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Sustainability, Resiliency, and Grid Stability of the Coupled
Electricity and Transportation Infrastructures: Case for an
Integrated Analysis
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Abstract: Electrified vehicles (EVs) couple transportation and electrical infrastructures, impacting vehicle sustainability, transportation resil-
iency, and electrical grid stability. These impacts occur across timescales; grid stability at the millisecond scale, resiliency at the daily scale,
and sustainability over years and decades. Integrated models of these systems must share data to explore timescale dependencies, and reveal
unanticipated outcomes. This paper examines EV adoption for sustainability, resiliency, and stability effects. Sustainability findings, consistent
with previous studies, indicate that electrification generally reduces lifecycle greenhouse gas (GHG) emissions, and increases SO, and NO,.
Electrified vehicles enhance vehicle resiliency (ability of vehicle to complete typical trips during fuel outage). Coupled results enhance EV
resilience research, finding that a 16-km (10-mi) all-electric range plug-in hybrid EV improves resiliency ~50% versus a gasoline-only vehicle.
Increasing EV market share reduces grid stability. Stability depends upon charging profiles and background electrical demand. Stability-related
grid outages increase with EV market penetration. This paper modeled these systems in their coupled form across timescales yielding results not
obvious if the systems were modeled in isolation. DOI: 10.1061/(ASCE)IS.1943-555X.0000251. © 2015 American Society of Civil Engineers.
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Introduction

The potential benefits of electrified vehicles (EVs) have been
subject to much research across multiple time scales. Electrified
vehicles include hybrid electric vehicles (HEVs) and plug-in hybrid
electric vehicles (PHEVs), which can charge using grid electricity
or use gasoline, and battery electric vehicles (BEV), which exclu-
sively use grid electricity. In the long timescale, some researchers
claimed that EVs can improve the sustainability of personal trans-
portation by displacing gasoline use with nonfossil-based electric-
ity, thereby reducing greenhouse gas (GHG) emissions and other
airborne pollutants [Elgowainy et al. 2010; Electric Power Re-
search Institute (EPRI) 2007; Kintner-Meyer et al. 2007; Li et al.
2013; MacPherson et al. 2012; Saber and Venayagamoorthy 2011;
Samaras and Meisterling 2008; Sioshansi et al. 2010]. Others
argued, however, that the lifecycle GHG emissions of an EV are
not necessarily less than that of a conventional vehicle (CV) with
only an internal combustion engine. This is because the emissions
associated with manufacturing and operating the CV can be less
than those for an EV, if the EV’s electricity comes from GHG-
intensive regions [(i.e., grids dominated by coal fired power
plants); Hawkins et al. 2013; MacPherson et al. 2012; Samaras
and Meisterling 2008].

Similarly, in the short timescale, EVs could facilitate enhanced
resilience of transportation to disruptive events such as widespread,
long-term gasoline shortage due to fuel crises as exemplified in the
1970s in the United States (Peskin et al. 1975; Rudel 1982), or
more recently due to extreme weather events such as Hurricanes
Katrina and Irene, and Tropical Storm Sandy (Abramson and
Redlener 2013). However, added EV charging load could disrupt
the electric grid, with the potential for demand to exceed genera-
tion, or for problems with grid stability.

Such questions are hard to answer because the problem of study-
ing the full impact of EVs spans two infrastructures [(1) electricity,
and (2) transportation] and multiple timescales. As such, an
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accurate answer, especially for their sustainability, resiliency, and
stability impacts, requires an analysis framework covering both
infrastructures at these multiple timescales. Much work in EV
sustainability examines pollutant emissions, energy consumption,
and resource depletion effects at the long timescale (Elgowainy
et al. 2010; EPRI 2007; Hawkins et al. 2013; Samaras and
Meisterling 2008; Sioshansi et al. 2010). Research focused on the
electrical grid impacts of EVs, and the transportation resilience of
EVs focus on shorter timescales (Clement-Nyns et al. 2010; Hadley
and Tsvetkova 2009; Kintner-Meyer et al. 2007; Kundu and
Hiskens 2014; Marshall et al. 2015). Hence, there is a lack of
integrated analysis in the literature.

The research reported in this paper describes and systematically
applies a set of tools to evaluate the coupled system sustainability
and resilience of electrified vehicles, focusing on long-term envi-
ronmental sustainability metrics (vehicle and electricity pollutant
emissions) along with short-term resiliency metrics (capacity to
complete trips in case of a fuel shortage) and electrical system sta-
bility metrics (unintended electrical distribution network failures).
The research reported in this paper simulates two charging scenar-
ios of five vehicle designs, at 14 vehicle penetration levels to de-
termine vehicle use phase GHG, NO,, and SO, emissions. These
emissions are incorporated in a full vehicle lifecycle assessment
(LCA). The charging scenarios are cosimulated with three different
trip-scheduling algorithms given 10 gasoline supply disruption sce-
narios to determine resilience. The charging scenarios are simulated
within an IEEE-34 distribution feeder (IEEE 34-node test feeder
model) to capture short timescale disruptions.

