
∑
t∈T

c
(
Dt + ||uvf

t ||1
)
= 211.7;∑

n∈N

∑
t∈T

gn (u
∗∗
nt)−

∑
n∈N

∑
t∈T

gn

(
uvf
nt

)
= −671.3;

that is to say, compared with uvf implemented in [10], [11],
the benefit under u∗∗ with a save of 671.3$ on battery
degradation cost is only compromised with a small increased
generation cost of 211.7$. As a consequence, the system can
benefit with a total cost decrease with 459.6$ per day, which
is about 167,000$ per year, by adapting u∗∗ instead of uvf.

In the simulation illustrated above, we suppose that
||uvf

n ||1 = ||u∗∗
n ||1, that is to say hn(||uvf

n ||1) = hn(||u∗∗
n ||1)

for all n ∈ N . If following the case of ||uvf
n ||1 = Γn as

considered in [10], [11], the system can benefit with a higher
cost decrease of 1640.2$ per day, which is about 600,000$
per year, by adapting u∗∗ instead of uvf.

For approaching a realistic situation for the charging
coordination problems of PEV populations, we suppose that
the initial value of state of charge of PEV batteries, denoted
socn0, ahead of the PEV charging interval approximately
satisfies a Gaussian distribution N(µ, γ), see [27], [28]. We
further consider in the following simulation that µ = 50%
and γ = 0.1.

The update procedure of aggregated best charging profiles
of all PEVs, with a typical base demand in spring season, is
illustrated in Fig. 4 where we can observe that by adapting
the proposed decentralized algorithm, the system converges
to the efficient solution, see the solid line marked with
asterisks, in a few iteration update steps.
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Fig. 4. Converged efficient charging behaviors for heterogeneous PEV
populations in a typical spring season.

V. CONCLUSIONS

We formulated a class of charging coordination of large-
scale PEVs in power grid, such that the system deals with
the generation and battery degradation costs during the multi-
time charging interval. A decentralized method is proposed
such that all of individual PEVs simultaneously update their
own best charging behaviors with respect to a common
price curve, which is updated with respect to the generation
marginal cost related to the charging schedule implemented
at last step. The iteration procedure stops in case the price
curve coincident with the marginal cost. Sufficient condition
is specified under which the system converges to the unique
efficient charging behavior by applying the proposed algo-
rithm.
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