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Abstract— Uncertain parameters impact the dynamic be-
haviour of many important nonlinear systems. Assessing the
significance of parameter uncertainty is often vitally important,
but traditional techniques are computationally challenging. A
recent approach uses trajectory sensitivities to form a first-order
approximation of perturbed trajectories. These approximate
trajectories are generally quite accurate, though their quality re-
duces in the vicinity of the stability boundary. The paper proposes
a modification that improves the accuracy of sensitivity-based
approximations of marginally-stable trajectories. This modified
approach generates approximate trajectories by considering the
intersection of the perturbed trajectory with a hyperplane that
progresses with the nominal trajectory.

I. MOTIVATION

Prediction of system dynamic behaviour is very important
for determining whether disturbances may induce instability,
and for ensuring performance criteria are satisfied. Uncertainty
in parameter values complicates such assessment though.
For linear systems, techniques for determining the impact of
parameter uncertainty are well developed. Applications abound
in control [1] and circuit analysis [2], for example. On the
other hand, nonlinear, and especially nonsmooth (hybrid),
systems are usually not amenable to such elegant techniques.
In such cases, Monte-Carlo techniques often form the basis
for assessing the effects of uncertain parameters. For large-
scale systems, however, the computational burden of repeating
simulations may preclude a thorough investigation of all
uncertainties. Important effects may be overlooked.

This issue is very relevant for power systems, where dy-
namic performance assessment underpins design and operating
decisions. Postulated system conditions and disturbance sce-
narios are investigated to ensure adequate dynamic response.
Unfortunately, when actual system events occur, post-mortem
analysis invariably reveals discrepancies between modelled
and measured system behaviour [3], [4]. The models al-
ways contain erroneous parameters, largely as a result of
uncertainty in load composition. Furthermore, looking to the
future, uncertainty in power system behaviour will grow as
widely dispersed renewable resources become an increasingly
important source of electrical energy.

Monte-Carlo techniques for assessing the effects of pa-
rameter uncertainty are not feasible for large-scale systems,
such as power systems, where many parameters are uncertain.
A computationally feasible alternative is to replace actual
perturbed trajectories by first-order approximations that are
generated using trajectory sensitivities [5]. The concepts un-
derlying this approach are outlined in Section II. It was shown
in [6] that the resulting approximate trajectories are generally
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Fig. 1. Time-varying hyperplane concept.

quite accurate, though the accuracy reduces as the trajectory
approaches the stability boundary, and nonlinearities become
dominant. This paper focuses on improving the fidelity of
approximate trajectories under extreme conditions.

The approach adopted for improving trajectory approxima-
tion is developed fully in Section III. The general concepts can
be explained with the aid of Figure 1. Consider a hyperplane
Σt that is anchored to the point x(t) on the nominal trajectory.
A perturbation Δx0 in initial conditions will give rise to
a perturbed trajectory that encounters Σt at the point x̃(τ),
where generally t �= τ . Previous approaches to generating
approximate trajectories have focused on the perturbation
x(t) − x̃(t). The approach developed in Section III instead
uses the perturbation x(t) − x̃(τ) which, by definition, lies
along Σt.

II. BACKGROUND

A. Trajectory sensitivities

Trajectory sensitivity concepts are well defined for
differential-algebraic systems, and for hybrid dynamical sys-
tems [7]. However, for clarity of presentation, this paper will
focus on smooth nonlinear systems described by

ẋ = f(x), x(0) = x0, (1)

though the subsequent developments extend naturally to the
more general setting. Dynamic behaviour generated by (1) can
be expressed as the flow,

x(t) = φ(x0, t) (2)

with initial conditions implying x0 = φ(x0, 0).
The functional form of the flow motivates the Taylor series

expansion

φ(x0 + Δx0, t) = φ(x0, t) +
∂φ(x0, t)

∂x0
Δx0

+ higher order terms.
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For small ‖Δx0‖, the higher order terms may be neglected,
giving

Δx(t) = φ(x0 + Δx0, t) − φ(x0, t)

≈ ∂φ(x0, t)
∂x0

Δx0 ≡ Φ(x0, t)Δx0 (3)

where Φ is the sensitivity transition matrix, or trajectory
sensitivities [5], associated with the flow φ. Equation (3)
describes the approximate change Δx(t) in a trajectory, at
time t along the trajectory, for a given small change in initial
conditions Δx0. Note that the sensitivity of trajectories to
parameter variations can be incorporated directly into this
formulation by introducing trivial differential equations ẋp =
0, with xp(0) = p, where p are the parameters of interest.