Background

Sustainability

Vehicles utilize fossil fuels for motive power, and personal ve-
hicles account for 83% of all trips in the United States (Santos
et al. 2011). Transportation accounts for 28% of total U.S. energy
use and 34% of total CO, emissions in 2013 (USEIA 2014a). The
research reported in this paper measures sustainability perfor-
mance by evaluating greenhouse gas emissions (including CO,,
CHy, and N,O) and criteria air pollutants (SO, and NO,). Green-
house gases have global implications, whereas criteria air pollu-
tants have a greater impact on air quality and human health at
the local and regional scale. The environmental impacts of plug-
in vehicle technology are determined largely by the portfolio of
electricity generation assets used to charge the vehicle (Elgowainy
et al. 2010; EPRI 2007; Samaras and Meisterling 2008), the size
and chemistry of the vehicle’s battery (Hawkins et al. 2012;
Sullivan and Gaines 2012), charging patterns (Kelly et al. 2012;
Weiller 2011), and vehicle usage including driving behavior
and trip selection. To realize the potential environmental benefits
of plug-in technology it is important to understand the relation-
ships among these variables.

Improving vehicle sustainability through both technology and
policy methods have been examined in previous studies. From a
technology perspective, PHEVs often have good fuel economy
and low tailpipe emissions due to the transmission hybridization
(Bandivadekar et al. 2008; Baptista et al. 2010; EPRI 2007; Kintner-
Meyer et al. 2007; Lane 2006; Samaras and Meisterling 2008;
Sioshansi et al. 2010), but a reduction in GHGs is not guaranteed.
While most U.S. electrical grids provide electricity with fewer GHG
emissions than gasoline (MacPherson et al. 2012), EVs could have
higher GHG emissions than gasoline if electricity from the grid is
produced by coal plants (Saber and Venayagamoorthy 2011).
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Resiliency

The lack of diversity in transportation energy sources (gasoline) and
the reliance on a single mode of transportation (passenger car) can
cause the transportation system to degrade (lost travel) when a dis-
ruption occurs. The ability to maintain desired levels of a system’s
performance during a disruption increases with system resilience
(Vugrin et al. 2010), which is primarily achieved by system adap-
tation as resources are exchanged among system elements (Jackson
2010). Electrified vehicles enable adaptability by allowing an elec-
tric power system to share energy resources with the transportation
system during disruptive events, thus improving resilience.

The definition of resilience is neither precise nor consistent
across differing contexts or disciplines. Bhamra et al. (2011) iden-
tify 15 distinct definitions of resilience, yet find that the concept of a
resilient system is closely related with the capability of an entity to
recover a stable state after a disruption. Differences in the definition
of resilience across disciplines are often based on whether resilience
is concerned with deviations from a steady state, termed engineer-
ing resilience, or with changes between entirely different states,
termed ecological resilience (Holling 1996). With engineering resil-
ience, resistance to disturbance and speed of recovery are key mea-
sures. The magnitude of disturbance a system can adapt to and still
function is a key measure of ecological resilience (Holling 1973).

Fundamental to metrics of system resiliency is the system’s per-
formance under disruptive conditions. Resilience metrics measure
the system’s ability to either reduce the impact of change, adapt to it,
or recover from it (Vugrin et al. 2010). Electrified vehicles create
interdependencies between the electric power and transportation
systems that may impact system resilience in one or both systems
(Ibdnez et al. 2010). If vehicle electrification provides additional
modes of travel or energy sources such that the system is more able
to absorb or adapt to a disruption without complete loss of perfor-
mance or structure, it has improved system resilience (Jackson
2010).

System resilience is also influenced by behavioral responses
unique to disasters (Jackson 2010; Rose 2009). Surveys from
the 1970s oil crises in the United States indicate that during actual
or perceived fuel scarcity, households respond by eliminating or
reorganizing discretionary or noncritical trips (Peskin et al. 1975;
Rudel 1982). This behavior has a positive effect on system resil-
ience as measured by a household’s ability to complete all critical
trips. Yet, surveys from historical oil shocks suggest that house-
holds do not make a significant short-term switch in travel mode
due to gasoline price increases, or shortages (Diltz 1982; Noland
et al. 2002; Peskin et al. 1975). This lack of behavioral adaptivity
negatively effects system resilience by impeding recovery of a
supply-constrained transportation system.

