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ABSTRACT

Many biological functions are executed as a module of co-
expressed genes which can be conveniently viewed as a co-
expression network. Genes are network vertices and sig-
nificant pairwise co-expressions are network edges. Tra-
ditional network discovery methods controls either statis-
tical significance or biological significance, but not both.
We have designed and implemented a two-stage algorithm
that controls both statistical significance (False Discovery
Rate, FDR) and biological significance (Minimum Accept-
able Strength, MAS) of the discovered network. Based on
the estimation of pairwise gene profile correlation, the al-
gorithm provides an initial network discovery that controls
only FDR, which is then followed by a second network dis-
covery which controls both FDR and MAS. We illustrate the
algorithm for discovery of co-expression networks for yeast
galactose metabolism with controlled FDR and MAS.

1. INTRODUCTION

Microarray gene expression data enable researchers to inter-
rogate gene expression levels simultaneously on the genome
scale. Detection of co-expressed genes from microarray
data has attracted much attention since many co-expressed
genes are found to have functional relationships, e.g. ly-
ing in the same signal transduction pathway. Many co-
expression detection techniques such as relevance network
and hierarchical clustering rely on the quantitative or quali-
tative assessment of similarities between the expression pro-
files of gene pairs, which is one of the fundamental objec-
tives in functional genomics and system biology. Tradi-
tional methods either screen statistically significant or bi-
ologically significant co-expressed gene pairs. The former
does not control error rate, and the latter screens many co-
expressions with excessively low correlation.

In this paper, we present a two-stage algorithm that si-
multaneously controls statistical and biological significance
of the discovered co-expression network. The algorithm im-
plements Pearson correlation coefficients and Kendall cor-
relation coefficients in order to capture both linear and non-
linear types of dependencies between all pairs of gene ex-

pression profiles. A two-stage error control procedure is
then implemented through which a number of gene pairs
are declared to be both statistically and biologically signif-
icant as measured by FDR and MAS of association. These
gene pairs form the edges of the relevance network that rep-
resents the complicated web of gene co-expression among
all pairs of genes.

We demonstrate the application of our two-stage algo-
rithm by constructing relevance networks from yeast galac-
tose metabolism data [1]. This data represents approxi-
mately 6200 gene expression levels on two-color cDNA mi-
croarrays over 20 physiological/genetic conditions (nine mu-
tants and one wild type strains incubated in either GAL-
inducing or non-inducing media).

The paper is organized into five parts: Introduction of
Kendall and Pearson statistics for strength of association
(Sec. 2); Formulation of the problem of network discov-
ery as a composite hypothesis test with multiple compar-
isons (Sec 3); Introduction of two-stage procedure for test-
ing these hypotheses (Sec 4); Validation of the two-stage
algorithm and application to yeast data (Sec 5).

2. MEASURING THE STRENGTH OF
ASSOCIATION

We use I to denote the true strength of association between
a pair of gene expression profiles. Under a Gaussian linear
hypothesis, the sample Pearson correlation coefficient p is
an appropriate metric [2]. A robust distribution-free alter-
native is the sample Kendall rank correlation coefficient 7
[3]. The Pearson and Kendall correlation coefficients are
special cases of the generalized correlation coefficient T'.
We define {g,}_, as the indices of G gene probes on the
microarray; { X, }ff:l as normalized probe responses (ran-
dom variables); and {{a:gp(")}gzl}ff:l as realizations of
{Xy, };?:1 under N i.i.d. microarray experiments.
Kendall’s 7 statistic is a measure of correlation that cap-
tures both linear and nonlinear associations. The parameter
7 is defined as 7 = P, — P_, where, for any two indepen-
dent pairs of observations (zg, .. s Zg; ) ) (Tgimys Tgjem))



from the population: Py = P[(zg,,,, — Zg;m) )@,y —
xgj(m)) > O] and P : P[(‘/Egi(n) T‘/L.g.i(m))(‘/'rgj(n) T Lgm)
< 0]. An unbiased estimator of 7 is given by the Kendall =
statistic:
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here K, is a indicator variable defined as K., = sgn(zy,
— xgi(m))sgg(acgj(n) — ;vgj(Gm)) for each set of pairs drawn
from {X,, }i2, and { X, }52y.

