
High throughput screening of co-expressed gene pairs

with controlled False Discovery Rate (FDR) and

Minimum Acceptable Strength (MAS) ∗

Dongxiao Zhua,b, Alfred O Herob, Zhaohui S Qinc and Anand Swaroopd

Bioinformatics Programa, Departments of EECS, Statisticsb, Biostatisticsc

Ophthalmology, Visual Sciences and Human Geneticsd

University of Michigan

{zhud|hero|qin|swaroop}@umich.edu

Working draft: Date | RCSfile | Revision

∗This version is a draft.

1



FDR-CI error control 2

1 Abstract

Many exploratory microarray data analysis tools such as gene clustering and relevance networks rely on

detecting pairwise gene co-expression. Traditional screening of pairwise co-expression either controls

biological significance or statistical significance, but not both. The former approach does not provide

stochastic error control, and the later approach screens many co-expressions with excessively low cor-

relation. We have designed and implemented a statistically sound two-stage co-expression detection

algorithm that controls both statistical significance (False Discovery Rate, FDR) and biological signif-

icance (Minimum Acceptable Strength, MAS) of the discovered co-expressions. Based on estimation

of pairwise gene correlation, the algorithm provides an initial co-expression discovery that controls

only FDR, which is then followed by a second stage co-expression discovery which controls both FDR

and MAS. It also computes and thresholds the set of FDR p-values for each correlation that satisfied

the MAS criterion. Using simulated data, we validated asymptotic null distributions of the Pearson

and Kendall correlation coefficients and the two-stage error-control procedure; we also compared our

two-stage test procedure with another two-stage test procedure using Receiver Operating Characteristic

(ROC) curve. We then used yeast galactose metabolism data to illustrate the advantage of our method

for clustering genes and constructing a relevance network. The method has been implemented in an R

package “GeneNT” that is freely available from: http://www-personal.umich.edu/˜ zhud/genent.htm/.

2 Introduction

The emergence and development of DNA microarray technology (Affymetrix oligonucleotide expres-

sion arrays and cDNA arrays) enable researchers to interrogate gene expression levels simultaneously

on the genome scale ([Lockhart et al., 1996], [Schena et al., 1995], [DeRisi et al., 1997]). The devel-

opment of statistically sound and biologically meaningful techniques to analyze gene expression data

is essential for transforming raw experimental data into scientific knowledge. Gene expression data

have been subjected to a variety of statistical analyses, such as detecting differentially expressed genes

(e.g. [Tusher et al., 2001],[Zareparsi et al., 2004]), clustering genes/samples (e.g. [Eisen et al., 1998],

[McLachlan et al., 2002]), and cancer classification (e.g. [Golub et al., 1999], [Alizadeh et al., 2000]).
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Detection of co-expressed genes from microarray data has attracted much attention since many co-

expressed genes are found to have functional relationships, e.g. lying in the same signal transduction

pathway ([Eisen et al., 1998], [DeRisi et al., 1997]). Hierarchical clustering ([Eisen et al., 1998]) and

relevance network construction ([Butte and Kohane, 2000], [Farkas et al., 2003]) are two important ex-

ploratory techniques. Both of these techniques are based on discovering pairs of co-expressed genes,

which is one of the fundamental objectives in functional genomics and system biology. While not nec-

essarily true in many higher Eukaryotes ([Boutanaev et al., 2002]), pairwise gene co-expression as pre-

scribed by the standard two-component model ([Nixon et al., 1986]) characterizes gene co-expression

in Bacteria, single-celled Eukaryotes, Archaea and higher Plants ([Stock et al., 2000]).

Clearly, there is a need for statistical methodology for high throughput screening of co-expressed

gene pairs with stochastic error and strength of association controls. Two issues have to be consid-

ered in developing such a methodology, namely, choice of screening statistic and choice of screening

acceptance and rejection criteria.

Regarding the choice of screening statistic, several methods have been adopted to measure the

strength of association between expression profiles of gene pairs, such as: Pearson correlation coeffi-

cient ([Zhou et al., 2002]), coherence ([Butte et al., 2001]), mutual information ([Butte and Kohane, 2000]),

edge detection ([Filkov et al., 2002]), and dominant spectral component analysis ([Yeung et al., 2004]).

Each of these methods has advantages and disadvantages. The Pearson correlation coefficient has been

one of the most popular choices because it is easily computed and its performance is often comparable

to more complex and computational intense methods ([Yeung et al., 2004], [Kwon et al., 2003]). How-

ever, the Pearson correlation coefficient can only capture linear relationships between gene expression

profiles. To circumvent this limitation, we propose to use the non-parametric Kendall rank correlation

coefficient that is able to capture both linear and nonlinear associations between gene expression pro-

files. Both linear and nonlinear associations are very common in cellular gene expression profiles, for

example, two functionally related enzymes with similar catalytic activities may have a linear correlation

between their expression profiles; while the two enzymes with very different catalytic activities may

have a nonlinear correlation. The Pearson and Kendall correlation coefficient measures are especially

convenient because their asymptotic distributions are available, as required by our two-stage screening
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procedure to be described below.