Grid Stability

Market research reports suggest that by 2020 EVs may account for
20% of automobile sales in the United States (Book et al. 2009;
Lache et al. 2008), but government predictions are much more
modest, suggesting annual sales below 2% between now and
2025 (USEIA 2014b). In many cases, these vehicles will charge
from residential distribution feeders. Financial incentives will
likely encourage charging overnight, when background non-EV de-
mand is low, thus EV load will contribute a significant portion to
total demand on residential feeders (SAE 2010). Residential real-
time pricing structures are now available in several electricity mar-
kets (DTE Energy 2014; Plug in Illinois 2014; Southern California
Edison 2014), thus encouraging off-peak charging. Without man-
aging this additional load, there is the potential to increase peak
demand, thereby straining the electrical system.
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When electricity demand is composed of large numbers of
similar devices, relatively benign events can synchronize their re-
sponse, resulting in potentially destabilizing collective behavior.
Such a situation arises with fault-induced delayed voltage recovery
[(FIDVR); NERC 2008], where a voltage sag leads to large
numbers of residential air-conditioner compressors stalling
(Kosterev et al. 2008). The high current drawn by the stalled in-
duction motors depresses voltages further, and cascading voltage
collapse may result. Voltage sag is a reduction in voltage below
a specified amount (e.g., 10%) of nominal.

The response of EV chargers to power quality events is gov-
erned by SAE J2894 (SAE 2011), which updates a previous report
(EPRI 1997). As with FIDVR, the response of EV chargers to low
voltage events is of particular interest. Two cases are covered in
SAE J2894 (SAE 2011), as follows: (1) voltage sag, in which
EV chargers must remain energized while voltage supply drops
to 80% of nominal for up to 2 s; and (2) momentary outage, in
which EV chargers must ride through a complete loss of voltage
for up to 12 cycles. Situations where voltages sag below 80%, but
remain nonzero, are not explicitly covered by SAE J2894 (SAE
2011). Voltage sag is only one possible indicator of electrical grid
stability.

Voltage sags often affect entire distribution feeders, and may be
more widespread when initiated by a transmission system event.
Distribution networks will likely experience voltage sags sufficient
to cause large numbers of EV chargers to trip. After such trips,
SAE J2894 (SAE 2011) recommends that restarting be delayed
to minimize additional grid problems (Ihara and Schweppe 1981).
Upon recovery from the voltage sag, the feeder would experience
much lighter load, and consequently voltages would exceed their
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predisturbance values. Shunt capacitors, which are common on
distribution feeders, would further contribute to this voltage rise.
A large voltage increase, perhaps above 110% of nominal, could
cause other electrical equipment to trip. SAE J2894 (SAE 2011)
allows EV chargers to trip for voltages above 110% of nominal.
The high voltages resulting from such a cascade could damage
distribution equipment and the remaining load.

Case Study and Methodology

Fig. 1 describes how EVs connect with the electrical grid, fuel sup-
ply, and driver choices to impact sustainability, resiliency, and grid
stability. This case study simulates several vehicle types to observe
how combinations of vehicle type and battery capacity interact with
electrical demand and user choice (i.e., trip curtailment) to influ-
ence emissions, trip completion, and electrical system disruptions.
Electrified vehicles use gasoline and/or battery electricity to com-
plete trips, but that electricity comes from the grid thus impacting
both grid load (stability) and pollutant emissions (sustainability).
The battery degrades with time, reducing its capacity and requiring
eventual replacement. That reduction and replacement influences
the vehicle’s sustainability. From a resiliency perspective, vehicles
are used to complete the desired travel of drivers, but under duress
(fuel and/or electricity outages) drivers may curtail trips. Through
electrification, a fuel-limited vehicle may improve resilience by
completing more trips than with fuel alone.

The research reported in this paper examines EVs for the fol-
lowing: (1) sustainability performance using LCA, (2) resilience
to gasoline supply disruptions over a 5-day period, and (3) effect
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Fig. 1. Research reported in this paper examines the coupled dependencies between EVs and the electrical grid, focusing on the implications for

sustainability, resilience, and electrical grid stability
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on the electrical distribution network stability. While several stud-
ies have examined the lifecycle performance of EVs, the research
reported in this paper incorporates a model of battery degradation
based on laboratory measurements of battery cycling, and accounts
for the long-term shift away from electricity towards gasoline that
occurs during that degradation process. The resilience study con-
ducted in the research reported in this paper explores how gasoline
shortages impact the capacity of a vehicle to complete its required
daily trips, extending previous resilience research. Finally, two ve-
hicle-charging algorithms [(1) valley-filling, and (2) uncontrolled]
are evaluated with varying levels of EV penetration to determine
their effect on electrical grid stability.

The sustainability, resiliency, and grid stability evaluations rely
on shared variables and parameters, but the case studies are exam-
ined independently since their timescales are vastly different. All
models utilize vehicle-charging algorithm information. The grid
stability study conducted in the research reported in this paper uses
the ratio of EV load to background electrical load on a millisecond
basis. The resiliency study of the research reported in this paper
examines day-to-day trip completion subject to charging con-
straints. The sustainability model evaluates pollutant emissions
from electrical charging during the course of 1 year along with
vehicle production burdens.