3. HYPOTHESISTESTING SCHEME

For G genes on each microarray, we need to simultaneously
test A = (C;) pairs of two-sided hypotheses:

Hy:Ty, 4, < cormin versus H, : Ty, ,. > cormin,
for g; # g;,and g¢;,9; € (1,2,..G) (2)

where cormin is a minimum acceptable strength of correla-
tion. The sample correlation coefficient I (5 or 7) is used as
a decision statistic to decide on pairwise dependency of two
genes in the sample. For N realizations of any pair of gene
probe responses, {xgl-(n),xgj(n)}ﬁ:l, we first calculate 7
or p. For large NV, the Per Comparison Error Rate (PCER)
p-values for p or 7 are:

K
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where @ is the cumulative density function of a standard
Gaussian random variable,and K = >~ %", v Kpm.
The above expressions are based on asymptotic Gaussian
approximations to p; ; [2] and to 7; ; [3].

The PCER p-value refers to the probability of Type |
error rate incurred in testing a single pair of hypothesis for
a single pair of genes g;, g;. It is the probability that purely
random effects would have caused g;, g; to be erroneously
selected based on observing correlation between this pair of
genes only. When considering the A multiple hypotheses
for all possible pairs, as in previous studies, we adopt the
FDR to control statistical significance of the selected gene
pair correlations in our screening procedure [4].

4. TWO-STAGE SCREENING PROCEDURE

Select a level « of FDR and a level cormin of MAS sig-
nificance levels. We use a modified version of the two-stage
screening procedure applied to gene screening [4]. This pro-
cedure consists of:

Stage I. Test the simple null hypothesis.
Hy:Ty, 4 =0 versus Hy, :T'y, 5. #0

at FDR level a.. The step-down procedure of Benjamini and
Hochberg [5] is used.

Stage Il. Suppose A; pairs of genes pass the stage |
procedure. In stage Il, we first construct asymptotic PCER
Confidence Intervals (PCER-CI’s) :I1* () for each " (p or
7) in subset Gy, and convert into FDR Confidence Intervals
(FDR-CI’s) :19(A1a/A) [6]. A gene pair in subset G, is
declared to be both statistically significant and biologically
significant if its FDR-CI does not intersect the MAS interval
[—cormin, cormin] (see Fig 3).
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Fig. 1. Verification of null sampling distribution (a) and variance
approximation (b). (a) QQ plot of transformed sampling distribu-
tion of Pearson correlation coefficient versus normal distribution.
(b) Variance approximation of transformed sampling distribution
of Pearson correlation coefficient.
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Fig. 2. Verification of two-stage error control procedure based on
Pearson correlation coefficient(a) and Kendall correlation coeffi-
cient(b). Sample size N = 20.
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Fig. 3. Segments of lower bounds (a) and upper bounds (b) speci-
fying the 5% FDR-CI’s on the positive Pearson correlation coeffi-
cients (a) and negative Pearson correlation coefficients (b) for the
galactose metabolism study. Only those gene pairs whose FDR-
CI’s do not intersect [—cormin, cormin] are selected by the sec-
ond stage of screening. When the MAS strength of association cri-
terion is cormin = 0.5, these gene pairs are obtained by thresh-
olding the curves as indicated.

5. VALIDATION OF TWO-STAGE ALGORITHM

5.1. Validating asymptotic null distribution

Here we verify that the proposed two-stage algorithm con-
trols FDR at a specified MAS level using simulated data.
Since the p-values are based on asymptotic distribution ap-
proximations (eq. 3 and eq. 4), we display in Fig. 1a that
the p sampling distribution fits well to the Gaussian distri-
bution for a small sample size of 20 using QQ plot. More-
over, since the construction of confidence intervals requires
estimation of sampling distribution variance, the accuracy
of the variance approximation is vital. This can be evalu-
ated by the mean squared approximation error (M SE) at
the sample size N:

MSED <At T (S0, V-8
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where St(N)h_l(ﬁ_ N and ng_) denote standard errors of
an i,j 2%

tanh‘l(ﬁi,j) and 7; ; at the sample size N. The p variance
approximations are seen to be in good agreement even for
small sample sizes (N > 10) from Fig 1b.