Regarding the choice of screening acceptance criteria, one approach is to calculate a sample correla-

tion for each pair of genes and then to select the top pairs by correlation thresholding (e.g. [Zhou et al., 2002],

and [Farkas et al., 2003]), e.g. those exceeding a minimum acceptable strength (MAS) level specified

by the threshold. Without a statistical inference procedure, the observed weakly correlated gene pairs

are more likely to due to chance, noise etc, and hence are less likely to be biologically relevant. For

this reason the approach controls biological significance. However, it does not account for statistical

sampling uncertainty and thus does not control error rate. Another approach ([Lee et al., 2004]) is to

control statistical significance in addition to biological significance. It is implemented as a two-stage

procedure: screen co-expressed gene pairs whose strength of association is different from zero using

p-value thresholding, e.g. as determined by a specified level of family-wise error rate (FWER) or false

discovery rate (FDR), followed by a “hard” correlation thresholding. The approach is able to control

error rate at correlation level zero but not at any non-zero correlation level.

The purpose of combining correlation thresholding with p-value thresholding is to control sampling

error (e.g. Type I, II errors or false discoveries) and systematic error (e.g. non-functionally relevant

correlations) incurred in the screening process. Indeed, the sampling error alone can be controlled by

adopting a regular hypothesis testing scheme, and the systematic error alone can be controlled by a

correlation thresholding. However, a reliable procedure for simultaneously controlling sampling error

and systematic error has not been well developed.

In this paper, a new two-stage statistical hypothesis testing scheme is applied in order to decide on

whether the strength of association is statistically significant at the specified positive MAS level. Stage

I screens statistically significant co-expression gene pairs whose strength of correlation is different

from zero. It is then followed by Stage II, in which a “soft” correlation thresholding (FDR Confidence

Interval, FDR-CI) instead of a “hard” thresholding is applied. Our method is directly inspired by the

two-stage screen methodology of ([Hero et al., 2004]) that controls both False Discovery Rate (FDR)

and Minimum Acceptable Difference (MAD) in detecting differentially expressed genes.

We demonstrate the application of our two-stage screening algorithm by constructing relevance net-

works and clustering co-expressed genes from yeast galactose metabolism data ([Ideker et al., 2000]).
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This data represents approximately 6200 gene expression levels on two-color cDNA microarrays col-

lected over 20 physiological/genetic conditions (nine mutant and one wild type strains incubated in

either GAL-inducing or non-inducing media). By applying our two-stage algorithm on this dataset, we

achieved a high specificity (83% - 100%) in discovering genes in the galactose metabolism pathway as

described in Section 4.

The outline of the paper is as follows. In Section 3, we describe the proposed two-stage multicriteria

approach. In Section 4, we first show the approach indeed controls FDR at the specified MAS level

using synthetic data, and then illustrate it for yeast galactose metabolism data. In Section 5, we discuss

advantages of our method, model assumptions and restrictions.

3 Methods

3.1 Measures of the strength of association

There are many possible discriminants for strength of association between two variables, which we

generally denote as a real number Γ. Under a Gaussian linear hypothesis, the Pearson correlation

coefficient ρ is an appropriate metric. A robust distribution-free alternative is the Kendall rank cor-

relation coefficient (Kendall’s τ). The Pearson ([Bickel and Doksum, 2000]) and Kendall correlation

coefficients ([Hollander and Wolfe, 1999]) are special cases of the generalized correlation coefficient

([Daniel, 1944]). We define {gp}
G
p=1 as the indices of G gene probes on the microarray; {Xgp}

G
p=1

as normalized probe responses (random variables); and {{xgp(n)
}G

p=1}
N
n=1 as realizations of {Xgp}

G
p=1

under N i.i.d. microarray experiments.

3.1.1 Pearson correlation coefficient.

The population Pearson correlation coefficient between random variables Xgi and Xg j (defined as long

as var(Xgi), var(Xg j) are positive) is:

ρ(Xgi,Xg j) =
cov(Xgi,Xg j)

√

var(Xgi)var(Xg j)
. (1)
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The sample Pearson correlation coefficient ρ̂ is an asymptotically consistent unbiased estimator of ρ:

ρ̂i, j =
SXgi ,Xg j

√

SXgi ,Xgi
SXg j ,Xg j

, (2)

where SXgi ,Xgi
, SXg j ,Xg j

, and SXgi ,Xg j
are sample variances and covariances given by

SXgi ,Xgi
= (N −1)−1

N

∑
n=1

(Xgi(n)−Xgi)
2,

SXg j ,Xg j
= (N −1)−1

N

∑
n=1

(Xg j(n)−Xg j)
2,

SXgi ,Xg j
= (N −1)−1

N

∑
n=1

(Xgi(n) −Xgi)(Xg j(n) −Xg j),

and Xgi = N−1 ∑N
n=1 Xgi(n), Xg j = N−1 ∑N

n=1 Xg j(n) are sample means.