Venhicle Charging Algorithms

Several studies have adopted rule-based charging algorithms to
manage EV load and evaluate its impacts on the grid (Elgowainy
et al. 2010; Hadley and Tsvetkova 2009; Kintner-Meyer et al.
2007). Most found that coordinated charging is needed; otherwise
the aggregate load in peak hours may increase and adversely
affect grid reliability. Several studies have reported sophisticated
schemes for EV charging, including centralized optimization
problems with various objectives, such as valley-filling (Ahn et al.
2011; Lemoine et al. 2008), coordination with combined heat and
power (Galus and Andersson 2008), and using EVs as grid reserves
(Foster and Caramanis 2010; Han et al. 2010). However, these do
not provide implementable algorithms to charge EVs as they often
treat the whole EV fleet as one large battery and do not consider
attributes of individual vehicles, such as the plug-on/plug-off time
and state of charge (SOC). The literature also describes decentral-
ized resource allocation methods for demand response (Burke and
Auslander 2009) and EV charging (Ma et al. 2010). However,
their practicality is in question as they require massive two-way
communications and some require iteration (Maheswaran and
Basar 2001). For real-time implementable schemes, dual tariffs
are now available that incentivize late-night charging (DTE Energy
2014; Southern California Edison 2014). However, dual tariffs
cause an undesired load increase for large EV fleets when the
low-price window starts (Lopes et al. 2009a, b). Another real-time
implementable scheme is the on/off control for regulating thermo-
static loads (Callaway 2009; Goel et al. 2010; Short et al. 2007),
one of which has been extended to control EV charging (Callaway
and Hiskens 2011). The literature suggests that hierarchical and
partially decentralized algorithms are more appropriate for EV
charging (Callaway and Hiskens 2011).

The research reported in this paper utilizes an EV valley-filling
charging control algorithm that uses idle generating capacity in
evening hours to charge a large number of EVs on the Michigan
grid. The control algorithm objective is to avoid grid congestion
while fully charging all EVs. Vehicle-to-grid (V2G) power flow
is disallowed due to the concern that frequent cycling will
reduce the battery life.
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The algorithm is based on previous research (Ahn et al. 2011;
Li et al. 2013), and is summarized in this paper. It consists of an
EV fleet model and a grid model. The fleet uses three probability
distributions [(1) plug-on time, (2) plug-off time, and (3) battery
SOC at plug-on] to describe the EV population. The three proba-
bility distributions are derived from vehicle use pattern data
(FHWA 2009). In the grid modeling, the hourly load data from
the area serviced by DTE Energy [Federal Energy Regulatory
Commission (FERC) 2009] is used to represent the nominal
non-EV load on the grid. The charging control algorithm adopts
a partially decentralized structure, so that its implementation does
not require excessive computation and communication. At the
global level, an SOC threshold command is calculated and broad-
cast to all EVs as the basis of charging level. At each charger, the
local controller considers two individual EV attributes [(1) battery
SOC, and (2) plug-off time] to calculate the final charging power in
a decentralized fashion, in that the EVs with lower SOC or early
plug-off time should have a higher priority to receive charging. The
algorithm allows most EVs to fully charge. In addition, the grid-
level objective valley-filling is achieved.

An uncontrolled charging algorithm is also examined, which
allows vehicles to fully charge overnight. This returns each
vehicle’s SOC to 100% each morning.

Grid Stability with EVs

The electrical grid stability portion of the case study focuses
on the grid’s local distribution response to load variations associated
with vehicle charging coupled with an electrical tripping event.
Table 1 summarizes the scenarios examined in these analyses.

In a recent study, an analysis tool was presented that determines a
critical EV charging load based on the non-EV load on a distribution
feeder (Kundu and Hiskens 2014). As the EV charging load fraction
increases the likelihood of postdisturbance voltage rise increases.

A voltage sag often results from a transmission grid fault and
can affect residential feeders attached to that grid. To model the
effect of EV chargers tripping on the voltage profile of the trans-
mission grid, a model of the transmission grid needs to be con-
sidered along with a model for the residential feeder. In the
research reported in this paper, the conventional IEEE 39-bus
system (IEEE 10 Generator 39 bus system model) is considered
as the transmission grid, while a modified IEEE 34-node system
(Kundu and Hiskens 2014) is considered as the residential
feeder; see the “Supplemental Data” section for diagrams and
further details of those systems. In the analyzed case, a fault
in the transmission grid causes a voltage sag impacting the res-
idential feeder.