The evolution of the trajectory sensitivities Φ is described
by variational equations that are obtained by differentiating (1)
with respect to x0. This gives

Φ̇ = fx(t)Φ, Φ(x0, 0) = I (4)

where fx(t) ≡ ∂f(t)/∂x is evaluated along the trajectory,
and I is the identity matrix. The computational burden of
numerically integrating this (potentially high order) linear
time-varying system is not particularly onerous, if thoughtfully
implemented. It is shown in [7], [8], [9] that when an implicit
numerical integration technique such as trapezoidal integration
is used, the solution of (4) can be obtained as a by-product of
computing the underlying nominal trajectory.

B. Trajectory approximation

For general nonlinear systems, the flow φ given by (2),
cannot be expressed in closed form. Any change in initial
conditions1 therefore requires a complete re-simulation of the
dynamic model. However if changes are relatively small, the
computational effort of repeated simulation can be avoided by
forming approximate trajectories.

Rearranging (3) gives the first-order approximation of the
perturbed flow,

φ(x0 + Δx0, t) ≈ φ(x0, t) + Φ(x0, t)Δx0. (5)

As mentioned previously, trajectory sensitivities Φ can be
computed efficiently as a byproduct of simulating the nom-
inal trajectory. Therefore a range of (approximate) perturbed
trajectories are available via (5) for the computational cost of
a single nominal trajectory.

C. Example

Trajectory approximation concepts will be illustrated using
the simple power system example of Figure 2. This system
consists of a single generator connected to an “infinite bus”.
The generator is represented by the classical machine model,

δ̇ = ω (6)

ω̇ =
1
M

(
PM − V1V2

X
sin δ − Dω

)
(7)

where δ is the generator shaft angle relative to the reference
established by the infinite bus, and ω is the generator angular
velocity. This model is effectively a damped nonlinear pendu-
lum.

1Keep in mind that parameters are incorporated into the initial conditions.

~

V2V1∠0 ∠δ

jX

Fig. 2. Single machine infinite bus example.
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Fig. 3. Phase portrait for initial case, x�
0 = [ 1 3 ].

It should be mentioned that trajectory approximations have
been used in cases that are far more elaborate than (6)-(7).
Various examples are provided in [6]. This present example
has been chosen as it allows clear illustration of the concepts
developed throughout the paper.

Figures 3 and 4 illustrate the application of (5) for generat-
ing trajectory approximations. Two cases are considered, and
the respective phase portrait plots are provided. In Figure 3, the
nominal trajectory is shown as a dash-dot line emanating from
the initial point x�

0 = [ δ(0) ω(0) ] = [ 1 3 ]. A perturbation
of Δx�

0 = [ 0 0.25 ] was introduced, and the corresponding
approximate trajectory generated using (5). It is shown as a
solid line emanating from (x0 + Δx0)� = [ 1 3.25 ]. For
comparison, the true perturbed trajectory was simulated, and
is shown as a dashed line. It can be seen that the approximation
is initially very accurate, though a small discrepancy occurs
as the trajectory progresses.

Previous investigations, reported in [6], have observed that
as trajectories move closer to the boundary of the region of
attraction (separatrix), the quality of approximations given
by (5) diminishes. As the nonlinearity associated with the
separatrix begins to dominate, the influence of the higher order
terms, neglected in (5), becomes more significant. The second
example considers such a case.

The separatrix is shown in both Figures 3 and 4, along
with the corresponding unstable equilibrium point (uep). This
second case considered the initial condition x�

0 = [ 1 3.6 ],
with the nominal trajectory shown in Figure 4 as a dash-
dot line emanating from that point. Again, a perturbation of
Δx�

0 = [ 0 0.25 ] was chosen, with the approximate trajectory
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Fig. 4. Phase portrait for highly disturbed case, x�
0 = [ 1 3.6 ]. Traditional

trajectory approximation.

shown as a solid line. The dashed line gives the true perturbed
trajectory. This perturbed trajectory is in close proximity to the
separatrix. Notice in this case that the approximation is quite
accurate until it reaches the vicinity of the uep, but then is
useless beyond the uep.