3.1.2 Kendall rank correlation coefficient.

Kendall’s τ statistic is a measure of correlation that captures both linear and non-linear associations.

The parameter τ is defined as τ = P+ − P−, where, for any two independent pairs of observations

(xgi(n)
,xg j(n)

), (xgi(m)
,xg j(m)

) from the population: P+ = P[(xgi(n)
− xgi(m)

)(xg j(n)
− xg j(m)

) ≥ 0] and P− =

P[(xgi(n)
− xgi(m)

)(xg j(n)
− xg j(m)

) < 0]. An unbiased estimator of τ is given by the Kendall τ statistic:

τ̂i, j = 2∑∑1≤n≤m≤N

Knm

N(N −1)
, (3)

here Knm is a indicator variable defined as Knm = sgn(xgi(n)
− xgi(m)

)sgn(xg j(n)
− xg j(m)

) for each set of

pairs drawn from {Xgi}
G
i=1 and {Xg j}

G
j=1.

3.2 Hypothesis testing scheme

To screen the strongly co-expressed pairs of G genes on each microarray, we will simultaneously test

the Λ =
(G

2

)

pairs of composite hypotheses: {Hλ,Kλ : λ = (gi,g j)}.
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Hλ : Γgi,g j ≤ cormin versus Kλ : Γgi,g j > cormin, for gi 6= g j, and gi,g j ∈ (1,2, ...G) (4)

where cormin is the specified minimum acceptable strength of correlation. The sample correlation

coefficient Γ̂i, j (ρ̂i, j or τ̂i, j) could be thresholded to decide on pairwise dependency of two genes in the

sample. When we must decide between the null hypothesis Hλ and the alternative hypothesis Kλ based

on such a threshold test, there will generally be decision errors in the form of false positives (Type I

errors: decide Kλ when Hλ is true) and false negatives (Type II errors: decide Hλ when Kλ is true).

The Per Comparison Error Rate (PCER) is defined as the number of Type I errors over the number

of independent trials, i.e. the probability of Type I error. The p-value is the probability that a more

improbable sample could have been drawn from the population(s) being tested given the assumption

that the null hypothesis is true.

For N realizations of any pair of gene probe responses, {xgi(n)
,xg j(n)

}N
n=1, we first calculate τ̂i, j or ρ̂i, j

respectively. For large N, the PCER p-values for ρi, j or τi, j are:

pρi, j = 2

(

1−Φ

(

tanh−1(ρ̂i, j)

(N −3)−1/2

))

(5)

pτi, j = 2

(

1−Φ

(

K

N(N −1)(2N +5)/181/2

))

(6)

where Φ is the cumulative density function of a standard Gaussian random variable, and K = ∑∑1≤n≤m≤N Knm.

The above expressions are based on asymptotic Gaussian approximations to ρ̂i, j ([Bickel and Doksum, 2000])

and to τ̂i, j ([Hollander and Wolfe, 1999]).

The PCER p-value refers to the probability of Type I error incurred in testing a single pair of hypoth-

esis for a single pair of genes gi,g j. It is the probability that purely random effects would have caused

gi,g j to be erroneously selected based on observing correlation between this pair of genes only. When

considering the Λ multiple hypotheses for all possible pairs, two adjusted error rates have frequently

been considered in microarray studies. These are family-wise error rate (FWER) and false discovery

rate (FDR)([Benjamini and Hochberg, 1995]). The FWER is the probability that the test of all Λ pairs

of hypotheses yields at least one false positive in the set of declared positive responses. In contrast,

the FDR is the average proportion of false positives in the set of declared positive responses. The FDR

is dominated by the FWER and is therefore a less stringent measure of significance. As in previous
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studies ([Reiner et al., 2003]), we adopt the FDR to control statistical significance of the selected gene

pair correlations in our screening procedure.

3.3 Two-stage screening procedure

Select a level α of FDR and a level cormin of MAS significance levels. We use a modified version of

the two-stage screening procedure proposed for gene screening by ([Hero et al., 2004]). This procedure

consists of two stages, summarized in Fig 1.