Table 1. Electrified Vehicle and Electric Grid Properties for Grid Stability
Case Study

Electrified vehicle/grid

parameters Scenario settings 1 Scenario settings 2

Electrified vehicle Uncontrolled
charging algorithm

Electrified vehicle 10-50 10-100
penetration (%)
Background load,
DTE 2009 FERC
form 714 filing, as
per the Federal
Energy Regulatory
Commission

Valley-filling

Minimum load day
Average load day
Maximum load day

Minimum load day
Average load day
Maximum load day
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Electrified Vehicle Resiliency

In the context of this case study, resiliency is approached much like
the work in Marshall et al. (2015), but the research reported in this
paper examines the vehicle, not the household level. Resilience, in
this context, is only relevant in the context of a disruption from
normal operation, such as a weeklong gasoline outage. Vehicle trip
information is obtained from the 2009 National Household Travel
Survey (NHTS; FHWA 2009), and simulations of fuel/battery us-
age are based on that information. Trips are curtailed based on their
purpose, and knowledge of how much fuel/battery is both available
and required to complete necessary trips. In the research reported in
this paper, necessary trips are considered those that are either to
travel to or from work or school, termed mandatory trips (all others
are termed discretionary). This idealization can be critiqued, but it
allows a consistent method for simulating potential responses to
emergency-like events, which may induce fuel shortages. Other
methods of measuring resilience would be to determine completed
trips against potential trips of any type, or perhaps considering
trip schedules that do not include work or school, which might
be canceled in an emergency situation.

The metric realized travel factor (RTF) is used to describe the
effectiveness with which mandatory trips are completed (Marshall
et al. 2015). Trips that are completed during the simulation are real-
ized, so to speak. The RTF is the ratio of realized mandatory trips to
all mandatory trips. This can also be thought of as a so-called trip
completion rate.

The NHTS provides a detailed accounting of personal travel in
the United States (FHWA 2009). This study considers a Monday—
Friday fuel supply disruption, and extracts those trips from the data.
Two thousand vehicles (8,500 trips) are randomly selected from
that subset of vehicles to reduce simulation time. A two-sample
Kolmogorov—Smirnov test compares the sampled versus original
data to ensure consistency of trip times (time = 0 h, p = 0.1315),
and departure time (time =0 h, p = 0.1930). Details on how
NHTS data were extracted for the research reported in this paper
can be found in the “Supplemental Data” section and in Marshall
et al. (2015).

A distinction must be described between vehicle trips and tours
and how that is utilized during simulation. A vehicle trip constitutes
any travel taken by a vehicle between any two locations. A tour is a
chain of trips that must begin and end at home. Furthermore, a man-
datory tour is any tour that contains any trips that go to work or
school.

Tour curtailment is based on the amount of fuel and battery
charge available, the tour type, and the tour’s distance. So-called
normal curtailment is based on a 1-day outlook, assuming that
the driver has no knowledge of the potential disruption’s duration.
In a maximum curtailment scenario, all discretionary trips are
avoided throughout the duration of the disruption.

The resilience study of the research reported in this paper cou-
ples with the electrical grid model to determine the SOC of each
vehicle in the data set. At the end of each simulation day the vehicle
battery is recharged based on the charging algorithm. The valley-
filling algorithm may not completely charge all vehicles, while un-
controlled charging will fully charge all vehicles.

Five types of vehicles are considered, i.e., a CV, two PHEVs,
and two BEVs. The PHEV and BEVs are modeled after production
vehicles and are termed PHEV 16 km, PHEV64 km, BEV161 km,
and BEV483 km to correlate to the nominal distance, in miles, that
they can travel on battery electricity. Table 2 contains detailed
information about the vehicles. The CV and the gasoline portions
of PHEV travel are assigned a gasoline distance budget. Table 3
presents the gasoline budgets examined, as well as the percent
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Table 2. Vehicle Design Characteristics Used for All Case Studies,
Derived Based on Details of Production PHEV and BEV

Battery Efficiency
All electric capacity [kWh/100 km

Vehicle type range [km (mi)] (kWh) (kWh/100 mi)]

Conventional Not applicable Not applicable Not applicable
vehicle

PHEV16 km (PHEV10) 16 (10) 4.4 18 (29)
PHEV64 km (PHEV40) 64 (40) 16 22.5 (36)
BEV161 km (BEV100) 117 (73) 24 21 (34)
BEV483 km (BEV300) 426 (265) 85 20 (32)

Table 3. Realized Travel Factor Study Scenarios Describing Initial
Gasoline Budget and EV Market Penetration, Initial Battery SOC Was
100%

Parameter values

{0, 80, 161, 241, 322, 644, 966, 1287, 1609, 3219}

Vehicle parameters

Initial gasoline
budget [km (mi)]
Plug-in hydrid
electric vehicle
penetration

(% fleet)

{2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

penetration of vehicles in the market. The gasoline budget does
not necessarily represent onboard gasoline, but gasoline available
to the vehicle, suggesting that there may be some limited fueling
stations available.

