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1. ABSTRACT

Many bioinformatics problems can be tackled from a fresh
angle offered by the network perspective. Directly inspired
by metabolic network structural studies, we propose an im-
proved gene clustering approach for inferring gene signal-
ing pathways. Based on the construction of co-expression
networks that consists of both significantly linear and non-
linear gene associations together with controlled biological
and statistical significance, we can make accurate discovery
of many transitively co-expressed genes and similarly co-
expressed genes. Our approach tends to group functionally
related genes into a tight cluster. We illustrate our approach
and compare it to the traditional clustering approaches on a
retinal gene expression dataset. The clustering method has
been implemented in an R package “GeneNT” that is freely
available from: http://www-personal.umich.edu/˜ zhud/gene
nt.htm/.

2. INTRODUCTION

The problem of biological network analysis has attracted
much interest and curiosity from the biomedical research
community in recent years. Much of this interest can be at-
tributed to the ability of a biological network to capture rela-
tionships among biological entities, such as small molecules,
genes and proteins, and on the patterns and implications
of these relationships [1]. Many researchers have realized
that the network perspective provides additional leverage
for making biological prediction and discovery that can im-
prove inference from experimental data such as microar-
rays.

There are three main types of intracellular networks that
correspond to the three biological entities: the metabolic
network, the gene regulation network, and the protein-protein
interaction network. Metabolic networks were of interest
even before the emergence of the high throughput technol-
ogy because the central pathways that dominate the network
structure were specified by biochemical experiments on sto-
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ichiometries of many reactions. These initial applications of
metabolic network inference used a non-statistical frame-
work (Boolean networks) since no replicates were avail-
able from reaction data. Many theoretical approaches have
been implemented to analyze metabolic networks including
the network decomposition and isomorphism approaches.
The inference of large-scale gene regulation and protein-
protein interaction networks require high throughput tech-
niques (e.g. gene microarray, yeast two-hybrid system and
in vivo pull-down assay), and thus are subject to statistical
uncertainty. The application of network analysis techniques
to these networks have been hindered by at least two facts:
1) There are few error control algorithm available. 2) Re-
searchers in the microarray data analysis field did not start
to appreciate these approaches before the successful appli-
cation to inferring gene pathways [2].

Inferring gene pathway from microarray is a relatively
recent area in microarray data analysis. The gene pathway
is a sequence of gene interactions leading to a specific bi-
ological endpoint function. Traditional gene clustering ap-
proaches that group similarly co-expressed genes into path-
ways have been widely accepted [3]. On the one hand,
clustering is powerful, computationally efficient, and often
gives rise to biologically meaningful discoveries. On the
other hand, clustering assigns all genes into clusters while
completely relaxing the constraints of the underlying gene
regulation network, i.e., some of the genes may not be rele-
vant to the underlying biological process and hence should
not be forced into the cluster [4]. Moreover, clustering is
limited by the fact that genes in the same biological path-
way do not necessarily have similar expression profiles.

Transitive co-expression analysis can be viewed as one
possible way to apply network analysis techniques for in-
ferring functional relationships among genes [2]. This ap-
proach allows discovery of functionally related genes in a
pathway that do not have similar expression profiles. It
nicely complements the traditional gene clustering approach.
However, the linear manner of network discovery leads to
unreliable inferences of interconnected pathway components.
Therefore, approaches which integrate features of traditional
gene clustering and transitive co-expression analysis are high-



ly desirable.
Directly inspired by the metabolic network decomposi-

tion analysis in Ma et al., 2004 [5], and based on an error-
control algorithm for extracting gene regulation network from
microarray data developed in our group [6], we propose an
improved gene clustering approach (denoted as “NC clus-
tering” throughout this paper) and demonstrate its advan-
tages over traditional approaches (denoted as “Traditional
clustering” throughout this paper) using mouse retinal de-
velopment gene expression data. The data represents a total
of 45,101 gene expression profiles over 14 conditions (in-
cluding knock-outs of several key transcription factors and
time).