Stage I. For each gene pair λ = (gi,g j) in the set G of all Λ =
(G

2

)

gene pairs, test the simple null

hypothesis:

Hλ : Γgi,g j = 0 versus Kλ : Γgi,g j 6= 0, for gi 6= g j,and gi,g j ∈ (1,2, ...G) (7)

at FDR level α. The step-down procedure of Benjamini and Hochberg ([Benjamini and Hochberg, 1995])

is used to accomplish this.

Stage II. Suppose a number Λ1 pairs of genes, denoted by the set G1 ⊂ G , pass the Stage I procedure.

In Stage II, we first construct asymptotic PCER Confidence Intervals (PCER-CI’s): Iλ(α) for each

Γ (ρ or τ) in subset G1. We convert these PCER-CI’s into FDR Confidence Intervals (FDR-CI’s):

Iλ(α) → Iλ(Λ1α/Λ) using the procedure in ([Benjamini and Yekutieli, 2004]). A gene pair in subset

G1 is declared to be both statistically significant and biologically significant if its FDR-CI does not

intersect the MAS interval [−cormin,cormin] (see Fig 5). The set of all such gene pairs is called G2.

In many practical situations, the experimenter may not be comfortable in specifying a MAS or FDR

criterion in advance. In this situation, it is useful to solve the inverse problem: what is the most stringent

pair of criteria (α , cormin) that would cause a particular subset of gene pairs to be included in the screen

G2. The inverse screening procedure is displayed in Fig 2.
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4 Results

4.1 Validating the two-stage algorithm

4.1.1 Validating asymptotic null distribution.

Here we verify that the proposed two-stage algorithm controls FDR at a specified MAS level using sim-

ulated data. Since the p-values are based on asymptotic distribution approximations (eq. 5 and eq. 6),

we display in Fig 3a the goodness of fit of the ρ̂ sampling distribution to the Gaussian distribution using

QQ plots. Note that there is good agreement to the Gaussian distribution for N ≥ 10. Moreover, since

the construction of confidence intervals requires estimation of sampling distribution variance, the accu-

racy of the variance approximation is vital. This can be evaluated by the mean squared approximation

error (MSE) for sample size N:

MSE(N)
ρ = Λ−1 ∑

1≤i< j≤G

(S(N)

tanh−1(ρ̂i, j)
− (N −3)−1/2)2, (8)

MSE(N)
τ = Λ−1 ∑

1≤i< j≤G

(S(N)
τ̂i, j

− (
2

N(N −1)

2(N −2)

N(N −1)2

N

∑
i=1

(Cr −C)+1− τ̂))2,

(9)

where S(N)

tanh−1(ρ̂i, j)
and S(N)

τ̂i, j
denote standard errors of tanh−1(ρ̂i, j) and τ̂i, j at the sample size N. The

definitions of Cr and C̄ can be found in Appendix 5.1. The ρ̂ variance approximations are seen to be in

good agreement even for small sample sizes (N > 10) from Fig 3b.

4.1.2 Validating the error control procedure.

In order to validate our FDR and MAS error control procedure, we simulated pairwise gene expres-

sion data based on known population covariances (Appendix 5.2). The actual FDR at a MAS level

is calculated as a ratio of the number of screened gene pairs whose corresponding population corre-

lation parameters Γi, j are less than the MAS level specified, divided by the total number of screened

gene pairs. The actual MAS is the minimum true discovery of population correlation Γi, j among the

screened pairs. We specified 16 pairs of (FDR,MAS) criteria (Four FDR levels: 0.2, 0.4, 0.6, 0.8; Four
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MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a different upper case English alphabet (Red) in

Fig 4. The 16 corresponding pairs of actual (FDR,MAS) criteria are also shown in Fig 4 using the same

set of lower case English alphabets (Blue). It can be observed that generally the actual FDR’s (lower

case) fall below the specified constraint (upper case) and the actual MAS’s (lower case) fall above the

specified constraints (upper case). Any deviations of actual FDR’s and MAS’s from their specified lev-

els are due to the conservative asymptotic approximation (Eqs (5) and (6)). Observe that use of Kendall

correlation (Fig 4b) leads to greater overestimation of error rates than the Pearson correlation (Fig 4a).

Overestimation of error rates will translate into a reduction of power in discovering co-expressed pairs

at the specified levels.