Electrified Vehicle Sustainability

Metrics

To evaluate sustainability, the use-phase emissions of each vehicle
are calculated and combined with vehicle and battery production
emissions to determine lifecycle emissions. Several previous stud-
ies examine production emissions for the vehicle and the battery
(Hawkins et al. 2013; Samaras and Meisterling 2008; Sullivan
and Gaines 2012). The research reported in this paper considers
GHG, NO,, and SO, emissions; however other impacts such as
human toxicity, freshwater ecotoxicity, freshwater eutrophication,
and metal depletion are also important and likely to increase due to
vehicle electrification (Hawkins et al. 2013). The “Supplemental
Data” section contains details for the production phase emissions
used in the research reported in this paper. The majority of the ve-
hicle’s lifecycle emissions occur during the use phase, and consist
of gasoline combustion, and the associated fuel combustion to gen-
erate electricity. The effect of battery degradation is also consid-
ered, and possible replacement, on vehicle lifecycle emissions.
A 10-year lifetime is considered, 7,300 charge cycles (charging
and discharging are considered separate charge cycles), for the
vehicle.

Battery Degradation

To fully realize the purported benefits of vehicle electrification it is
critical to understand the degradation mechanisms of the batteries
and managing them optimally. This requires models that are proper
(Ersal et al. 2008) for their intended use and are based on carefully
designed experiments. The research reported in this paper focuses
on LiFePO, battery chemistry as one of the main battery chemis-
tries considered for vehicle applications. Prior work has performed
health experiments for this battery chemistry (e.g., Forman et al.
2012; Peterson et al. 2010; Wang et al. 2011). In the research
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Fig. 2. Battery degradation model using cyclical charge—discharge test
data for APR18650M1A battery (A123)

reported in this paper the data collected in Forman et al. (2012) is
leveraged due to the optimal design of the experiments, but use an
energy-processed modeling approach (Peterson et al. 2010) for its
simplicity to incorporate battery degradation into lifecycle analysis.
From a lifecycle perspective, battery degradation leads to increased
PHEV fuel usage and reduces the amount of electricity used per
charging cycle for the battery.

For battery degradation modeling, the APR18650M1A battery
manufactured by A123 Systems was cycled over 429 days using
the optimized set of trials (Forman et al. 2012). The results, Fig. 2,
use a second-order polynomial of the form y = 1 — a;x — a,x* to
fit energy processed versus capacity, where coefficients a; and a,
are determined using a least-squares approach. This result is con-
sistent with what has been reported in Peterson et al. (2010).
However, the data obtained in the research reported in this paper
extends beyond that and shows that a quadratic function fits the
data better over the lifecycle of the battery. Using this model along
with NHTS data, 40% of PHEV64 km batteries are determined to
be fully consumed after 10 years (7,300 charging cycles). Details
are in the “Supplemental Data” section.

Use Phase Emissions

For the use-phase portion of the lifecycle emissions, four different
electricity generation mixes are considered for vehicle charging, all
in a Michigan context. Emissions factors for each grid are applied
to electricity demand due to vehicle charging, assuming one daily
charge for a period of 10 years. Electricity consumption due to
charging is based on travel patterns sampled from the National
Household Travel Survey using the 2,000-vehicle sample described
previously (FHWA 2009). The battery degrades until 80% of full
(rated) capacity remains available, after which the battery is
replaced, thus that vehicle recovers full capacity. The four grid
scenarios considered [(1) nonbaseload Michigan, (2) average
Michigan, (3) average coal, and (4) average natural gas] use eGrid
data to determine GHGs, SO,, and NO, emissions. The data are
obtained using simple geographic boundaries for facilities located
within Michigan. A 6.47% transmission loss factor within
Michigan (USPEA 2012) is assumed. Combustion emissions are
combined with upstream emissions of electricity production from
GREET (Wang 2009). Emissions from vehicular gasoline con-
sumption are comprised of both combustion and upstream
emissions and data are obtained from GREET (Wang 2009).
The “Supplemental Data” section contains emissions factor details
for gasoline and electricity.
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Fig. 3. Voltage on IEEE-39 grid in predisturbance and postdisturbance
scenarios given voltage drops at Nodes 4 and 5

Results and Discussion

Venhicle Charging

The valley-filling EV charging control algorithm utilizes idle gen-
erating capacity in the late evening to charge a large number of
EVs, so that the aggregate load can achieve valley-filling. The
algorithm allows the majority of EVs to fully charge without ex-
cessive computation within the vehicle or communication of data
between vehicles and the grid. In a simulation using 2.4 million
PEV40 vehicles (30% penetration) on the hypothetical Michigan
grid during its lowest load day, the average battery SOC after charg-
ing was 95%. All vehicles were charged to at least 90% of their
capacity. This varies depending upon vehicle type, penetration, gas-
oline budget, and the background electrical demand; greater detail
can be found in Li et al. (2013). The uncontrolled charging algo-
rithm charged vehicles overnight to 100% SOC. This was viable up
to 50% vehicle penetration due to electrical supply constraints.
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Fig. 4. Voltage on IEEE-34 feeder during predisturbance and postdis-
turbance scenarios with bounds indicating safe operating conditions
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Grid Stability with EVs