3. METHODS

3.1. Constructing co-expression network

We extract a network from microarray data using a False
Discovery Rate Confidence Interval (FDR-CI) based two-
stage algorithm with simultaneously controlled FDR and
Minimum Acceptable Strength (MAS) [6]. The algorithm
provides an initial co-expression discovery that controls only
FDR, which is then followed by a second stage co-expression
discovery which controls both FDR and MAS. This tech-
nique improves upon previous network extraction methods,
e.g. [2] because our constructed network simultaneously
controls error rate and strength of association. Furthermore,
it is able to incorporate both linearly and non-linearly co-
expressed genes by using non-Euclidean inter-profile dis-
tance measures. The co-expression network, and more specif-
ically the GCC described below will specify the gene pairs
that should be included in the clusters.

3.2. Search for Giant Connected Component

Only those pairs of genes in the Giant Connected Compo-
nents (GCC) of the co-expression network are relevant to
the signaling pathway and should be included in the clus-
ters. The GCC of an undirected graph G = (V, E), where
V is the set of all vertices and E is the set of all edges, is a
maximal set of vertices U ⊂ V such that every pair of ver-
tices u and v in U are reachable from each other. We have
designed and implemented a simple but effective algorithm
to extract the GCC from the undirected graph: 1) Calculate
marginal degree for each vertex in the graph, denoted as K.
2) Sort K in decreasing order, i.e. K(1), K(2), . . . , K(n).
3) Start from the best connected to least connected vertices,
greedily grow the GCC until the newly formed giant com-
ponent is not a GCC.

The vertices of the extracted GCC are ordered by con-
nectivity, which facilitates network based analysis since high
ly connected vertices are often of biological interest. To ob-
tain the same list of vertices but in the original order, the
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Fig. 1. The GO biological process graph of the NC2 cluster (see
Table 1). In each node, the four-digit or five-digit number is the
GO ID for the GO annotation that follows. The decimal in paren-
theses is the ratio of probesets read-in from the clustering results
(having the GO annotation) versus the total number of probesets
with that annotation on the chip. The color scheme of a node cor-
responds to statistical significance level of the node (vocabulary).
Note: the GO graph has been pruned by a thresholding count of 20
in order to display only most significant nodes.

standard depth first search (DFS) algorithm can be used as
described in [7].

3.3. Compute ”shortest-path” distance matrix for GCC

Let Γ̂ij be the sample correlation coefficient between gene
i and j, e.g. estimated from a gene microarray sequence
by Pearson or Kendall correlation statistic. Let wij be the
weight of the edge between gene i and gene j. Similar to
Zhou et al. [2], the wij is defined as:

wij = (1 − abs(Γ̂ij))
p (1)

The integer p is an exponential factor to enhance the differ-
ences between gene pairs varying low and high correlation.

We use the standard Floyd-Warshall algorithm to search
among all-pairs for the shortest-paths within GCC. Let d

(k)
ij

be the weight of a shortest-path from vertex i to vertex j

passing through k intermediate vertices. When k = 0, there



is only one edge between vertex i and vertex j, and we de-
fine d

(0)
ij = wij . A recursive definition of d

(k)
ij is given by

[7]:

d
(k)
ij =

{

wij if k = 0,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj ) if k ≥ 1.

(2)

The matrix D = (dij) is called the “shortest-path distance
matrix”. It can be used as input to distance matrix based
clustering software such as: hierarchical clustering [3] and
K-medoids [8].

4. RESULTS

We obtained a mouse retinal gene expression dataset from
our collaborators at Kellogg Eye Center at University of
Michigan. The aim of retinal gene expression experiment is
to investigate the gene regulation hierarchy of photorecep-
tion differentiation during retinal development and to dis-
cover unknown genes related to this pathway. (Since the
dataset has not been published, we must omit more detailed
biological description of the dataset, which will be reported
elsewhere).

The dataset was preprocessed using “rma” method [9],
and it was subjected to an initial screening. A total of 837
genes whose log2-transformed expression indices vary more
than 3.5 folds were kept for further analysis. We constructed
a co-expression network using relatively relaxed constraints
(FDR ≤ 20% and MAS = 0.7) to retain a sufficiently large
number of gene pairs in the network [5]. A GCC of size 764
genes were extracted (see Methods). These 764 genes were
used in NC clustering according to equation(1) and equa-
tion(2) and the total 837 genes were used in traditional clus-
tering according to equation(1) only. The exponent was set
to 3 according to biological prior knowledge that all known
genes in the pathway form a tight cluster.