4.2 Performance comparison

We compared the performance of the two two-stage algorithms using the Receiving Operator Char-

acteristic (ROC) curve in which “sensitivity” is plotted against “1 - specificity”. Let Λ0 denotes the

number of false hypotheses (true strength of pairwise association is smaller than or equal to the thresh-

old cormin), and Λα denotes the number of true hypotheses (true strength of pairwise association is

greater than the threshold cormin). We counted false positives FP (falsely rejected hypotheses) and

false negatives FN (falsely accepted hypotheses). The “sensitivity” (True positive rate, pTP) can be

calculated as pT P = 1−E(FN/Λα); and the “1 - specificity” (False positive rate, pFP) can be calcu-

lated as: pFP = E(FP/Λ0). The two-stage algorithm labelled as “FDR-only” in Fig. 5 denotes the

FDR test followed by a “hard” correlation thresholding; and that labelled as “FDR-CI” denotes the

FDR test followed by a “soft” correlation thresholding (FDR-CI). In Fig. 5, we observe overall better

performance of “FDR-CI” test than the “FDR-only” test especially at low levels of correlation thresh-

olding. For example, at the MAS level of 0.2 and the specificity level of 0.9, the “FDR-CI” method has

a three-fold higher sensitivity (pT P ≈ 0.6) than the “FDR-only” method (pT P ≈ 0.2).
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4.3 Constructing relevance networks with controlled FDR and MAS

For the yeast galactose metabolism dataset, a subset of 997 differentially expressed genes were iden-

tified by Ideker et al using a generalized likelihood ratio test procedure ([Ideker et al., 2000]). Genes

having a likelihood ratio statistic λ ≤ 45 were selected as differentially expressed, i.e. whose mRNA

levels differed significantly from the reference under one or more treatments.

Figs. 6a and 6b illustrate the direct implementation of the two-stage procedure to screen positively

or negatively correlated gene pairs based on the Pearson correlation coefficient. The direct screening

procedure is constrained by FDR level α = 0.05 and MAS level cormin = 0.5. Stage I of the screen

discovered Λ1 = 153,983 out of Λ =
(997

2

)

= 496,506 gene pairs having FDR ≤ 0.05, leaving 153,983

correlation coefficients for which FDR-CI’s must be constructed. Recall that gene pair passes the Stage

II screening if the FDR-CI does not intersect the interval [−0.5,0.5]. Λ2 = 18,135 of the 153,983

gene pairs passed the Stage II screening and were declared to be both “biologically” and “statistically”

significant. Similarly, using Kendall correlation coefficient, there were Λ1 = 95,205 gene pairs that

passed the Stage I screen, and only Λ2 = 3,552 gene pairs passed the Stage II screen constrained by

the same MAS and FDR criteria as above (STable 1).

Although for Gaussian distributed pairs the Kendall rank correlation coefficient has lower discovery

power compared to the Pearson correlation coefficient, our screening procedure was nevertheless able to

pull out many non-linearly correlated gene pairs that were missed by the Pearson correlation procedure.

These non-linearly correlated gene pairs, just like those linearly correlated ones, may be biologically

relevant too. For example, the link between gene “RPC40” and gene “YDR516C” passed both Stage

I and II screening (α = 0.015, cormin = 0.5) when using Kendall correlation coefficient (τ̂ =-7.5e-01,

FDR p-value = 6.2e-04, FDR-CI = [-9.7e-01, -5.4e-01]), but they failed to pass even the first screening

when the Pearson correlation coefficient was used (ρ̂ =-6.3e-01, FDR p-value = 1.2e-02). From the

scatter plot, we can observe an obvious non-linear correlation for this gene pair (Fig 7). The poor linear

fit can be verified by fitting a simple linear regression model and observing R2 = 0.36. Biologically,

the gene “RPC40” encodes RNA polymerase (I and III) subunit (transcription apparatus); although

the specific function of gene “YDR516C” remains unclear, it is recently shown that it involves in

transcriptional induction of the early meiotic-specific transcription factor IME1 [Dwight et al., 2002].
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Both genes are thus components of transcription apparatus. Applying our two-stage algorithm based

on Pearson correlation coefficient alone will miss the important functional relationship. Therefore,

the Kendall correlation statistic can beat the Pearson correlation statistic in some instances and hence

the two correlation statistics should be used together to capture functional relationships as many as

possible.

Relevance networks are implemented as a graph where n nodes (genes) are connected by p sets of

edges (co-expressions). Each of the p sets of edges are discovered using a different similarity mea-

sure ([Butte et al., 2000], [Butte and Kohane, 2000]). Therefore, our constructed networks are mixed

networks with p = 2 in which edges are discovered using either Pearson correlation coefficients or

Kendall correlation coefficients constrained by the same set of (FDR,MAS) criteria. In relevance net-

works, genes that are of considerable interest to the biologist are “hub genes” such as RPL33A and

RPS4A in Fig 8. Hub genes are best connected genes that dominate a large part of the network topol-

ogy ([Jeong et al., 2001], [Barabàsi, 2004]). We constructed five such networks that are constrained

by five pairs of constraints (FDR ≤ 0.05, cormin = 0.5,0.6,0.7,0.8,0.9). Most of the “hub genes” in

each discovered network fall into two categories: “RPL” and “RPS”. The former encodes “Ribosome

Protein Large (60S) subunit,” and the latter encodes “Ribosome Protein Small (40S) subunit”. Both of

these categories are structural components of the ribosome that is responsible for protein biosynthesis.