Figs. 3 and 4 show a postfault overvoltage due to tripping of EV
chargers. For this case, the base load curve of August 2, 2009 (maxi-
mum load scenario) is considered along with the valley-filling charg-
ing algorithm. Simulations are performed with an EV penetration
level of 70%, and at the lowest point of the load valley. It is assumed
that the load profiles (both EV and non-EV) at Nodes 4 and 5 are in
accordance with the same pattern. Due to a voltage sag, the EV load is
lost simultaneously at Nodes 4 and 5 causing a rise on the transmis-
sion grid (Fig. 3) as well as the feeder (Fig. 4). Voltage rise due to EV
load drop is small at the transmission level, but the effect is large at
the distribution level, where maximum node voltage is 1.12 V /unit.

This simulation is conducted with varying EV penetration lev-
els, base load scenarios (maximum load day, minimum load day, or

average load day), and charging schemes (uncontrolled or valley-
filling) to determine the maximum postfault voltage for each case.
Fig. 5 shows the collection of those results. Uncontrolled charging
does not consider vehicle penetrations above 50% since the elec-
trical demand exceeds capacity.

Except for penetration levels less than 30%, the valley-filling
algorithm typically performs better than the uncontrolled charging
algorithm in terms of postfault voltage rise. Only during the maxi-
mum load day does the valley-filling algorithm fare worse than the
uncontrolled charging scheme. This is because the ratio of EV load
to total grid load becomes very high in that scenario compared to
the other scenarios; the drastic load peak occurring in that scenario
facilitates this. As penetration level increases the overvoltage con-
dition worsens faster in the case of uncontrolled charging, while in
the case of valley-filling the overvoltage situation ultimately satu-
rates. Using valley-filling, the maximum load day has the worst
overvoltage conditions, whereas for uncontrolled charging, the
maximum load day is the safest. This suggests that for grid stability
purposes a blended operation should be adopted within the valley-
filling algorithm that considers the ratios of EV to non-EV load.

Electrified Vehicle Resiliency

A daily RTF is calculated for five vehicle types [(1) CV,
(2) PHEV16 km (PHEV10), (3) PHEV64 km (PHEV40),
(4) BEV161 km (BEV100), and (5) BEV483 km (BEV300)], at
several different levels of market penetration. The gasoline budget
for each vehicle is the same at the start of the first day, but vehicle
usage reduces that capacity over time. Fig. 6 shows the RTF of the
different vehicle types with their differing gasoline budgets at the
end of the 5-day outage. The left-hand bar within each vehicle
set presents the baseline scenario (no curtailment of discretionary
trips), while the right-hand bar presents the maximum curtailment
scenario. The RTF results for the 5-day outage considering normal
curtailment (i.e., 1-day outlook) were nearly identical to the baseline
results, and are not presented. Interestingly, the difference between
an uncontrolled and valley-filling approach to battery charging
is less than 1%, highlighting the adequacy of valley-filling in the
context of resiliency.
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The results show that the effect of vehicle electrification on RTF
is far greater than behavioral adjustments using the curtailment
rules considered. For instance, the CV with a 5-day gasoline budget
of 80 km (50 mi) achieves 37% RTF in the baseline scenario and
39% in the maximum curtailment scenario. But, the PHEV16 km
(PHEV10) baseline scenario achieves an RTF of 55% even without
trip curtailment. Thus, even a modest electrification of the vehicle
yields a significant increase in system resiliency. As behavioral
adjustment is added in tandem with technology there are modest
increases in RTF. Finally, RTF improvements have diminishing
returns with respect to increased fuel availability.

The trip curtailment approach considered in this paper is only
one of many possibilities. In real crisis situations causing prolonged

fuel shortages it is possible that workplaces or schools will be
closed; or that individuals will seek to carpool, take public transit,
walk, or bike in lieu of driving. Such alternative possibilities were
not considered in the research reported in this paper, and their
inclusion is left for future research.

Electrified Vehicle Sustainability

The lifecycle GHG, SO,, and NO, emissions are calculated over
the 10-year life of the vehicle, including vehicle and battery pro-
duction, as well as upstream and combustion emissions for both
gasoline and electricity. In addition, results include battery degra-
dation and replacement during the lifetime of the vehicle.
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Fig. 7 presents lifecycle GHG emissions on a per-mile basis for
each vehicle considering lifecycle phase, and charging location.
The black, dotted line represents the lifecycle performance of a
comparable CV, accounting for its production emissions, and gas-
oline combustion and upstream emissions. All electrified vehicles
outperform the CV for GHG emissions using the grid assumptions
of the research reported in this paper, but higher emitting grids
could cause electrified vehicles to perform worse than a CV. The
PHEV64 km (PHEV40) outperforms the PHEV16 km (PHEV10)
for GHG emissions reductions since it uses more electricity than
the PHEV16 km (PHEV10). The two BEVs are less emitting of
GHGs than the other vehicles.