To help explain the impact of the uep, Figure 4 includes
lines that show the perturbations Φ(x0, t)Δx0 separating the
nominal and approximate trajectories, see (5). Those lines are
shown for every fifth time step along the simulation. It is
apparent that as the uep is approached, trajectories that are
closer to the separatrix proceed more slowly, resulting in a
time skew between adjacent trajectories. This stretching of the
Φ(x0, t)Δx0 perturbations underlies the loss of fidelity of the
approximate trajectory.

An approach that overcomes this stretching phenomenon is
presented in the following section.

III. TRAJECTORY APPROXIMATION USING A SLIDING

HYPERPLANE

A. Conceptual background

The accuracy of approximations generated by (5) suf-
fers when the nominal and perturbed trajectories proceed
at substantially different rates. Under such conditions, time-
synchronized points x(t) and x̃(t), on the nominal and per-
turbed trajectories respectively, will separate. This will occur
even though the trajectories may remain close in state space.
The example considered in Section II-C, and in particular the
second case shown in Figure 4, fit that situation. When the
difference x(t) − x̃(t) becomes large, the higher order terms
that are neglected in (5) become important, and the sensitivity
term Φ(x0, t)Δx0 can no longer provide an adequate approx-
imation.

In order to overcome this difficulty, an approach that
exploits the state-space proximity of adjacent trajectories is
proposed. Referring back to Figure 1, consider a hyperplane
Σt that contains the point x(t) on the nominal trajectory, and
assume that the nominal trajectory is transversal to Σt. The

perturbed trajectory will pass through Σt at the point x̃(τ),
where generally τ �= t. The aim of hyperplane-based trajectory
approximation is to use trajectory sensitivities, together with
the nominal trajectory, to synthesize an approximation for
the point x̃(τ). By sliding the hyperplane Σt along the
nominal trajectory, an approximation can be built for the entire
perturbed trajectory.

B. Mathematical formulation

The first step in establishing this trajectory approximation
process is to determine the relationship between the perturbed
initial conditions x̃0, and the time τ(x̃0) at which the perturbed
trajectory encounters the hyperplane Σt. Without loss of
generality, move the origin to x(t), and let ht be a vector
orthogonal to Σt. Then h�

t y = 0 if and only if y ∈ Σt.
Let U be a neighbourhood of x0. A trajectory that emanates

from x̃0 ∈ U will encounter Σt at the point φ(x̃0, τ). Define,

g(x̃0, τ) := h�
t φ(x̃0, τ). (8)

The encounter point is then given by g(x̃0, τ) = 0. The
implicit function theorem can be used to obtain τ(x̃0) provided

∂g

∂τ
(x0, t) = h�

t φ̇(x0, t) = h�
t f(x(t)) �= 0, (9)

which is true because the trajectory at x(t) is transversal to
Σt. Therefore a function τ(x̃0) exists, such that for x̃0 ∈ U ,
g(x̃0, τ(x̃0)) = 0, and therefore φ(x̃0, τ(x̃0)) ∈ Σt. It also
follows that τ(x0) = t.

Furthermore, differentiating g gives,

∂g

∂x
(x0, τ(x0)) +

∂g

∂τ
(x0, τ(x0))

∂τ

∂x
(x0) = 0. (10)

From (8),

∂g

∂x
(x0, t) = h�

t

∂φ

∂x
(x0, t) = h�

t Φ(x0, t),

with the second equality following from definition (3). Using
this together with (9) allows (10) to be expressed as

h�
t Φ(x0, t) + h�

t f(x(t))
∂τ

∂x
(x0) = 0,

and it follows that

∂τ

∂x
(x0) =

−1
h�

t f(x(t))
h�

t Φ(x0, t). (11)

The Taylor series expansion of τ(x̃0) can be written

τ(x0 + Δx0) = τ(x0) +
∂τ

∂x
(x0)Δx0 + hot,

where ∂τ
∂x (x0) is given by (11). Neglecting the higher order

terms, and using the fact that τ(x0) = t, gives

τ(x0 + Δx0) ≈ t + Δτ (12)

where
Δτ =

−1
h�

t f(x(t))
h�

t Φ(x0, t)Δx0. (13)