Protein biosynthesis plays the central role in galactose metabolism because galactose is not a primary

carbon source for yeast, when switching from primary carbon sources (glucose) to secondary carbon

source (e.g. galactose), many different types of proteins including transporters, enzymes, and regulators

have to be synthesized to be able to degrade the secondary carbon source [Wieczorke et al., 1999]. We

ranked the “hub genes” by calculating and sorting average rank of each “hub gene” over five networks

(Table 1, STable 2). The list of “hub genes” (STable 2) are presumably indispensable for galactose

metabolism ([Jeong et al., 2001]).

Fig. 8 presents the discovered network topology with a FDR level of 5% (5% discovered edges

are expected to be false positive) at the MAS level of cormin = 0.9. The network is composed of 89

connected vertices and 132 edges. Similar to some other biological networks, the network marginal

degree distributions appear to be of the form of a power-law. This was tested by verifying good-
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ness of fit to the log-transformed power-law model (R2 = 0.95) i.e., logP(Di) = −γ logDi + logη + εi

([Barabàsi, 2004]). Here γ and η are shape and intercept parameters, i is the index of a gene in the

network, εi is a residual fitting error, Di is the number of edges (degree) of ith gene and P(Di) is the

corresponding probability.

4.4 Clustering co-expressed genes

Inspired by the Basic Local Alignment Search Tool (BLAST) ([Altschul et al., 1990]), and based on

the “guilt-by-association” assumption ([Eisen et al., 1998]), we applied the two-stage screening pro-

cedure to cluster co-expressed genes with controlled FDR and MAS. We sought to demo its applica-

tion in metabolic pathway discovery by “rediscovering” the extensively studied galactose metabolic

pathway, which consists of at least three types of genes including transporter genes (GAL2, HXTs

etc), enzyme genes (GAL1, GAL7, GAL10 etc) and transcription factor genes (GAL4, GAL80, GAL3

etc). Some other genes are also involved in galactose metabolism but their roles are not entirely clear

([Rohde et al., 2000], [Ideker et al., 2001]). Therefore, our aims are not only to validate our procedure

by rediscovering known co-expressed genes pairs, but also to discover some unknown genes in the

pathway.

We selected gene “GAL10” as the “seed gene” which encodes the UDP-glucose-4-epimerase (EC

5.1.3.3) (Fig. 9). We set a relatively stringent criterion (α = 0.05, cormin = 0.6), and cormin = 0.6

is widely used in the literature (e.g. [Zhou et al., 2002], [Farkas et al., 2003]). We discovered six

genes (GAL10, GAL7, GCY1, GAL1, GAL2 and YOR121C) (STable 3). Five of six genes are known

to be lying in the pathway as shown in shaded squares in Fig. 9, which leads to a specificity of at

least 83%. The sixth gene “YOR121C” is a hypothetical ORF for which no functional annotation is

currently available. Our results provide strong motivation to experimentally characterize this gene’s

biological function. Known transcription factor genes (GAL4 and GAL80) were not discoverable from

this microarray experiment as the GAL4 and GAL80 expressions are time shifted and only one time

sample was included. The pathways discovered using other “seed genes” in the pathway such as GAL1

and GAL7 gave similar results (STable 4).
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5 Discussion

In this paper, we presented a two-stage procedure for screening co-expressed gene pairs that controls

both biological and statistical significance of the discovered strength of association. For the discov-

ered co-expressions, our method also provides an “accuracy” assessment of the strength of associ-

ation by constructing confidence intervals for the strength of each edge. Indeed, for the typically

small sample size microarray data, a simultaneous confidence interval is useful to characterize reliabil-

ity of the reported strength of association. Correlation thresholding is becoming standard practice in

gene co-expression analyses (e.g. [Butte and Kohane, 2000], [Butte et al., 2000], [Zhou et al., 2002],

[Farkas et al., 2003],[Lee et al., 2004]), yet “hard” thresholding lowers the discriminative power of the

FDR based test (Fig. 5). Our “soft thresholding ” procedure is able to control error rate and maintain

discriminative power (Fig. 4). The method requires a tight confidence interval on correlation, which

may be difficult to obtain for small sample sizes. However, we have shown that our algorithm provides

error rate control at a biologically relevant level with relatively few samples(20 samples for Fig. 3b,

Fig. 4).