We used Gene Ontology (GO) [10] annotation as the
objective criteria to compare the two clustering approaches.
GO is a set of standard hierarchical vocabularies to describe
the biological process, molecular function and cellular com-
ponent of genes. It is conveniently represented as a graph
where nodes represents standard vocabularies and edges rep-
resent the relationship (either “is-a” or “part of”) between
vocabularies. A child node is the more specific vocabu-
lary than its parent node(s). A list of probesets from either
NC clustering or traditional clustering can be mapped to a
GO graph (e.g. biological process graph), the appearance
counts of all nodes of the GO graph can be calculated as
well as their p-values of chi-square statistics. The most sig-
nificant node(s)(corresponding to the smallest p-value(s))
usually describe(s) the biological functions of the probe-
set list. For example, in the GO biological process graph
(Fig. 1) of the NC2 cluster (a probeset cluster identified
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Fig. 2. Traditional clustering: Dendrogram obtained by agglom-
erative hierarchical clustering using all differentially expressed
genes. Some genes appear more than once because Affymetrix
chips replicate probesets for some genes to avoid problems caused
by gene homologues (same in Fig. 3).

by NC clustering approach, see Table 1), the leaf node “vi-
sual perspection” (GO ID: 0007601) may be most suitable
to describe the function of NC2 cluster. Assuming similar
cluster size, the smallest p-value of the same leaf node over
different GO graphs corresponding to different clusters of
probesets also identifies the best (tightest) cluster (see Table
1).

Fig. 2 and Fig. 3 demonstrate the relative advantages
of NC clustering compared to traditional clustering. All
26 probesets having the leaf node annotation “visual per-
spection” are mapped to the leaves of the dendrograms. In
Fig. 2, these 26 probesets either form scattered small clus-
ters or become standalone genes. In contrast, 23 out of the
26 probesets are incorporated into a relative small and tight
cluster A of 101 probesets as shown in Fig. 3. Table 1
presents a more detailed comparison of the two clustering
methods based on statistics of the leaf node vocabulary “vi-
sual perspection” in several clusters. Rows represent NC
or traditional clusters of different sizes, and columns repre-
sents statistics of the leaf node vocabulary. Overall, “visual
perspection” is much better represented in NC clusters than
in traditional clusters as indicated by the p-values (column
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Fig. 3. Network constrained clustering: dendrogram obtained by
agglomerative hierarchical clustering from relevance network.

6). These results show that our NC clustering method tends
to form a tighter cluster of interest. Our collaborators are
now investigating the pathway suggested by the NC2 clus-
ter, which includes 44 unannotated probesets.

5. CONCLUSION

The application of network analysis techniques to networks
extracted from high throughput data is limited due to inad-
equate replicates of probesets leading to high uncertainty
(low p-values). In this paper, using simultaneously con-
trolled biological and statistical significance [6], we have
applied network clustering techniques, and demonstrated
significant advantages over the traditional clustering approa
ches that do not account for network constraints. The ad-
vantages of our method are: 1) It tends to group functional
related genes into tight clusters despite the lack of similar-
ity between expression profiles. 2) It includes constraints on
statistical and biological significance and generates p-values
on clustered genes. 3) It is sufficiently flexible because the
calculated network constrained distance matrix can be fitted
to popular distance-based clustering software.

# Probsets # Annotated probsets Counts Chi-square p-value
NC1 204 100 25 1.0E3 1.3E-226
NC2 101 57 22 1.4E3 1.9E-311
NC 764 411 26 2.4E2 5.4E-54
TD1 204 114 13 2.3E2 3.0E-56
TD2 57 43 10 3.8E2 5.6E-85
TD3 15 14 7 5.9E2 3.3E-130
TD 837 436 26 2.2E2 1.8E-50

Table 1. Comparison of clustering results. Rows NC1, NC2 and
NC presents the NC clustering results evaluated by appearance
counts of the leaf node “visual perspection” in the GO biologi-
cal process graph. Rows TD1, TD2, TD3 and TD presents the
traditional clustering results evaluated by appearance counts of the
same leaf node. These results are calculated using data mining
tools from Affymetrix Netaffy Center [11].
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