The map from initial conditions x̃0 ∈ U to the point where
the perturbed trajectory encounters Σt can be written as

Ft(x̃0) = φ(x̃0, τ(x̃0)). (14)

535



−0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

Angle (rad)

A
ng

ul
ar

 fr
eq

ue
nc

y 
(r

ad
/s

ec
)

Separatrix

sep uep

Nominal (computed) trajectory
Approximate perturbed trajectory
Actual perturbed trajectory

Fig. 5. Phase portrait for highly disturbed case, x�
0 = [ 1 3.6 ]. Hyperplane-

based trajectory approximation.

Differentiating gives,

∂Ft

∂x
(x0) = Φ(x0, t) + f(x(t))

∂τ

∂x
(x0).

Substituting (11) results in,

∂Ft

∂x
(x0) =

(
I − f(x(t))h�

t

h�
t f(x(t))

)
Φ(x0, t). (15)

The Taylor series expansion of Ft(x̃0) is,

Ft(x0 + Δx0) = φ
(
x0 + Δx0, τ(x0 + Δx0)

)

= Ft(x0) +
∂Ft

∂x
(x0)Δx0 + hot.

Neglecting the higher order terms, and substituting (12) and
(15) gives

φ(x0 + Δx0, t + Δτ)

≈ φ(x0, t) +
(
I − f(x(t))h�

t

h�
t f(x(t))

)
Φ(x0, t)Δx0. (16)

Equations (13) and (16) fully describe the hyperplane-based
approximation to the trajectory emanating from x0 + Δx0.

Substituting (13) into (16) gives

φ(x0 + Δx0, t + Δτ)
≈ φ(x0, t) + Φ(x0, t)Δx0 + f(x(t))Δτ. (17)

Comparison with (5) shows that the two forms of trajectory
approximation differ only in the contribution due to the time
correction Δτ . However the following example illustrates that
this time correction term can have a substantial effect on the
quality of the approximation.

C. Example

Continuing the example of Section II-C, the hyperplane-
based approach to trajectory approximation was applied in the
more onerous of the two cases, with x�

0 = [ 1 3.6 ]. The time-
varying hyperplane was established by defining ht ≡ f(t),

or in other words, the hyperplane was always orthogonal to
the nominal trajectory. Results of this approximation process
are shown in Figure 5. It can be seen that the approximation
underestimates the true perturbed trajectory in the vicinity of
the uep, but is otherwise in excellent agreement. A comparison
of Figures 4 and 5 shows that this new approach to trajectory
approximation gives vastly improved results.

Figure 5 shows lines that separate the nominal and approx-
imate trajectories. Referring to (17), these lines correspond
to (Φ(x0, t)Δx0 + f(x(t))Δτ), and by definition lie on the
time-varying hyperplane Σt. The choice of ht ≡ f(t) implies
that these lines should be orthogonal to the nominal trajectory,
with

f(x(t))�
(
Φ(x0, t)Δx0 + f(x(t))Δτ

)

= f�Φ(x0, t)Δx0 + f�f
( −1

f�f
f�Φ(x0, t)Δx0

)
= 0.

Unfortunately this orthogonality is not apparent in the figure
because the horizontal and vertical axes are scaled differently.

IV. CONCLUSIONS

The dynamic behaviour of many important large-scale sys-
tems is influenced by uncertain parameters. Thorough analysis
of the impact of parameter variations is desirable, but may not
be computationally feasible. In order to reduce computation,
trajectory sensitivities have been used to obtain first-order ap-
proximations of perturbed trajectories. These approximations
are generally quite accurate, but are detrimentally affected by
strong nonlinearities in the vicinity of the stability boundary.

The paper proposes an alternative approach to generating
approximate trajectories. Motivated by a state-space view of
perturbed trajectories, this new approach utilizes a hyperplane
to establish points on the nominal and perturbed trajectories
that are adjacent. The perturbation between these adjacent
points is then approximated using trajectory sensitivities. This
hyperplane-based approach alleviates time skewing between
the nominal and perturbed trajectories, and in so doing,
provides significantly improved trajectory approximations.
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