5.2. Validating error control procedure

In order to validate our FDR and MAS error control pro-
cedure, we simulated pairwise gene expression data based
on known population covariances. The actual FDR at a
MAS level is calculated as a ratio of the number of screened
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Fig. 4. Network topology visualization. The network is discovered
by constraining FDR < 5% at a MAS level of 0.9. No significant
negative correlation is discovered at this level. The graph is drawn
using Pajek [10].

gene pairs whose corresponding population correlation pa-
rameters I'; ; are less than the MAS level specified, divided
by the total number of screened gene pairs. The actual
MAS is the minimum true discovery of population corre-
lation I'; ; among the screened pairs. We specified 16 pairs
of (FDR,MAS) criteria (Four FDR levels: 0.2, 0.4, 0.6, 0.8;
Four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted
as a different upper case English alphabet (Red) in Fig 2.
The 16 corresponding pairs of actual (FDR,MAS) criteria
are also shown in Fig 2 using the same set of lower case
English alphabets (Blue). It can be observed that generally
the actual FDR’s (lower case) fall below the specified con-
straint (upper case) and the actual MAS’s (lower case) fall
above the specified constraints (upper case). Any deviations
of actual FDR’s and MAS’s from their specified levels are
due to the conservative asymptotic approximation (eg.3 and
eq.4). Observe that use of Kendall correlation (Fig 2b) leads
to greater overestimation of error rates than the Pearson cor-
relation (Fig 2a). Overestimation of error rates will translate
into a reduction of power in discovering co-expressed pairs
at the specified levels.

6. CONSTRUCTING A RELEVANCE NETWORK
WITH CONTROLLED FDR AND MAS

Relevance networks are implemented as a graph where n
nodes (genes) are connected by p sets of edges (co-expressio
ns) [7]. Our constructed networks are mixed networks with
p = 2 inwhich edges are discovered using either Pearson or
Kendall correlation coefficients constrained by the same set



Table 1. Top ten “hub genes”. The rank of each gene is the av-
erage rank over five networks. Each of five networks is constraint
by a different pair of (FDR,MAS) criteria. Highest rank is the
most connected and most stable gene under varying constraints of
(FDR,MAS)

Gene Name  Average Rank
RPL42B 4.2
RPS3 5.8
RPL14A 7.0
RPS16B 7.6
GTT2 8.4
RPS4A 9.8
RPL33A 11.8
RPL23B 15.8
RPS7A 16
RPL27A 17.4

of (FDR,MAS) criteria. For the yeast galactose metabolism
dataset, a subset of 997 genes were identified by Ideker et al
using generalized likelihood ratio test in [1]. Genes having
a likelihood statistic A < 45 were selected as differentially
expressed, whose mRNA levels differed significantly from
reference under one or more treatments.

Fig. 3a and Fig. 3b illustrate the direct implementation
of the two-stage procedure to screen positively or negatively
correlated gene pairs based on the Pearson correlation co-
efficient. See [4] for more details on how to interpret these
plots. The direct screening procedure is constrained by FDR
criterion o = 0.05 and MAS criterion cormin = 0.5.

Fig. 4 presents the discovered network topology with
a FDR level of 0.05 (5% discovered edges are expected to
be false positive) at the MAS level of 0.9 (cormin = 0.9).
The network is composed of 89 connected vertices and 132
edges. Similar to some other biological networks, the net-
work marginal degrees appear power-law distributed. This
was tested by verifying goodness of fit to the log-transformed
power-law model, (goodness of fit criterion R? = 0.95) [9].

Genes that are of considerable interest to the biologist
are the highly connected genes that dominates the network
topology. These are called “hub genes”, such as RPL33A
and RPS4A in Fig 4. “Hub genes” are best connected genes
that dominate a large part of the network topology. Most
of the “hub genes” in each discovered network fall into two
categories: “RPL” and “RPS”. The former encodes “Ribo-
some Protein Large (60S) subunit”, and the latter encodes
“Ribosome Protein Small (40S) subunit” (Table 1). Both are
structural components of the ribosome that is responsible
for protein biosynthesis. Protein biosynthesis plays the cen-

tral role in galactose metabolism because galactose is not a
primary carbon source for yeast, when switching from pri-
mary carbon sources (glucose) to secondary carbon source
(e.g. galactose), many different types of proteins including
transporters, enzymes, and regulators have to be synthesized
to be able to degrade the secondary carbon source [8]. Inter-
estingly, the list of “hub genes” contains many hypothetical
Open Reading Frames (ORFs)(data not shown), which are
presumably indispensable for galactose metabolism [9].

7. CONCLUSION

We have introduced a method to construct gene co-expression
networks with controlled FDR at different levels of MAS.
By replacing correlation coefficient with partial correlation
coefficient, the method can be naturally extended to the Gaus-
sian Graphic Model framework.
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