The algorithm is sufficiently general to be applied to many different correlation measures, e.g. Spear-

man’s or Hotelling’s dependency statistics. The algorithm can also be extended to different frame-

works such as Gaussian Graphic Models (GGM) in which partial correlation coefficients are used

as the dependency measures ([Whittaker, 1990]). Different groups have developed approaches to in-

fer GGM from small sample size microarray data ([Wang et al., 2003], [Schafer and Strimmer, 2004],

[Dobra et al., 2004]). Schafer and Strimmer recently presented a procedure that is based on the boot-

strap estimator of the partial correlation coefficient ([Schafer and Strimmer, 2004]). Most of the pair-

wise partial correlations discovered by their procedure are very close to zero. On one hand, these ultra

weak correlations screened by the FDR based inference procedure are “true correlation” from a pure

statistical point of view. On the other hand, the “true correlation” may be caused by a variety of factors

other than functional relationship, such as positional and spatial artifacts of gene co-expression along

chromosomes [Kluger et al., 2003]. Thus it seems necessary to combine such statistical testing with a

“soft” thresholding to achieve high sensitivity and specificity (Fig. 5). This paper has presented such a

method to simultaneously minimize the discovered proportion of the functionally irrelevant “true cor-
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relations” and maximize that of functionally relevant ones. Our two-stage algorithm has been extended

to the GGM framework and implementations are included in our R package “GeneNT” (available from

http://www-personal.umich.edu/˜ zhud/genent.htm).

The scope of application of our statistical analysis is explicitly that of randomly sampled, com-

plete observational data. In this paper, we are not concerned with developing models of causal gene

networks. This would require a different experimentation and interventation approach to understand

directional influences, rather than the simple observational random sampling paradigm adopted here

([Dobra et al., 2004]).

Finally we note that the two-stage procedures can be applied under the independency/positive depen-

dency or the general dependency assumptions ([Benjamini and Hochberg, 1995], [Benjamini and Yekutieli, 2001]).

The implementation of the general dependency procedure (ν = 1
∑Λ

λ=1λ−1 ) causes loss of discovery power.

The assumption of independence may not be critical in the discovery of relevance networks since bio-

logical networks are typically very sparse ([Yeung et al., 2002]).
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6 Appendix

6.1 Construct PCER-CI for ρ

Based on the fact that z (z = tanh−1(ρ̂)) is the monotonic function of ρ̂, the asymptotic PCER (1−

α)× 100% Confidence Interval: Iλ(α) on each true Pearson correlation coefficient ρ of the set G1 is:

tanh(z−
zα/2

(N−3)1/2) ≤ ρ ≤ (z+
zα/2

(N−3)1/2), where P(N(0,1) > zα/2) = α/2.

6.2 Construct PCER-CI for τ

The asymptotic PCER (1−α)× 100% Confidence Interval: Iλ(α) on each true Kendall correlation

coefficient τ of the set G1 is constructed as follows:

• Compute Cr = ∑N
t=1
t 6=r

Q((Xr,Yr),(Xt,Yt)), for r = 1,2, ...,N., where Q((a,b),(c,d)) is given by:

Q((a,b),(c,d)) =



























1 if (d −b)(c−a) > 0,

0 if (d −b)(c−a) = 0,

−1 if (d −b)(c−a) < 0.

(10)

• Let C̄ = 1
N ∑N

r=1 Cr and define σ̂τ = 2
N(N−1)

2(N−2)
N(N−1) ∑N

i=1

(Cr −C̄)2 +1− τ̂2]

• Iλ(α) : τ̂− zα/2σ̂τ ≤ τ ≤ τ̂+ zα/2σ̂τ.
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6.3 Simulation of pairwise vectors based on pre-specified population covari-

ances

6.3.1 Pearson correlation coefficient ρ

.

• Specify a covariance matrix V and a mean vector µ.

• Form the Cholesky decomposition of V, i.e. find the lower triangular matrix L such that V = LLT .

• Simulate a vector z with independent N(0,1) elements.

• A vector simulated from the required multivariate normal distribution is then given by µ+Lz.

6.3.2 Kendall’s τ

.

• Specify a value for τ.

• Simulate an N ×N indicator matrix M given τ as follows:

M[n,m]1≤n<m≤N =











1 if Bernulli(1+τ
2 ) is TRUE,

−1 if Otherwise.
(11)

• Simulate i.i.d pairs (Xr,Yr) (r = 1,2, ...,N) according to M matrix and definition

Q((a,b),(c,d)) =











1 if (d −b)(c−a) > 0,

−1 if (d −b)(c−a) < 0.

(12)
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Table 1: Top ten “hub genes”. The rank of each gene is the average rank over five different networks. Each

of five networks is constrained by a different pair of (FDR,MAS) criteria. The highest ranked gene is the most

connected and stable gene under varying constraints of (FDR,MAS).