Figs. 8 and 9 illustrate the findings for SO, and NO, emissions,
respectively. The trends in Figs. 8 and 9 are generally opposite from
the GHG trends. Typically, SO, and NO, emissions are greater
from EVs as compared to a CV. In addition, a larger battery increases
those pollutant emissions since the vehicle uses more electricity,
and due to battery production. An important caveat is that NO,
and SO, are both local and regional pollutants, so that their in-
crease, while seemingly large (especially for SO,, since gasoline
is regulated to contain very little sulfur), may not translate to particu-
larly adverse human health or environmental impacts if the electrical
plants are distant from population centers and remain within EPA
mandates.

Broadly, a larger vehicle battery results in a higher percentage
of electrically driven kilometers (miles). Increases in electric kilo-
meters (miles) driven, and the associated daily recharging, shift the
emissions source to the respective electricity generation grids and
away from gasoline combustion. The emissions for each grid are in
accordance with the trend in emissions factors. These findings
reinforce the importance of the electricity generation portfolio
and the vehicle’s battery size in environmental assessment seen
in prior literature (Elgowainy et al. 2010; EPRI 2007; Hawkins et al.
2013; Samaras and Meisterling 2008; Sioshansi and Denholm
2009; Sioshansi et al. 2010). A sensitivity analysis was conducted
assuming a 257,500-km (160,000-mi) vehicle lifetime, and the
results show that increased kilometers (miles) lead to increased
battery replacements, but overall, the per-kilometer (per-mile)
emissions of all pollutants are reduced for all vehicles across all
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electrical grids. Details of this analysis can be found in the “Sup-
plemental Data” section.

Conclusions

The research reported in this paper examined the sustainability,
resiliency, and stability effects of the coupled infrastructures of
the electrical grid and transportation through EVs. The case study
analysis indicated that there are dependencies between sustainabil-
ity, resiliency, and stability, and that these dependencies must be
modeled across very different timescales. These timescale differen-
ces allow for a predominantly decoupled analysis of each domain’s
phenomena, but model integration (variable, parameter, and sce-
nario consistency) is imperative for more meaningful results. Thus,
as long as all modeling assumptions are consistent, the research
reported in this paper allows for independent simulation of sustain-
ability, resiliency, and stability results, as long as the supporting
data in those studies are determined through an overarching sce-
nario (which in this case is the vehicle charging algorithm).

For instance, while the (1) stability effects examined in this pa-
per occur at the millisecond scale, and (2) resilience occurs at the
day scale, the two are intimately coupled through the hourly charg-
ing algorithm. That algorithm determines the ratio of EV load to
background load, thereby influencing the grid stability. The charg-
ing algorithm also determines vehicle SOC, which impacts vehicle
resiliency. In addition, the charging algorithm has a long-term ef-
fect on sustainability since valley-filling methods utilize a different
set of electrical assets (baseload) than uncontrolled (nonbaseload)
due to the time of charge, and the emissions of those assets can vary
greatly.

This paper only examined a few, well-defined concepts of sus-
tainability, resilience, and stability subject to very specific scenar-
ios. The results suggest that each topic may be studied in absence of
the others; however, doing so may not only give an incomplete view
of that topic, but also neglect important impacts within other topics.
For example, the research reported in this paper uses a valley-filling
algorithm due to its ability to keep grid loads from exceeding peak
demand while still charging vehicles. In this regard the algorithm
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worked well, but it was discovered that such an approach creates
a distribution-level grid stability problem at high penetrations of
electrified vehicles on high demand days. It was also discovered
that the RTF associated with EVs charged using the valley-filling
algorithm varied little from an uncontrolled charging scenario, but
this could not be known a priori.

Electrical and transportation infrastructures can be directly
coupled through EVs, and at low levels of penetration this coupling
has dramatic benefits to resilience (RTF increases due to electri-
fication), and sustainability (GHGs decrease, while SO,, NO,
increase with electrification) while not causing grid stability prob-
lems regardless of the charging algorithm. However, as the penetra-
tion level of EVs increase the potential for grid stability problems
increases, while having little effect on resilience or sustainability.
This paper highlights the importance of evaluating the infrastruc-
ture systems in their coupled form across multiple timescales in
order to capture effects that may not be obvious in absence of one
another. The framework developed in the research reported in this
paper to explore the interplay between system performance metrics
(e.g., resilience, sustainability, and grid stability) across timescales
can be modified to study other complex infrastructure systems.
An important next step in the research reported in this paper is to
examine how a constrained electrical system (i.e., blackout and
brownout conditions) can impact the transportation resiliency with
an electrified fleet. Presumably, EVs will serve to highly constrain
travel in the absence of charging infrastructure.
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