Gene Name Average Rank

RPL42B 4.2

RPS16B 6.2

RPL14A 7.4

RPS3 7.4

GTT2 8.0

RPS4A 9.8

RPL33A 11.6

RPL23B 15.4

RPS7A 15.8

RPS4B 17.2

No tied observations are generated. Alternatively, τ̂ can be directly calculated from the indicator matrix

M without generating the i.i.d pairs (eq. 3).
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Stage I (step-down): control of FDR at MAS = 0.

1. Specify FDR level α and MAS level cormin.

2. Compute a list of PCER p-values: p1, p2, ..., pΛ corresponding to Λ =
(G

2

)

pairs of composite

hypotheses: {Hλ,Kλ : λ = (gi,g j)} from {ρ̂i, j} or {τ̂i, j}.

3. Sort the list of PCER p-values in increasing order, i.e. p(1), p(2), ..., p(Λ).

4. Find the index k0 where k0 = max{k : p(k) ≤
kα
Λν}.

5. Set initial screening G1 as those k0 = Λ1 gene pairs having p-values: p(1), p(2), ..., p(k0).

In step 4, ν = 1 if the test statistics can be assumed statistically independent or positively dependent,

where ν = 1
∑Λ

λ=1 λ−1 under the general dependency assumption.

Stage II: control of FDR and MAS = cormin.

1. Construct Λ1 different (1 − α) × 100% PCER-CI’s Iλ(α) for ρ or τ of each gene pair in

G1 (Appendix 5.1).

2. Convert these PCER-CI’s into Λ1 different (1 − α) × 100% FDR-CI’s using formula

([Benjamini and Yekutieli, 2004]): Iλ(α) → Iλ(Λ1α/Λ).

3. Select the subset G2 containing Λ2 of Λ1 gene pairs whose FDR-CI’s do not intersect

[−cormin,cormin].

Figure 1: Two-stage direct screening procedure yields a subset G2 of all possible gene pairs G whose strength

of association exceeds MAS level cormin at FDR level α.
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1. Compute a list of PCER p-values: p1, p2, ..., pΛ corresponding to Λ =
(G

2

)

pairs of composite

hypotheses: {Hλ,Kλ : λ = (gi,g j)} from {ρ̂i, j} or {τ̂i, j}.

2. Sort the list of PCER p-values in increasing order, i.e. p(1), p(2), ..., p(Λ).

for any gene pair λ0 ∈ {gi,g j}
G
i, j=1:

• Find the minimal α = α(λ0) such that the PCER-CI Iλ0(α) does not intersect [−cormin,cormin].

• Compute the integer index N(α(λ0)) = ∑Λ
k=1 I(p(k))k ≤ α(λ0)), where I(A) is an indicator

function of the truth of statement A. The FDR p-value of the gene pair λ0 is then simply pi,

where i = N(α(λ0)).

endfor

Figure 2: Inverse screening procedure allows the FDR p-value of a gene pair’s (λ0) strength of association to be

computed.
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Figure 3: Verification of Gaussian null sampling distribution and variance approximation for Pearson correlation

coefficient (eq. 8). (a) QQ plot of transformed sampling distribution of Pearson correlation coefficient ρ̂ versus

Gaussian distribution. (b) Mean squared approximation errors (MSE) of the variances of transformed sample

Pearson correlation coefficients ρ̂.
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Figure 4: Verification of two-stage error control procedure based on Pearson correlation coefficient (a)

and Kendall correlation coefficient (b). Sample size N = 20.
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Figure 5: ROC curves of “FDR-CI” test procedure and “FDR-only” test procedure based on Pearson correlation

statistic
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Figure 6: Curves specify lower endpoints (a) and upper endpoints (b) of the 5% FDR-CI’s on the positive

Pearson correlation coefficients (a) and negative Pearson correlation coefficients (b) for the galactose metabolism

study. Only those gene pairs whose FDR-CI’s do not intersect [−cormin,cormin] are selected by the second stage

of screening. When the MAS strength of association criterion is cormin = 0.5, these gene pairs are obtained by

thresholding the curves as indicated.



FDR-CI error control 29

5 10 15 20

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

Expression profiles of gene RPC40 and gene YDR516C

Different experimental conditions

G
en

e 
ex

pr
es

si
on

 le
ve

l

RPC40
YDR516C

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

Scatterplot of RPC40 vs. YDR516C

RPC40 expression level

Y
D

R
51

6C
 e

xp
re

ss
io

n 
le

ve
l

(b)

Figure 7: A pair of non-linearly correlated genes.
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Figure 8: Network topology visualization. The network is discovered by constraining FDR ≤ 5% at a MAS

level of 0.9. No significant negative correlation is discovered at this level. The graph is drawn using Pajek

([Batagelj and Mrvar, 1998]).
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Figure 9: Diagram of the structural module of the galactose metabolic pathway. The shaded squares denote the

five out of six genes whose gene products lie in the galactose metabolic pathway “rediscovered” by our algorithm.


